Conveying Specimen Value Through Digitization by Elizabeth Jacobsen and Gary A

Total Page:16

File Type:pdf, Size:1020Kb

Conveying Specimen Value Through Digitization by Elizabeth Jacobsen and Gary A Department of Botany & the U.S. National Herbarium The Plant Press New Series - Vol. 19 - No. 1 January-March 2016 Botany Profile Conveying Specimen Value through Digitization By Elizabeth Jacobsen and Gary A. Krupnick he United States National Her- conveyor-based project at the Smithsonian Program Office (DPO) are in charge of barium (Herbarium Code: US) (following the digitization of the National managing money for Smithsonian’s digi- Thas always been about sharing. Museum of American History’s National tization projects across the entire Institu- Initially, the “diffusion of knowledge” Numismatics Collection). tion. Per specimen conveyor costs run was achieved primarily by publishing The U.S. National Herbarium has been at less than a dollar, so it was decided to articles, hosting visitors, and sending out working towards the goal of complete begin with a portion of the collection and specimen loans. Now, the Department of collection digitization for a long time. “We move forward from there. “The hope is Botany is taking sharing to a new level have always looked out for opportunities that we find a donor,” comments Orli, by digitizing a significant portion of the to digitize,” reports Orli, even if those “but we haven’t found that resource yet.” collection’s 5 million specimens using opportunities involved the laborious pro- Though current technology makes conveyor belt technology contracted cess of punching holes into a paper card digitization more affordable than ever from Picturae, a European company that and keying them into a computer, as was before, money remains one of the pri- specializes in digitization. Using this new done in the 1970s. mary obstacles to completing the project. technology, the herbarium has begun the An inventory of the Type Collection Time, of course, is the other. “We can’t task of imaging specimens at an aver- was initiated in the 1970s to make this keep up with the level of need,” Orli age rate of about 4,000 specimens per portion of the collection easier to use. laments, proposing that we may need to day. The plan is to create an image for Over the course of almost 50 years, the rethink the current workflow. Specimen half a million plant specimens in 6 to 8 herbarium has built a digital inventory preparation is time- and labor-intensive, months. This rapid digitization project, of around 1.5 million specimens, repre- requiring experts who can provide the which began in October 2015 with the senting more than a third of the pressed correct name for a specimen, as well evening primrose family (Onagraceae), is specimens in the herbarium. Using rapid as a set of barcodes linking names to now well into the ferns, and will eventu- digitization approaches, the entire collec- EMu (Electronic Museum management ally continue with the sunflower family tion could be completed in under 10 years. database) for each specimen within each (Asteraceae). The herbarium of the Muséum folder. The ideal situation would be to The timing of the project is no National d’Histoire Naturelle in Paris has complete this preparation before scan- coincidence, according to Sylvia Orli, IT already imaged about 7 million specimens ning the images, but with the speed of Manager and Webmaster for the Depart- using the conveyor technique, although the conveyor, it will be more efficient ment of Botany. The digitization project their entries, for now, contain only the to scan first, then retroactively provide “follows rapid and amazing advances image and the name on the specimen’s the correct labels and barcodes. This in computer technology,” she explains, folder. The U.S. National Herbarium has arrangement is more cost-effective, if with the U.S. National Herbarium joining its eyes on a bigger, more scientifically slightly slower. After the scanning is a worldwide digitization effort that is par- valuable prize: a complete database of finished, another company (contracted ticularly well-liked among herbaria. The label information and images with verified through Picturae) will transcribe the once insurmountable task of making mil- species names. label data and return it for inclusion in lions of specimens accessible is suddenly the EMu catalogue. feasible. The herbarium digitization he Smithsonian began exploring The improved accessibility will make project, using conveyor-based technol- the idea of using a conveyor belt to the herbarium a more influential force in ogy to image natural history collections, Timage specimens about a year and a conservation and scientific research. In is the first of its kind for a herbarium half ago. The Office of the Chief Informa- the past, the herbarium relied on speci- tion Officer (OCIO) and the Digitization in the United States, and the second Continued on page 13 Travel Pedro Acevedo traveled to Nas- seek out new populations of Phaseolus script of the Tacuinum sanitatis, in view of sau, Bahamas (12/11 – 12/14) to be a polystachios to aid in improvement of an exhibition at the Walters Art Gallery. guest speaker at a retreat of the Bahamas germaplasm collections at the USDA-ARS Mohammad Vatanparast traveled National Trust. Germplasm Resources Information Net- to Botucatu, Brazil (10/31 – 11/8) to give John Boggan traveled to Philadelphia, work (GRIN) seedbank; and to Botucatu, a talk at the symposium of the Legume Pennsylvania (10/7 – 10/9) to attend the 9th Brazil (10/31 – 11/8) to give a talk and co- Morphology Working Group. North American Natural History Special lead a workshop at the symposium of the Warren Wagner traveled to Miami, Interest Group (NHSIG) and Axiell User Legume Morphology Working Group. Florida (11/16 – 11/18) to attend the board Conference at the Penn Museum. Robert Faden traveled to London, meeting of the National Tropical Botani- Barrett Brooks traveled to Orlando, England (8/1 – 9/25) to visit the Royal cal Garden and the board meeting of the Florida (11/3 – 11/8) as a representa- Botanic Gardens, Kew, and to continue International Center for Tropical Botany. tive of the Smithsonian Scientific Diving his studies of Commelinaceae for Flora Jun Wen traveled to Shenzhen and Program to attend the Diving Equipment Zambesiaca, which covers the African Beijing, China (11/19 – 11/28) to attend & Marketing Association (DEMA) 2015 countries Mozambique, Malawi, Zambia, planning meetings for the XIX Interna- Trade Show which featured diving safety Zimbabwe and Botswana, and the Caprivi tional Botanical Congress and the Journal seminars and diving equipment repair Strip of Namibia. of Systematics and Evolution, as Vice training. Vicki Funk traveled to Canberra, Aus- President of both groups. Laurence Dorr traveled to London, tralia (11/25 – 12/5) to present the opening Kenneth Wurdack traveled to St. England (11/28 – 12/12) with Rose plenary address at the annual conference Louis, Missouri (10/1 – 10/5) to conduct Gulledge to study herbarium specimens of the Australasian Systematic Botany research at the Missouri Botanical Garden. in the herbarium of the Royal Botanic Society. Elizabeth Zimmer traveled to Baton Gardens, Kew, for a treatment of the genus Caroline Puente visited Wilkes-Barre, Rouge, Louisiana (10/14 – 10/16) to Pterygota (Malvaceae). Pennsylvania (10/15 – 10/16) as an advi- attend the dedication of the new endowed Ashley Egan traveled to Hunting- sor in the creation of a DNA Barcoding Shirley C. Tucker Herbarium and to attend ton, West Virginia (10/10 – 10/12) to program at Wilkes University. a mini-symposium at Louisiana State Alice Tangerini traveled to Miami, University. The Plant Press Florida (10/14 – 10/19) to lead a work- shop, present a portfolio showing, and New Series - Vol. 19 - No. 1 attend presentations and workshops at Chair of Botany ASBA 2015, the annual conference of the Laurence J. Dorr American Society of Botanical Artists. ([email protected]) Alain Touwaide and Emanuela Appetiti traveled to Baltimore (10/30) to EDITORIAL STAFF examine a 15th century medieval manu- Editor Gary Krupnick Visitors ([email protected]) Copy Editors Craig Costion, University of Adelaide, Kyra Stillman, University of Chicago; Robin Everly, Bernadette Gibbons, and Australia; DNA barcoding (11/3/14 DNA barcode project (10/5 - 12/14). Rose Gulledge -10/31/15). Patrica Barbera Sanchez, Real Jardín News Contacts Liang Zhao, Northwest Agriculture and Botánico de Madrid, Spain; Aveninae MaryAnn Apicelli, Rusty Russell, Alice Forestry University, China; Dichocarpum, (Poaceae) (10/16 - 12/30). Tangerini, and Elizabeth Zimmer Pulsatilla, Trollius (Ranunculaceae) and its close relatives (2/5/15-2/26/16). Wichman Chipper, National Tropical The Plant Press is a quarterly publication pro- Botanical Garden; Collaborative research vided free of charge. To receive notification of when new pdf issues are posted to the web, please Monica Carlsen, Missouri Botanical Gar- (10/20). subscribe to the listserve by sending a message den; Araceae and Zingiberales (2/17/15- to [email protected] containing only the Lynn Gillespie, Canadian Museum of following in the body of the text: SUBSCRIBE 2/16/17). PLANTPRESS-NEWS Firstname Lastname. Nature; Euphorbiaceae and Poaceae Replace “Firstname Lastname” with your name. Morgan Gostel, George Mason Univer- (10/20 - 10/28). If you would like to be added to the hard-copy sity; Compositae and GGI-Gardens project mailing list, please contact Dr. Gary Krupnick at: (9/1/15-8/31/17). Stephen Weller, University of California, Department of Botany, Smithsonian Institution, Irvine; Schiedea (Caryophyllaceae) pol- PO Box 37012, NMNH MRC-166, Washington, DC 20013-7012, or by E-mail: krupnickg@ Warren Cardinal-McTeague, Canadian lination biology (10/29 - 10/30). si.edu. Museum of Nature; Plukenetieae (Euphor- biaceae) (9/8-12/11). Rich Rabeler, University of Michigan; Web site: http://botany.si.edu/ Caryophyllaceae (11/4). Continued on page 5 Page 2 Seduced by an Herbarium hen I interviewed for my position as Curator identifying plants, introduce me to the curators, Chair of Botany here at the NMNH the director talk to me about their research, and invite me to the Wasked me why I became a botanist.
Recommended publications
  • California's Native Ferns
    CALIFORNIA’S NATIVE FERNS A survey of our most common ferns and fern relatives Native ferns come in many sizes and live in many habitats • Besides living in shady woodlands and forests, ferns occur in ponds, by streams, in vernal pools, in rock outcrops, and even in desert mountains • Ferns are identified by producing fiddleheads, the new coiled up fronds, in spring, and • Spring from underground stems called rhizomes, and • Produce spores on the backside of fronds in spore sacs, arranged in clusters called sori (singular sorus) Although ferns belong to families just like other plants, the families are often difficult to identify • Families include the brake-fern family (Pteridaceae), the polypody family (Polypodiaceae), the wood fern family (Dryopteridaceae), the blechnum fern family (Blechnaceae), and several others • We’ll study ferns according to their habitat, starting with species that live in shaded places, then moving on to rock ferns, and finally water ferns Ferns from moist shade such as redwood forests are sometimes evergreen, but also often winter dormant. Here you see the evergreen sword fern Polystichum munitum Note that sword fern has once-divided fronds. Other features include swordlike pinnae and round sori Sword fern forms a handsome coarse ground cover under redwoods and other coastal conifers A sword fern relative, Dudley’s shield fern (Polystichum dudleyi) differs by having twice-divided pinnae. Details of the sori are similar to sword fern Deer fern, Blechnum spicant, is a smaller fern than sword fern, living in constantly moist habitats Deer fern is identified by having separate and different looking sterile fronds and fertile fronds as seen in the previous image.
    [Show full text]
  • Fort Benning Training Areas
    FINAL REPORT Impacts of Military Training and Land Management on Threatened and Endangered Species in the Southeastern Fall Line Sandhills Communities SERDP Project SI-1302 MAY 2009 Dr. Rebecca R. Sharitz Dr. Donald W. Imm Ms. Kathryn R. Madden Dr. Beverly S. Collins Savannah River Ecology Laboratory, University of Georgia This document has been approved for public release. This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense. i Table of Contents Acronyms and Abbreviations …………………………………………………… iv List of Figures……………………………………………………………………...v List of Tables……………………………………………………………………...vii Acknowledgments……………………………………………………………….viii 1. Executive Summary………..………………………………………………… 1 2. Objectives……………………………………………………………………. 5 3. Background………………………………………………....………………... 6 4. Materials and Methods……..………………………………………………… 8 4.1. Characterize sandhills and related xeric woodlands and discriminate from adjacent forests………………………………………………… 8 4.2. Spatial analyses and mapping of sandhills and related xeric woodland communities and comparison with spatial information on forest management and military activities………………………… 9 4.3. Effects of forest understory control practices used to maintain RCW habitat on sandhills plant communities………………………... 9 4.4. Habitat characterization of selected TES plant species……………… 10 4.5. Development of habitat models for TES plants and identification of potential additional suitable habitat……………………………….. 11 4.6.
    [Show full text]
  • Transcriptomic Characterization of Soybean - Sclerotinia Sclerotiorum Interaction at Early Infection Stages
    TRANSCRIPTOMIC CHARACTERIZATION OF SOYBEAN - SCLEROTINIA SCLEROTIORUM INTERACTION AT EARLY INFECTION STAGES BY WEI WEI THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Crop Sciences in the Graduate College of the University of Illinois at Urbana-Champaign, 2017 Urbana, Illinois Master’s Committee: Assistant Professor Steven J. Clough, Co-Chair Associate Professor Youfu Zhao, Co-Chair Professor Glen L. Hartman ABSTRACT Sclerotinia stem rot, also referred to as white mold, poses a threat to soybean production world-wide. The causal agent, Sclerotinia sclerotiorum (Lib.) de Bary, can survive in harsh environments and has an extremely broad host range. No naturally complete resistance has been reported to exist in soybean, which makes it a compelling problem. Studying the molecular interactions between soybean and S. sclerotiorum is a promising approach to identify the soybeans genes that are controlling the quantitative resistance and, on the other hand, to discover pathogenicity and virulence factors in S. sclerotiorum which could be considered as targets to disable and weaken the aggressiveness of the pathogen. This study utilized RNA-sequencing to characterize the transcriptomes of the leaves of a susceptible soybean line (AC) and an AC transgenic line (OxO) which contains an enzyme that degrades the oxalic acid (OA) produced by S. sclerotiorum thereby conferring resistance. The leaves were infected with S. sclerotiorum and samples were collected at 4 and 8 hours post inoculation (hpi) to characterize this interaction and to examine the key determinants of resistance and infection at these early infection stages. More than 600 soybean genes were detected with a fairly stringent cutoff as being significantly differentially expressed in response to S.
    [Show full text]
  • Lista Anotada De La Taxonomía Supraespecífica De Helechos De Guatemala Elaborada Por Jorge Jiménez
    Documento suplementario Lista anotada de la taxonomía supraespecífica de helechos de Guatemala Elaborada por Jorge Jiménez. Junio de 2019. [email protected] Clase Equisetopsida C. Agardh α.. Subclase Equisetidae Warm. I. Órden Equisetales DC. ex Bercht. & J. Presl a. Familia Equisetaceae Michx. ex DC. 1. Equisetum L., tres especies, dos híbridos. β.. Subclase Ophioglossidae Klinge II. Órden Psilotales Prantl b. Familia Psilotaceae J.W. Griff. & Henfr. 2. Psilotum Sw., dos especies. III. Órden Ophioglossales Link c. Familia Ophioglossaceae Martinov c1. Subfamilia Ophioglossoideae C. Presl 3. Cheiroglossa C. Presl, una especie. 4. Ophioglossum L., cuatro especies. c2. Subfamilia Botrychioideae C. Presl 5. Botrychium Sw., tres especies. 6. Botrypus Michx., una especie. γ. Subclase Marattiidae Klinge IV. Órden Marattiales Link d. Familia Marattiaceae Kaulf. 7. Danaea Sm., tres especies. 8. Marattia Sw., cuatro especies. δ. Subclase Polypodiidae Cronquist, Takht. & W. Zimm. V. Órden Osmundales Link e. Familia Osmundaceae Martinov 9. Osmunda L., una especie. 10. Osmundastrum C. Presl, una especie. VI. Órden Hymenophyllales A.B. Frank f. Familia Hymenophyllaceae Mart. f1. Subfamilia Trichomanoideae C. Presl 11. Abrodictyum C. Presl, una especie. 12. Didymoglossum Desv., nueve especies. 13. Polyphlebium Copel., cuatro especies. 14. Trichomanes L., nueve especies. 15. Vandenboschia Copel., tres especies. f2. Subfamilia Hymenophylloideae Burnett 16. Hymenophyllum Sm., 23 especies. VII. Órden Gleicheniales Schimp. g. Familia Gleicheniaceae C. Presl 17. Dicranopteris Bernh., una especie. 18. Diplopterygium (Diels) Nakai, una especie. 19. Gleichenella Ching, una especie. 20. Sticherus C. Presl, cuatro especies. VIII. Órden Schizaeales Schimp. h. Familia Lygodiaceae M. Roem. 21. Lygodium Sw., tres especies. i. Familia Schizaeaceae Kaulf. 22.
    [Show full text]
  • Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management G
    Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management G. S. Saharan • Naresh Mehta Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management Dr. G. S. Saharan Dr. Naresh Mehta CCS Haryana Agricultural University CCS Haryana Agricultural University Hisar, Haryana, India Hisar, Haryana, India ISBN 978-1-4020-8407-2 e-ISBN 978-1-4020-8408-9 Library of Congress Control Number: 2008924858 © 2008 Springer Science+Business Media B.V. No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com Foreword The fungus Sclerotinia has always been a fancy and interesting subject of research both for the mycologists and pathologists. More than 250 species of the fungus have been reported in different host plants all over the world that cause heavy economic losses. It was a challenge to discover weak links in the disease cycle to manage Sclerotinia diseases of large number of crops. For researchers and stu- dents, it has been a matter of concern, how to access voluminous literature on Sclerotinia scattered in different journals, reviews, proceedings of symposia, workshops, books, abstracts etc. to get a comprehensive picture. With the publi- cation of book on ‘Sclerotinia’, it has now become quite clear that now only three species of Sclerotinia viz., S.
    [Show full text]
  • Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi
    The University of Southern Mississippi The Aquila Digital Community Honors Theses Honors College Spring 5-2016 Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi Hanna M. Miller University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/honors_theses Part of the Biodiversity Commons, and the Botany Commons Recommended Citation Miller, Hanna M., "Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi" (2016). Honors Theses. 389. https://aquila.usm.edu/honors_theses/389 This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi by Hanna Miller A Thesis Submitted to the Honors College of The University of Southern Mississippi in Partial Fulfillment of the Requirement for the Degree of Bachelor of Science in the Department of Biological Sciences May 2016 ii Approved by _________________________________ Mac H. Alford, Ph.D., Thesis Adviser Professor of Biological Sciences _________________________________ Shiao Y. Wang, Ph.D., Chair Department of Biological Sciences _________________________________ Ellen Weinauer, Ph.D., Dean Honors College iii Abstract The North American Coastal Plain contains some of the highest plant diversity in the temperate world. However, most of the region has remained unstudied, resulting in a lack of knowledge about the unique plant communities present there.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Epidemiology of Sclerotinia Sclerotiorum, Causal Agent of Sclerotinia Stem Rot, on SE US Brassica Carinata
    Epidemiology of Sclerotinia sclerotiorum, causal agent of Sclerotinia Stem Rot, on SE US Brassica carinata by Christopher James Gorman A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Masters of Science Auburn, Alabama May 2, 2020 Keywords: Sclerotinia sclerotiorum, epidemiology, sclerotia conditioning, apothecia germination, ascospore infection, fungicide assay Copyright 2020 by Christopher James Gorman Approved by Kira Bowen, Professor of Plant Pathology Jeffrey Coleman, Assistant Professor of Plant Pathology Ian Smalls, Assistant Professor of Plant Pathology, UF Austin Hagan, Professor of Plant Pathology ABSTRACT Brassica carinata is a non-food oil seed crop currently being introduced to the Southeast US as a winter crop. Sclerotinia sclerotiorum, causal agent of Sclerotinia Stem Rot (SSR) in oilseed brassicas, is the disease of most concern to SE US winter carinata, having the potential to reduce yield and ultimately farm-gate income. A disease management plan is currently in development which will include the use of a disease forecasting system. Implementation of a disease forecasting system necessitates determining the optimal environmental conditions for various life-stages of SE US isolates of this pathogen for use in validating or modifying such a system. This is because temperature requirements and optimums for disease onset and subsequent development may vary depending on the geographical origin of S. sclerotiorum isolates. We investigated the optimal conditions necessary for three life-stages; conditioning of sclerotia, germination of apothecia, and ascospore infection of dehiscent carinata petals. Multiple isolates of S. sclerotiorum were tested, collected from winter carinata or canola grown in the SE US.
    [Show full text]
  • Desmodium Cuspidatum (Muhl.) Loudon Large-Bracted Tick-Trefoil
    New England Plant Conservation Program Desmodium cuspidatum (Muhl.) Loudon Large-bracted Tick-trefoil Conservation and Research Plan for New England Prepared by: Lynn C. Harper Habitat Protection Specialist Massachusetts Natural Heritage and Endangered Species Program Westborough, Massachusetts For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, 2002 SUMMARY Desmodium cuspidatum (Muhl.) Loudon (Fabaceae) is a tall, herbaceous, perennial legume that is regionally rare in New England. Found most often in dry, open, rocky woods over circumneutral to calcareous bedrock, it has been documented from 28 historic and eight current sites in the three states (Vermont, New Hampshire, and Massachusetts) where it is tracked by the Natural Heritage programs. The taxon has not been documented from Maine. In Connecticut and Rhode Island, the species is reported but not tracked by the Heritage programs. Two current sites in Connecticut are known from herbarium specimens. No current sites are known from Rhode Island. Although secure throughout most of its range in eastern and midwestern North America, D. cuspidatum is Endangered in Vermont, considered Historic in New Hampshire, and watch-listed in Massachusetts. It is ranked G5 globally. Very little is understood about the basic biology of this species. From work on congeners, it can be inferred that there are likely to be no problems with pollination, seed set, or germination. As for most legumes, rhizobial bacteria form nitrogen-fixing nodules on the roots of D. cuspidatum. It is unclear whether there have been any changes in the numbers or distribution of rhizobia capable of forming effective mutualisms with D.
    [Show full text]
  • Atlas of the Flora of New England: Fabaceae
    Angelo, R. and D.E. Boufford. 2013. Atlas of the flora of New England: Fabaceae. Phytoneuron 2013-2: 1–15 + map pages 1– 21. Published 9 January 2013. ISSN 2153 733X ATLAS OF THE FLORA OF NEW ENGLAND: FABACEAE RAY ANGELO1 and DAVID E. BOUFFORD2 Harvard University Herbaria 22 Divinity Avenue Cambridge, Massachusetts 02138-2020 [email protected] [email protected] ABSTRACT Dot maps are provided to depict the distribution at the county level of the taxa of Magnoliophyta: Fabaceae growing outside of cultivation in the six New England states of the northeastern United States. The maps treat 172 taxa (species, subspecies, varieties, and hybrids, but not forms) based primarily on specimens in the major herbaria of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut, with most data derived from the holdings of the New England Botanical Club Herbarium (NEBC). Brief synonymy (to account for names used in standard manuals and floras for the area and on herbarium specimens), habitat, chromosome information, and common names are also provided. KEY WORDS: flora, New England, atlas, distribution, Fabaceae This article is the eleventh in a series (Angelo & Boufford 1996, 1998, 2000, 2007, 2010, 2011a, 2011b, 2012a, 2012b, 2012c) that presents the distributions of the vascular flora of New England in the form of dot distribution maps at the county level (Figure 1). Seven more articles are planned. The atlas is posted on the internet at http://neatlas.org, where it will be updated as new information becomes available. This project encompasses all vascular plants (lycophytes, pteridophytes and spermatophytes) at the rank of species, subspecies, and variety growing independent of cultivation in the six New England states.
    [Show full text]
  • Checklist of the Vascular Plants of Redwood National Park
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks.
    [Show full text]
  • COVER CROPS and SOIL-BORNE FUNGI DANGEROUS TOWARDS the CULTIVATION of SALSIFY (Tragopogon Porrifolius Var
    Acta Sci. Pol., Hortorum Cultus 10(2) 2011, 167-181 COVER CROPS AND SOIL-BORNE FUNGI DANGEROUS TOWARDS THE CULTIVATION OF SALSIFY (Tragopogon porrifolius var. sativus (Gaterau) Br.) Elbieta Patkowska, Mirosaw Konopiski University of Life Sciences in Lublin Abstract. Salsify has a remarkable taste and nutritious values. It is a rich source of inulin – a glycoside which has a positive effect on human and animal organisms. The paper pre- sents studies on the species composition of soil-borne fungi infecting the roots of Tragopogon porrifolius var. sativus cultivated with the use of oats, tansy phacelia and spring vetch as cover crops. In a field experiment the cover crops formed abundant green mass before winter and it constituted a natural mulch on the surface of the plough land. It was managed in two ways: 1) mixed with the soil as a result of spring ploughing, or 2) mixed with the soil as a result of pre-winter ploughing. The conventional cultivation of salsify, i.e. without cover crops, constituted the control. The studies established the number and health status of four-week-old salsify seedlings and roots with necrotic signs. A laboratory mycological analysis made it possible to determine the quantitative and qualitative composition of fungi infecting the underground parts of Tragopogon porri- folius var. sativus. The emergences and the proportion of infected salsify seedlings varied and depended on the species of the mulching plant. The smallest number of infected seed- lings was obtained after the mulch with oats, slightly more after the application of spring vetch or tansy phacelia as cover crops, and the most in the control.
    [Show full text]