Cellular Identity of a Novel Small Subunit Rdna Sequence Clade of Apicomplexans: Description of the Marine Parasite Rhytidocystis Polygordiae N

Total Page:16

File Type:pdf, Size:1020Kb

Cellular Identity of a Novel Small Subunit Rdna Sequence Clade of Apicomplexans: Description of the Marine Parasite Rhytidocystis Polygordiae N J. Eukaryot. Microbiol., 53(4), 2006 pp. 280–291 r 2006 The Author(s) Journal compilation r 2006 by the International Society of Protistologists DOI: 10.1111/j.1550-7408.2006.00109.x Cellular Identity of a Novel Small Subunit rDNA Sequence Clade of Apicomplexans: Description of the Marine Parasite Rhytidocystis polygordiae n. sp. (Host: Polygordius sp., Polychaeta) BRIAN S. LEANDERa and PATRICIA A. RAMEYb aCanadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4, and bInstitute of Marine and Coastal Sciences, Rutgers University, New Jersey 08901, USA ABSTRACT. A new species of Rhytidocystis (Apicomplexa) is characterized from North American waters of the Atlantic Ocean using electron microscopy and phylogenetic analyses of small subunit (SSU) rDNA sequences. Rhytidocystis polygordiae n. sp. is a parasite of the polychaete Polygordius sp. and becomes the fourth described species within this genus. The trophozoites of R. polygordiae were relatively small oblong cells (L 5 35–55 mm; W 5 20–25 mm) and distinctive in possessing subterminal indentations at both ends of the cell. The surface of the trophozoites had six to eight longitudinal series of small transverse folds and several micropores arranged in short linear rows. The trophozoites of R. polygordiae were positioned beneath the brush border of the intestinal epithelium but appeared to reside between the epithelial cells within the extracellular matrix rather than within the cells. The trophozoites possessed a uniform distribution of paraglycogen granules, putative apicoplasts, mitochondria with tubular cristae, and a centrally positioned nucleus. The trophozoites were non-motile and lacked a mucron and an apical complex. Intracellular sporozoites of R. polygordiae had a conoid, a few rhoptries, micronemes, dense granules, and a posteriorly positioned nucleus. Phylogenies inferred from SSU rDNA sequences demon- strated a close relationship between R. polygordiae and the poorly known parasite reported from the hemolymph of the giant clam Tridacna crocea. The rhytidocystid clade diverged early in the apicomplexan radiation and showed a weak affinity to a clade consisting of cryptosporidian parasites, monocystids, and neogregarines. Key Words. Agamococcidia, Apicomplexa, apicoplast, archiannelids, Coccidia Cryptosporidium, gregarines, molecular phylogeny, Rhytidocystis, ultrastructure. PICOMPLEXAN diversity is just beginning to be explored we describe a new rhytidocystid species that parasitizes Poly- A with molecular phylogenetic approaches, especially for gordius, a meiofaunal polychaete from North American waters of groups that do not have a direct impact on human welfare. Most the western Atlantic Ocean (Ramey, Fiege, and Leander 2006). likely, tens of thousands of apicomplexan species remain undis- Our ultrastructural and molecular phylogenetic data help clarify covered, especially those that inhabit marine environments. An the cellular identity of Rhytidocystis, and a poorly understood improved understanding of these lineages should shed consider- parasite of the giant clam Tridacna crocea. Moreover, these data ably more light on the unity and diversity of apicomplexan par- uncover another clade of enigmatic parasites that diverges early in asites and the earliest stages in the evolution of parasitism in the the apicomplexan radiation. group (Leander and Keeling 2004; Leander et al. 2006). Perhaps the least understood members of the Apicomplexa are gregarines MATERIALS AND METHODS and several enigmatic coccidian-like lineages with uncertain phylogenetic position. The ‘‘Agamococcidiorida’’ is an enigmat- Collection of organisms. Trophozoites of Rhytidocystis poly- ic and ill-named group of apicomplexans first recognized by gordiae n. sp. were isolated from the intestinal epithelium of the Levine (1979) because these organisms have eucoccidian-like polychaete Polygordius sp. Ramey, 2006. Host worms were col- cyst characteristics (e.g. oocysts containing sporocysts, each con- lected during the spring and summer months of 2004/05 by SCU- taining two sporozoites) but seem to lack gamonts, merogony, and BA divers near Station 9 at the LEO-15 research site on Beach any evidence of sexual reproduction. Most ‘‘agamococcidians’’ Haven Ridge, NJ (391280 N, 741150 W) (Ramey et al. 2006; Von have relatively large trophozoites, a general feature of many Alt and Grassle 1992). marine gregarines. Unlike most gregarines, however, the tropho- Microscopy. Host dissections and micromanipulation of indi- zoites of ‘‘agamococcidians’’ are non-motile and reside within the vidual parasites were conducted with a Leica MZ6 stereomicro- extracellular spaces of host epithelial tissues. This unique combi- scope and a Zeiss Axiovert 200 inverted microscope. Differential nation of features is significant from an evolutionary perspective interference contrast (DIC) light micrographs were produced by because a better understanding of these parasites could provide securing parasites under a cover slip with vaseline and viewing important insights into the deep relationships among gregarines, them with a Zeiss Axioplan 2 imaging microscope connected to a cryptosporidian parasites, and eucoccidians. Leica DC500 color digital camera. Rhytidocystis and Gemmocystis are the only described ‘‘aga- Parasites were released into seawater by teasing apart the host mococcidian’’ genera (Levine 1979; Upton and Peters 1986). The with fine-tipped forceps. Fifteen individual parasites were latter contains a single species, Gemmocystis cylindrus, described removed from the macerated tissue by micromanipulation and from the gastrodermis of scleractinian corals (Upton and Peters washed twice in filtered seawater. As described previously 1986). Rhytidocystis comprises three species, all of which were (Leander, Harper, and Keeling 2003b), washed parasites were de- collected from polychaetes in European waters of the eastern At- posited directly into the threaded hole of a Swinnex filter holder, lantic Ocean (de Beauchamp 1913; Porchet-Hennere 1972). Here containing a 5-mm polycarbonate membrane filter (Coring Sepa- rations Division, Acton, MA) submerged in seawater within a Corresponding Author: B. Leander, Canadian Institute for Advanced small canister. Whatman filter paper, mounted on the inside of a Research, Program in Evolutionary Biology, Departments of Botany beaker, was used to fix the parasites with OsO4 vapors for 30 min. and Zoology, University of British Columbia, Vancouver, BC V6T 1Z4 Five drops of 4% (w/v) OsO4 were added directly to the seawater Canada—Telephone number: 604-822-2474; FAX number: 604-822- and the trophozoites were fixed for an additional 30 min. The 6089; e-mail: [email protected] trophozoites were dehydrated with a graded series of ethyl alcohol 280 LEANDER AND RAMEY—DESCRIPTION OF RHYTIDOCYSTIS POLYGORDIAE N. SP. 281 and critical point dried with CO2. Filters were mounted on stubs, mer and Von Haeseler 1996) and trees were constructed with sputter coated with gold, and viewed under a Hitachi S4700 weighted neighbor joining (WNJ) using Weighbor (Bruno, Socci, Scanning Electron Microscope. Some SEM images were illustrat- and Halpern 2000). Five-hundred bootstrap datasets were gener- ed on a black background using Adobe Photoshop 6.0 (Adobe ated with SEQBOOT (Felsenstein 1993). Respective distances Systems, San Jose, CA). were calculated with the shell script ‘‘puzzleboot’’ (M. Holder Transmission electron microscopy (TEM) was conducted on and A. Roger, www.tree-puzzle.de) using the a shape parameter parasites in situ. Fragments of host worms were collected in and Ti/Tv ratios estimated from the original dataset and analyzed Eppendorf tubes and fixed in a 2% (v/v) glutaraldehyde in sea- with Weighbor. water at 4 1C for 1 h. The fixed worms were washed twice in sea- We also examined the 56-taxon dataset with Bayesian analysis water for 15 min and post-fixed with 1% (w/v) OsO4/seawater using the program MrBayes 3.0 set to operate with GTR, a g dis- cocktail at 4 1C for 1 h. Worm fragments were dehydrated with a tribution, and four MCMC chains (default temperature 5 0.2) graded series of ethyl alcohol and acetone, infiltrated with ace- (Huelsenbeck and Ronquist 2001). A total of 2,000,000 genera- tone-resin mixtures, and flat embedded with pure Epon resin at tions were calculated with trees sampled every 100 generations 60 1C. Worm fragments were excised with a razor blade and glued and with a prior burn-in of 200,000 generations (2,000 sampled to Epon blocks. Ultrathin sections were generated using a Leica trees were discarded). A majority rule consensus tree was con- Ultracut T Ultramicrotome, post-stained with uranyl acetate and structed from 16,000 post-burn-in trees with PAUPÃ 4.0. Posterior lead citrate, and viewed under a Hitachi H7600 Transmission probabilities correspond to the frequency at which a given node is Electron Microscope. found in the post-burn-in trees. DNA isolation, PCR, cloning, and sequencing. Thirty-five GenBank accession numbers. Adelina bambarooniae trophozoites were manually isolated from dissected hosts, washed (AF494059), Amphidinium asymmetricum (AF274250), Babesia three times in filtered seawater, and deposited into 1.5 ml Eppen- bigemina (AY603402), Rhytidocystis polygordiae (DQ273988), dorf tubes. DNA was extracted with a standard CTAB extraction Blepharisma americanum (M97909), Colpoda inflata (M97908), protocol: pelleted parasites were suspended in 200
Recommended publications
  • An Intestinal Gregarine of Nothria Conchylega (Polychaeta, Onuphidae)
    Journal of Invertebrate Pathology 104 (2010) 172–179 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Description of Trichotokara nothriae n. gen. et sp. (Apicomplexa, Lecudinidae) – An intestinal gregarine of Nothria conchylega (Polychaeta, Onuphidae) Sonja Rueckert *, Brian S. Leander Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Departments of Botany and Zoology, University of British Columbia, #3529 – 6270 University Blvd., Vancouver, BC, Canada V6T 1Z4 article info abstract Article history: The trophozoites of a novel gregarine apicomplexan, Trichotokara nothriae n. gen. et sp., were isolated and Received 12 November 2009 characterized from the intestines of the onuphid tubeworm Nothria conchylega (Polychaeta), collected at Accepted 11 March 2010 20 m depth from the North-eastern Pacific Coast. The trophozoites were 50–155 lm long with a mid-cell Available online 23 March 2010 indentation that formed two prominent bulges (anterior bulge, 14–48 lm wide; posterior bulge, 15– 55 lm wide). Scanning electron microscopy (SEM) demonstrated that approximately 400 densely packed, Keywords: longitudinal epicytic folds (5 folds/lm) inscribe the surface of the trophozoites, and a prominently elon- Alveolata gated mucron (14–60 lm long and 6–12 lm wide) was covered with hair-like projections (mean length, Apicomplexa 1.97 m; mean width, 0.2 m at the base). Although a septum occurred at the junction between the cell Lecudinidae l l Lecudina proper and the mucron in most trophozoites, light microscopy (LM) demonstrated that the cell proper Parasite extended into the core of the mucron as a thin prolongation.
    [Show full text]
  • A Brief Taxonomy of the Genus Prorocentrum in the Coastal Areas Along Sanya Bay, Hainan Island
    R ESEARCH ARTICLE ScienceAsia 44 (2018): 241-246 doi:10.2306 /scienceasia1513-1874.2018.44.241 A brief taxonomy of the genus Prorocentrum in the coastal areas along Sanya Bay, Hainan Island a,b, c a d Anqi Yin ∗, Xinghua Wang ,Yajian Zhang , Hongwu Li a College of Life Sciences and Ecology, Hainan Tropical Ocean University, Sanya, Hainan 572022 China b School of Environmental Science, The University of Shiga Prefecture, Hikone, Shiga 522-8533 Japan c School of Ocean Science and Technology, Hainan Tropical Ocean University, Sanya, Hainan 572022 China d State Key Laboratory of Marine Resource Utilization in South China Sea, Haikou, Hainan 570228 China ∗Corresponding author, e-mail: [email protected] Received 7 May 2018 Accepted 14 Aug 2018 ABSTRACT: This is the first report of the genus Prorocentrum Ehrenberg occurring in the coastal areas along Sanya Bay, Hainan Island. Samples were collected from five coastal stations in 2017, and a brief taxonomy of Prorocentrum species was carried out using an inverted microscope. Five species (P.hoffmannianum, P.lima, P.micans, P.rhathymum, P.sigmoides) were identified, including three toxic species and two red tide-forming species. In particular, P. hoffmannianum and P. lima were both confirmed as the producers of okadaic acid and responsible for diarrhoetic shellfish poisoning events. This may suggest the potential threats of harmful algal blooms in the coastal areas along Sanya Bay that could cause diarrhoetic shellfish poisoning events. KEYWORDS: dinoflagellates, planktonic, benthic, toxic, red tide-forming INTRODUCTION land, is located in a tropical climate region, where shellfish industries, fish farming, and tourism have Dinoflagellates are an important part of the pelagic rapidly developed in the coastal areas during the ecosystem 1, make a large component of primary last decade.
    [Show full text]
  • The Classification of Lower Organisms
    The Classification of Lower Organisms Ernst Hkinrich Haickei, in 1874 From Rolschc (1906). By permission of Macrae Smith Company. C f3 The Classification of LOWER ORGANISMS By HERBERT FAULKNER COPELAND \ PACIFIC ^.,^,kfi^..^ BOOKS PALO ALTO, CALIFORNIA Copyright 1956 by Herbert F. Copeland Library of Congress Catalog Card Number 56-7944 Published by PACIFIC BOOKS Palo Alto, California Printed and bound in the United States of America CONTENTS Chapter Page I. Introduction 1 II. An Essay on Nomenclature 6 III. Kingdom Mychota 12 Phylum Archezoa 17 Class 1. Schizophyta 18 Order 1. Schizosporea 18 Order 2. Actinomycetalea 24 Order 3. Caulobacterialea 25 Class 2. Myxoschizomycetes 27 Order 1. Myxobactralea 27 Order 2. Spirochaetalea 28 Class 3. Archiplastidea 29 Order 1. Rhodobacteria 31 Order 2. Sphaerotilalea 33 Order 3. Coccogonea 33 Order 4. Gloiophycea 33 IV. Kingdom Protoctista 37 V. Phylum Rhodophyta 40 Class 1. Bangialea 41 Order Bangiacea 41 Class 2. Heterocarpea 44 Order 1. Cryptospermea 47 Order 2. Sphaerococcoidea 47 Order 3. Gelidialea 49 Order 4. Furccllariea 50 Order 5. Coeloblastea 51 Order 6. Floridea 51 VI. Phylum Phaeophyta 53 Class 1. Heterokonta 55 Order 1. Ochromonadalea 57 Order 2. Silicoflagellata 61 Order 3. Vaucheriacea 63 Order 4. Choanoflagellata 67 Order 5. Hyphochytrialea 69 Class 2. Bacillariacea 69 Order 1. Disciformia 73 Order 2. Diatomea 74 Class 3. Oomycetes 76 Order 1. Saprolegnina 77 Order 2. Peronosporina 80 Order 3. Lagenidialea 81 Class 4. Melanophycea 82 Order 1 . Phaeozoosporea 86 Order 2. Sphacelarialea 86 Order 3. Dictyotea 86 Order 4. Sporochnoidea 87 V ly Chapter Page Orders. Cutlerialea 88 Order 6.
    [Show full text]
  • Molecular Phylogeny and Ultrastructure of Selenidium Serpulae
    MolecularBlackwell Publishing Ltd phylogeny and ultrastructure of Selenidium serpulae (Apicomplexa, Archigregarinia) from the calcareous tubeworm Serpula vermicularis (Annelida, Polychaeta, Sabellida) BRIAN S. LEANDER Accepted: 23 November 2006 Leander, B. S. (2007). Molecular phylogeny and ultrastructure of Selenidium serpulae (Apicom- doi:10.1111/j.1463-6409.2007.00272.x plexa, Archigregarinia) from the calcareous tubeworm Serpula vermicularis (Annelida, Polychaeta, Sabellida). — Zoologica Scripta, 36, 213–227. Archigregarines are dynamic single-celled parasites that inhabit the intestinal systems of marine invertebrates, especially suspension feeding and deposit feeding polychaetes. Certain archigregarines in the genus Selenidium have retained several plesiomorphic characters, and improved knowledge of these species is expected to shed considerable light onto the earliest stages in apicomplexan evolution. Although archigregarines are related to some of the most notorious parasites known (e.g., Cryptosporidium and Plasmodium), current knowledge of the group is meagre. In an attempt to improve our understanding of archigregarine diversity and evolution, I have characterised the general ultrastructure and molecular phylogenetic position of Selenidium serpulae (Lankester) Caullery and Mesnil. The parasites were isolated from the intestines of the calcareous tubeworm Serpula vermicularis (Polychaeta) collected in the east- ern Pacific Ocean. The trophozoites (extracellular feeding stages) were spindle-shaped and capable of slow and continuous bending, and coiling, especially when dislodged from the host epithelium. The trophozoite surface was composed of 19–23 longitudinal folds, prominent transverse folds and a robust, trilayered pellicle subtended by a single row of microtubules, each surrounded by an electron transparent sheath. Putative mitochondria were observed, but they were inconspicuous and apparently highly reduced, a condition that is indicative of ana- erobic metabolism.
    [Show full text]
  • Adl S.M., Simpson A.G.B., Lane C.E., Lukeš J., Bass D., Bowser S.S
    The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D. MITCHELL,l SHARON E. MOZLEY-STANRIDGE,p LAURA W. PARFREY,q JAN PAWLOWSKI,r SONJA RUECKERT,s LAURA SHADWICK,t CONRAD L. SCHOCH,u ALEXEY SMIRNOVv and FREDERICK W. SPIEGELt aDepartment of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada, and bDepartment of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada, and cDepartment of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, 02881, USA, and dBiology Center and Faculty of Sciences, Institute of Parasitology, University of South Bohemia, Cˇeske´ Budeˇjovice, Czech Republic, and eZoology Department, Natural History Museum, London, SW7 5BD, United Kingdom, and fWadsworth Center, New York State Department of Health, Albany, New York, 12201, USA, and gDepartment of Biochemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada, and hDepartment of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada, and iDepartment
    [Show full text]
  • Molecular Systematics of Marine Gregarines (Apicomplexa)
    International Journal of Systematic and Evolutionary Microbiology (2010), 60, 2681–2690 DOI 10.1099/ijs.0.016436-0 Molecular systematics of marine gregarines (Apicomplexa) from North-eastern Pacific polychaetes and nemerteans, with descriptions of three novel species: Lecudina phyllochaetopteri sp. nov., Difficilina tubulani sp. nov. and Difficilina paranemertis sp. nov. Sonja Rueckert,1,2 Chitchai Chantangsi1,3 and Brian S. Leander1 Correspondence 1Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Sonja Rueckert Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada [email protected]. 2Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan tsukuba.ac.jp 3Department of Biology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand Most eugregarine apicomplexans infecting the intestines of marine invertebrates have been described within the family Lecudinidae and the type genus Lecudina. The diversity of these parasites is vast and poorly understood and only a tiny number of species has been characterized at the molecular phylogenetic level. DNA sequences coupled with high-resolution micrographs of trophozoites provide an efficient and precise approach for delimiting gregarine lineages from one another and also facilitate our overall understanding of gregarine biodiversity. In this study, phylogenetic analyses of small subunit (SSU) rDNA sequences from five (uncultivated) gregarines isolated from polychaetes and nemerteans in the North-eastern Pacific Ocean are presented. Lecudina phyllochaetopteri sp. nov. was isolated from the intestines of the parchment tubeworm Phyllochaetopterus prolifica (Polychaeta). Lecudina longissima and Lecudina polymorpha were both isolated from the intestines of Lumbrineris japonica (Polychaeta). Difficilina tubulani sp. nov. was isolated from the nemertean Tubulanus polymorpha and Difficilina paranemertis sp.
    [Show full text]
  • Reliable Determination of Prorocentrum Micans Ehrenb. (Prorocentrales, Dinophyceae) Based on Newly Collected Material from the Type Locality
    European Journal of Phycology ISSN: 0967-0262 (Print) 1469-4433 (Online) Journal homepage: https://www.tandfonline.com/loi/tejp20 Reliable determination of Prorocentrum micans Ehrenb. (Prorocentrales, Dinophyceae) based on newly collected material from the type locality Urban Tillmann, Mona Hoppenrath & Marc Gottschling To cite this article: Urban Tillmann, Mona Hoppenrath & Marc Gottschling (2019) Reliable determination of Prorocentrummicans Ehrenb. (Prorocentrales, Dinophyceae) based on newly collected material from the type locality, European Journal of Phycology, 54:3, 417-431, DOI: 10.1080/09670262.2019.1579925 To link to this article: https://doi.org/10.1080/09670262.2019.1579925 View supplementary material Published online: 13 May 2019. Submit your article to this journal Article views: 52 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tejp20 British Phycological EUROPEAN JOURNAL OF PHYCOLOGY 2019, VOL. 54, NO. 3, 417–431 Society https://doi.org/10.1080/09670262.2019.1579925 Understanding and using algae Reliable determination of Prorocentrum micans Ehrenb. (Prorocentrales, Dinophyceae) based on newly collected material from the type locality Urban Tillmann a, Mona Hoppenrathb and Marc Gottschling c aAlfred Wegener Institut, Helmholz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D – 27570 Bremerhaven, Germany; bSenckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Südstrand 44, D – 26382 Wilhelmshaven, Germany; cDepartment Biologie, Systematische Botanik und Mykologie, GeoBio-Center, Ludwig-Maximilians- Universität München, Menzinger Str. 67, D – 80638 München, Germany ABSTRACT The Prorocentrales are a unique group of dinophytes based on several apomorphic traits, but species delimitation is challenging within the group.
    [Show full text]
  • Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes
    PROF. SINA ADL (Orcid ID : 0000-0001-6324-6065) PROF. DAVID BASS (Orcid ID : 0000-0002-9883-7823) DR. CÉDRIC BERNEY (Orcid ID : 0000-0001-8689-9907) DR. PACO CÁRDENAS (Orcid ID : 0000-0003-4045-6718) DR. IVAN CEPICKA (Orcid ID : 0000-0002-4322-0754) DR. MICAH DUNTHORN (Orcid ID : 0000-0003-1376-4109) PROF. BENTE EDVARDSEN (Orcid ID : 0000-0002-6806-4807) DR. DENIS H. LYNN (Orcid ID : 0000-0002-1554-7792) DR. EDWARD A.D MITCHELL (Orcid ID : 0000-0003-0358-506X) PROF. JONG SOO PARK (Orcid ID : 0000-0001-6253-5199) DR. GUIFRÉ TORRUELLA (Orcid ID : 0000-0002-6534-4758) Article DR. VASILY V. ZLATOGURSKY (Orcid ID : 0000-0002-2688-3900) Article type : Original Article Corresponding author mail id: [email protected] Adl et al.---Classification of Eukaryotes Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Sina M. Adla, David Bassb,c, Christopher E. Laned, Julius Lukeše,f, Conrad L. Schochg, Alexey Smirnovh, Sabine Agathai, Cedric Berneyj, Matthew W. Brownk,l, Fabien Burkim, Paco Cárdenasn, Ivan Čepičkao, Ludmila Chistyakovap, Javier del Campoq, Micah Dunthornr,s, Bente Edvardsent, Yana Eglitu, Laure Guillouv, Vladimír Hamplw, Aaron A. Heissx, Mona Hoppenrathy, Timothy Y. Jamesz, Sergey Karpovh, Eunsoo Kimx, Martin Koliskoe, Alexander Kudryavtsevh,aa, Daniel J. G. Lahrab, Enrique Laraac,ad, Line Le Gallae, Denis H. Lynnaf,ag, David G. Mannah, Ramon Massana i Moleraq, Edward A. D. Mitchellac,ai , Christine Morrowaj, Jong Soo Parkak, Jan W. Pawlowskial, Martha J. Powellam, Daniel J. Richteran, Sonja Rueckertao, Lora Shadwickap, Satoshi Shimanoaq, Frederick W. Spiegelap, Guifré Torruella i Cortesar, Noha Youssefas, Vasily Zlatogurskyh,at, Qianqian Zhangau,av.
    [Show full text]
  • Apicomplexan-Like Parasites Are Polyphyletic and Widely but Selectively Dependent on Cryptic Plastid Organelles
    RESEARCH ARTICLE Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles Jan Janousˇkovec1*, Gita G Paskerova2, Tatiana S Miroliubova2,3, Kirill V Mikhailov4,5, Thomas Birley1, Vladimir V Aleoshin4,5, Timur G Simdyanov6 1Department of Genetics, Evolution and Environment, University College London, London, United Kingdom; 2Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, St. Petersburg, Russian Federation; 3Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation; 4Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation; 5Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation; 6Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation Abstract The phylum Apicomplexa comprises human pathogens such as Plasmodium but is also an under-explored hotspot of evolutionary diversity central to understanding the origins of parasitism and non-photosynthetic plastids. We generated single-cell transcriptomes for all major apicomplexan groups lacking large-scale sequence data. Phylogenetic analysis reveals that apicomplexan-like parasites are polyphyletic and their similar morphologies emerged convergently at least three times. Gregarines and eugregarines are monophyletic, against most expectations, and rhytidocystids and Eleutheroschizon are sister lineages to medically
    [Show full text]
  • A New View on the Morphology And
    A new view on the morphology and phylogeny of eugregarines suggested by the evidence from the gregarine Ancora sagittata (Leuckart, 1860) Labbé, 1899 (Apicomplexa: Eugregarinida) Timur G. Simdyanov, Laure Guillou, Andrei Y. Diakin, Kirill V. Mikhailov, Joseph Schrével, Vladimir V. Aleoshin To cite this version: Timur G. Simdyanov, Laure Guillou, Andrei Y. Diakin, Kirill V. Mikhailov, Joseph Schrével, et al.. A new view on the morphology and phylogeny of eugregarines suggested by the evidence from the gregarine Ancora sagittata (Leuckart, 1860) Labbé, 1899 (Apicomplexa: Eugregarinida). PeerJ, PeerJ, 2017, 5, pp.e3354. 10.7717/peerj.3354. hal-01547875 HAL Id: hal-01547875 https://hal.sorbonne-universite.fr/hal-01547875 Submitted on 27 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License A new view on the morphology and phylogeny of eugregarines suggested by the evidence from the gregarine Ancora sagittata (Leuckart, 1860) Labbe, 1899 (Apicomplexa: Eugregarinida) Timur G.
    [Show full text]
  • The Coccidian Parasites (Protozoa, Apicomplexa) of Carnivores
    The Coccidian Parasites (Protozoa. /Vpicomplexa) of Carnivores NORMAN I) LEVINE and VIRGIN] \ IM \- UNIVERSITY OF ILLINOIS PRESS Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/coccidianparasit51levi CENTRAL CIRCULATION BOOKSTACKS The person charging this material is re- sponsible for its return to the library from which it was borrowed on or before the Latest Date stamped below. Theft, mutilation, and underlining of books are reasons for disciplinary action and may result In dismissal from the University. nivores TO RENEW CALL TELEPHONE CENTER, 333-8400 UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN OCT 2 7 1993 When renewing by phone, write new due date below previous due date. L162 The Coccidian Parasites (Protozoa, Apicomplexa) of Carnivores NORMAN D. LEVINE and VIRGINIA IVENS ILLINOIS BIOLOGICAL MONOGRAPHS 51 UNIVERSITY OF ILLINOIS PRESS Urbana Chicago London ILLINOIS BIOLOGICAL MONOGRAPHS Volumes 1 through 24 contained four issues each. Beginning with number 25 (issued in 1957), each publication is numbered consecu- tively. Standing orders are accepted for forthcoming numbers. The titles listed below are still in print. They may be purchased from the University of Illinois Press, 54 East Gregory Drive, Box 5081, Station A, Champaign, Illinois 61820. Out-of-print titles in the Illinois Biological Monographs are available from University Microfilms, Inc., 300 North Zeeb Road, Ann Arbor, Michigan 48106. KOCH, STEPHEN D. (1974): The Eragrostis-pectinacea-pilosa Com- plex in North and Central America (Gramineae: Eragrostoideae). 86 pp. 14 figs. 8 plates. No. 48. $5.95. KENDEIGH, CHARLES S. (1979): Invertebrate Populations of the Deciduous Forest: Fluctuations and Relations to Weather.
    [Show full text]
  • Phylogeny of Gregarines (Apicomplexa) As Inferred from Small-Subunit Rdna and B-Tubulin
    International Journal of Systematic and Evolutionary Microbiology (2003), 53, 345–354 DOI 10.1099/ijs.0.02284-0 Phylogeny of gregarines (Apicomplexa) as inferred from small-subunit rDNA and b-tubulin Brian S. Leander,1 Richard E. Clopton2 and Patrick J. Keeling1 Correspondence 1Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Patrick Keeling Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 [email protected] 2Division of Science and Technology, Peru State College, Peru, NE 68421, USA Gregarines are thought to be deep-branching apicomplexans. Accordingly, a robust inference of gregarine phylogeny is crucial to any interpretation of apicomplexan evolution, but molecular sequences from gregarines are restricted to a small number of small-subunit (SSU) rDNA sequences from derived taxa. This work examines the usefulness of SSU rDNA and b-tubulin sequences for inferring gregarine phylogeny. SSU rRNA genes from Lecudina (Mingazzini) sp., Monocystis agilis Stein, Leidyana migrator Clopton and Gregarina polymorpha Dufour, as well as the b-tubulin gene from Leidyana migrator, were sequenced. The results of phylogenetic analyses of alveolate taxa using both genes were consistent with an early origin of gregarines and the putative ‘sister’ relationship between gregarines and Cryptosporidium, but neither phylogeny was strongly supported. In addition, two SSU rDNA sequences from unidentified marine eukaryotes were found to branch among the gregarines: one was a sequence derived from the haemolymph parasite of the giant clam, Tridacna crocea, and the other was a sequence misattributed to the foraminiferan Ammonium beccarii. In all of our analyses, the SSU rDNA sequence from Colpodella sp.
    [Show full text]