Fuel Gas Systems Knowledge Objectives(1 of 2) Knowledge

Total Page:16

File Type:pdf, Size:1020Kb

Fuel Gas Systems Knowledge Objectives(1 of 2) Knowledge 12/20/2013 7 7 Knowledge Objectives (1 of 2) • Explain the impact of fuel gases on fire and Fuel Gas explosion investigations. Systems • Discuss the characteristics of fuel gases. • Identify common fuel gas system components. • Discuss common piping for fuel gas systems in buildings. 7 7 Knowledge Objectives (2 of 2) Skills Objectives • Discuss common appliance and equipment • Conduct a fire and explosion investigation for requirements. fuel gas systems. • Identify fuel gas utilization equipment. • Describe how to investigate fuel gas systems. 7 7 Introduction Fuel Gas Systems (1 of 6) • During every investigation, presence and • Used to: condition of fuel gas systems must be: – Control indoor climate – Examined – Heat water – Documented – Cook • Fires and explosions often result from failures – Provide energy for manufacturing within these systems. 1 12/20/2013 7 7 Fuel Gas Systems (2 of 6) Fuel Gas Systems (3 of 6) • Most common: natural gas and commercial • Natural gas explosion scene. propane • Can act as: – Initial fuel source (escaped or “fugitive” gas) – Initial ignition source – Both fuel and ignition source 7 7 Fuel Gas Systems (4 of 6) Fuel Gas Systems (5 of 6) • Fuel sources • Ignition sources – Fuel involvement usually results from – Pilot lights and open flames from appliances compromised fuel delivery or containment served by fugitive gases systems. – Static arcs from appliances – Fuel that is escaped may be called “fugitive gas.” – Electrical arcs – Arcs from switches or contacts in appliances – Other electrical equipment 7 7 Fuel Gas Systems (6 of 6) Characteristics of Fuel Gases (1 of 4) • Both fuel and ignition source – Fuel gases can serve as both the first fuel and the fuel for the fire. – Fugitive fuel provides fuel for the fire to grow. • Additional fire spread – Fire can spread because of fugitive fuel gas. – Natural gas and propane are common residential fuels. 2 12/20/2013 7 7 Characteristics of Fuel Gases (2 of 4) Characteristics of Fuel Gases (3 of 4) • Natural gas • Commercial propane – Hydrocarbon gas composed primarily of methane – Recovered during the process of refining – Often recovered from underground pockets during petroleum drilling for crude petroleum – 95% propane and propylene and 5% other gases – Lighter than air – Heavier than air – Flammable range 3.9–15% – Flammable range 2.15–9.6% – Ignition temperature of 900°F to 1170°F (482°C to – Ignition temperature of 920°F to 1120°F (493°C to 632°C) 604°C). 7 7 Characteristics of Fuel Gases (4 of 4) Odorization • Other fuel gases • By law, odor is added to LP‐gas and – Commercial butane commercial natural gas. – Propane HD5 – Butyl mercaptan most often used in natural gas – Coke oven gas – Ethyl mercaptan or thiophane in LP‐gas – Hydrogen • Supply company adds it as a safety feature – Acetylene • Can often be smelled during fire investigation 7 7 Gas Systems Natural Gas Systems • Transport fuel gas directly into consumers’ • Transmitted (in this order) through: buildings and appliances – Transmission pipeline • Natural gas is supplied from central location – Main pipelines (mains) – Via underground supply service lines – Service mains or service laterals • LP‐gas is contained in bulk supply, often at consumer’s location. 3 12/20/2013 7 7 LP‐Gas Systems (1 of 5) LP‐Gas Systems (2 of 5) • Storage supply is often located at consumer’s • Tanks are larger than cylinders. site in tanks or cylinders – Cargo tanks are mounted on a chassis and used to • Alternatively, the gas may be in in bulk storage transport LP‐gas. locations offsite and piped underground, – Portable tanks transport LP‐gas, but are not on a similar to natural gas systems. chassis. 7 7 LP‐Gas Systems (3 of 5) LP‐Gas Systems (4 of 5) • Cylinders are upright and tend to be • Container appurtenances: smaller than tanks. – Pressure relief devices – Most frequently used in rural homes – Connections for flow control and businesses, mobile homes, – Liquid level gauging devices recreational vehicles, and for outdoor – Pressure gauges barbeques and motor fuel – Pressure regulators – Vaporizers 7 7 Common Fuel Gas System LP‐Gas Systems (5 of 5) Components (1 of 5) • A vaporizer is used when there is a demand • Pressure regulation (reduction) for large quantities or propane; it converts – e.g., gas meter liquid propane to gas. • Service piping systems – Delivers gas from the main lines to the user • Valves • Gas burners/pilot lights 4 12/20/2013 7 7 Common Fuel Gas System Common Fuel Gas System Components (2 of 5) Components (3 of 5) • A large natural gas meter. • A 20‐inch gas main pipeline. 7 7 Common Fuel Gas System Common Fuel Gas System Components (4 of 5) Components (5 of 5) • Furnace burners and gas control valve. • Water heater pilot line and gas control valve. 7 7 Common Piping in Buildings (1 of 2) Common Piping in Buildings (2 of 2) • Maintain evidentiary value of piping and its • The main shutoff valve components controls the flow of gas – Joints and fittings throughout the entire – Piping installation building. – Main shutoff valves • Prohibited locations per NFPA 54 and other codes – Such as air ducts, chimneys, elevator shafts • Electrical bonding and grounding 5 12/20/2013 7 7 Common Appliance and Equipment Common Appliance and Equipment Requirements (1 of 2) Requirements (2 of 2) • An appliance is compatible with only a certain • Venting and air supply type of gas; gases are not interchangeable. – Exhaust venting prevents buildup of combustion • Appliance installation products. – May need additional regulator – Fresh air from building exterior often necessary – Location where there is easy access and shutdown • Appliance controls – Sufficient clearance between appliance and – For temperature, ignition, and shutoff combustibles – Gas appliance pressure regulators – Gas flow control accessories 7 7 Fuel Gas Utilization Equipment Investigating Fuel Gas Systems • Investigator should be familiar with design • Should be done in systematic, thorough and operation of: manner – Water heaters • Determine whether, and to what extent, – Furnaces system failed – Clothes dryers • Interviews should touch on fuel gas system. – Ranges 7 7 Compliance with Codes and Standards Leakage Causes (1 of 2) • Investigator should determine that codes and • At pipe junctions standards were followed in: – Inadequate threading, improper join, improper – Design use of joint compound – Manufacture • Unlit pilot lights or burners – Construction – Sensing system malfunctions or auto‐shutoff valve – Installation does not operate and gas continues to flow • Additional expertise or resources may be • Uncapped pipes and outlets needed. 6 12/20/2013 7 7 Leakage Causes (2 of 2) Pressure Testing • Malfunctioning appliances and controls • Pressurize the system to isolate damaged – e.g., dirt or debris causes valves to leak sections of piping. • Gas pressure regulators • Gas meters can also be tested. – Failure within internal diaphragm or of seals – If it is safe to reintroduce gas into system – Plugged vents – The meter detects gas escaping from the system. • Corrosion • Physical damage to system 7 7 Locating Leaks (1 of 2) Locating Leaks (2 of 2) • Tests can locate leaks in fuel gas piping • Soap bubble solution test. – Soap bubble test – Use of gas detector survey (“sniffers”) 7 7 Testing Flow Rates and Pressures Underground Migration of Fuel Gases • Should be tested if gas system is suspected to • Gases can travel great distances underground, be involved in fire ignition through: • Can be done in field or at laboratory – Sewer lines • Conducted only by trained, knowledgeable – Electrical and telephone conduits personnel – Drain tiles • Potential ignition sources should be removed • Passing through soil can “scrub” the odorant during testing. out of the gas. 7 12/20/2013 7 7 Summary (1 of 4) Summary (2 of 4) • Fuel gas systems will likely be either natural • Both types of fuel gases will supply fuel to gas or LP‐gas. various appliances that may heat water and • Natural gas systems are generally supplied via the environment and be used for cooking or underground main lines, whereas LP‐gas is various other services. supplied by a consumer tank on the premises. 7 7 Summary (3 of 4) Summary (4 of 4) • Fuel gas systems are often damaged as a • When fuel gases escape underground, they result of other activities occurring in the can be deodorized as a result of the gas structure, allowing fuel gas to escape from the migrating through the ground. system. • Fuel gas system tests should be conducted by trained laboratory technicians. 8.
Recommended publications
  • Combustion and Heat Release Characteristics of Biogas Under Hydrogen- and Oxygen-Enriched Condition
    energies Article Combustion and Heat Release Characteristics of Biogas under Hydrogen- and Oxygen-Enriched Condition Jun Li 1, Hongyu Huang 2,*, Huhetaoli 2, Yugo Osaka 3, Yu Bai 2, Noriyuki Kobayashi 1,* and Yong Chen 2 1 Department of Chemical Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan; [email protected] 2 Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; [email protected] (H.); [email protected] (Y.B.); [email protected] (Y.C.) 3 Faculty of Mechanical Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan; [email protected] * Correspondence: [email protected] (H.H.); [email protected] (N.K.); Tel.: +86-20-870-48394 (H.H.); +81-52-789-5428 (N.K.) Received: 10 May 2017; Accepted: 20 July 2017; Published: 13 August 2017 Abstract: Combustion and heat release characteristics of biogas non-premixed flames under various hydrogen-enriched and oxygen-enriched conditions were investigated through chemical kinetics simulation using detailed chemical mechanisms. The heat release rates, chemical reaction rates, and molar fraction of all species of biogas at various methane contents (35.3–58.7%, mass fraction), hydrogen addition ratios (10–50%), and oxygen enrichment levels (21–35%) were calculated considering the GRI 3.0 mechanism and P1 radiation model. Results showed that the net reaction rate of biogas increases with increasing hydrogen addition ratio and oxygen levels, leading to a higher net heat release rate of biogas flame. Meanwhile, flame length was shortened with the increase in hydrogen addition ratio and oxygen levels.
    [Show full text]
  • Energy and the Hydrogen Economy
    Energy and the Hydrogen Economy Ulf Bossel Fuel Cell Consultant Morgenacherstrasse 2F CH-5452 Oberrohrdorf / Switzerland +41-56-496-7292 and Baldur Eliasson ABB Switzerland Ltd. Corporate Research CH-5405 Baden-Dättwil / Switzerland Abstract Between production and use any commercial product is subject to the following processes: packaging, transportation, storage and transfer. The same is true for hydrogen in a “Hydrogen Economy”. Hydrogen has to be packaged by compression or liquefaction, it has to be transported by surface vehicles or pipelines, it has to be stored and transferred. Generated by electrolysis or chemistry, the fuel gas has to go through theses market procedures before it can be used by the customer, even if it is produced locally at filling stations. As there are no environmental or energetic advantages in producing hydrogen from natural gas or other hydrocarbons, we do not consider this option, although hydrogen can be chemically synthesized at relative low cost. In the past, hydrogen production and hydrogen use have been addressed by many, assuming that hydrogen gas is just another gaseous energy carrier and that it can be handled much like natural gas in today’s energy economy. With this study we present an analysis of the energy required to operate a pure hydrogen economy. High-grade electricity from renewable or nuclear sources is needed not only to generate hydrogen, but also for all other essential steps of a hydrogen economy. But because of the molecular structure of hydrogen, a hydrogen infrastructure is much more energy-intensive than a natural gas economy. In this study, the energy consumed by each stage is related to the energy content (higher heating value HHV) of the delivered hydrogen itself.
    [Show full text]
  • 2002-00201-01-E.Pdf (Pdf)
    report no. 2/95 alternative fuels in the automotive market Prepared for the CONCAWE Automotive Emissions Management Group by its Technical Coordinator, R.C. Hutcheson Reproduction permitted with due acknowledgement Ó CONCAWE Brussels October 1995 I report no. 2/95 ABSTRACT A review of the advantages and disadvantages of alternative fuels for road transport has been conducted. Based on numerous literature sources and in-house data, CONCAWE concludes that: · Alternatives to conventional automotive transport fuels are unlikely to make a significant impact in the foreseeable future for either economic or environmental reasons. · Gaseous fuels have some advantages and some growth can be expected. More specifically, compressed natural gas (CNG) and liquefied petroleum gas (LPG) may be employed as an alternative to diesel fuel in urban fleet applications. · Bio-fuels remain marginal products and their use can only be justified if societal and/or agricultural policy outweigh market forces. · Methanol has a number of disadvantages in terms of its acute toxicity and the emissions of “air toxics”, notably formaldehyde. In addition, recent estimates suggest that methanol will remain uneconomic when compared with conventional fuels. KEYWORDS Gasoline, diesel fuel, natural gas, liquefied petroleum gas, CNG, LNG, Methanol, LPG, bio-fuels, ethanol, rape seed methyl ester, RSME, carbon dioxide, CO2, emissions. ACKNOWLEDGEMENTS This literature review is fully referenced (see Section 12). However, CONCAWE is grateful to the following for their permission to quote in detail from their publications: · SAE Paper No. 932778 ã1993 - reprinted with permission from the Society of Automotive Engineers, Inc. (15) · “Road vehicles - Efficiency and emissions” - Dr. Walter Ospelt, AVL LIST GmbH.
    [Show full text]
  • Material Safety Data Sheet
    SAFETY DATA SHEET EFFECTIVE JUNE 2016 SECTION 1 – PRODUCT & COMPANY IDENTIFICATION Product Name: Commercial Odorized Propane Chemical Name: Propane (C3H8) Chemical Family: Petroleum Hydrocarbon Common Names: Liquefied Petroleum Gas, LP-Gas, LPG, Bottle Gas Intended Use: Propane is a liquid fuel Distributor: Campora Propane Service, PO Box 31717 Stockton, CA 95213 Emergency Response: CHEMTREC (800) 424-9300 General Information: (209) 941-2994 SECTION 2 – CHEMICAL HAZARD CLASSIFICATION & WARNING INFORMATION Fire Hazard NFPA CLASSES: 1-Slight 2-Moderate 3-Serious Health Hazard Reactivity 4-Severe Physical hazards Flammable gases Category 1 Gases under pressure Liquefied gas Health hazards Acute toxicity, inhalation Category 4 Germ cell mutagenicity Category 1B Carcinogenicity Category 1A Reproductive toxicity Category 1A Specific target organ toxicity, repeated Category 2 exposure OSHA defined hazards Not classified. Label Elements Signal Word Danger Hazard Statement Propane (also called LPG-Liquefied Petroleum Gas or LP-Gas) is a liquid fuel stored under pressure. In most systems, propane is vaporized to a gas before it leaves the tank. Propane is highly flammable when mixed with air (oxygen) and can be ignited by many sources, including open flames, smoking materials, electrical sparks, and static electricity. Severe “freeze burn” or frostbite can result if propane liquid comes in contact with your skin. Extremely flammable gas. Harmful if inhaled. May cause genetic defects. May cause cancer. May damage fertility or the unborn child. May cause damage to Blood through prolonged or repeated exposure. May cause cryogenic burns or injury. Propane is a simple asphyxiant. Precautionary statement General Read and follow all Safety Data Sheets (SDS’S) before use.
    [Show full text]
  • Producing Fuel and Electricity from Coal with Low Carbon Dioxide Emissions
    Producing Fuel and Electricity from Coal with Low Carbon Dioxide Emissions K. Blok, C.A. Hendriks, W.C. Turkenburg Depanrnent of Science,Technology and Society University of Utrecht Oudegracht320, NL-351 1 PL Utrecht, The Netherlands R.H. Williams Center for Energy and Environmental Studies Princeton University Princeton, New Jersey08544, USA June 1991 Abstract. New energy technologies are needed to limit CO2 emissions and the detrimental effects of global warming. In this article we describe a process which produces a low-carbon gaseousfuel from coal. Synthesis gas from a coal gasifier is shifted to a gas mixture consisting mainly of H2 and CO2. The CO2 is isolated by a physical absorption process, compressed,and transported by pipeline to a depleted natural gas field where it is injected. What remains is a gaseousfuel consisting mainly of hydrogen. We describe two applications of this fuel. The first involves a combined cycle power plant integrated with the coal gasifier, the shift reactor and the CO2 recovery units. CO2 recovery and storage will increase the electricity production cost by one third. The secondprovides hydrogen or a hydrogen-rich fuel gas for distributed applications, including transportation; it is shown that the fuel can be produced at a cost comparable to projected costs for gasoline. A preliminary analysis reveals that all components of the process described here are in such a phase of development that the proposed technology is ready for demonstration. ~'> --. ~'"' .,.,""~ 0\ ~ 0\0 ;.., ::::. ~ ~ -.., 01) §~ .5~ c0 ~.., ~'> '" .~ ~ ..::. ~ ~ "'~'" '" 0\00--. ~~ ""00 Q....~~ '- ~~ --. ~.., ~ ~ ""~ 0000 .00 t¥") $ ~ .9 ~~~ .- ..~ c ~ ~ ~ .~ O"Oe) """1;3 .0 .-> ...~ 0 ~ ,9 u u "0 ...~ --.
    [Show full text]
  • Chapter 38 Liquefied Petroleum Gases
    Color profile: Generic CMYK printer profile Composite Default screen CHAPTER 38 LIQUEFIED PETROLEUM GASES SECTION 3801 3803.2.1.2 Construction and temporary heating. Por- GENERAL table containers are allowed to be used in buildings or 3801.1 Scope. Storage, handling and transportation of lique- areas of buildings undergoing construction or for tempo- fied petroleum gas (LP-gas) and the installation of LP-gas rary heating as set forth in Sections 6.17.4, 6.17.5 and equipment pertinent to systems for such uses shall comply with 6.17.8 of NFPA 58. this chapter and NFPA 58. Properties of LP-gases shall be 3803.2.1.3 Group F occupancies. In Group F occupan- determined in accordance with Appendix B of NFPA 58. cies, portable LP-gas containers are allowed to be used to 3801.2 Permits. Permits shall be required as set forth in Sec- supply quantities necessary for processing, research or tions 105.6 and 105.7. experimentation. Where manifolded, the aggregate Distributors shall not fill an LP-gas container for which a water capacity of such containers shall not exceed 735 permit is required unless a permit for installation has been pounds (334 kg) per manifold. Where multiple mani- issued for that location by the fire code official. folds of such containers are present in the same room, each manifold shall be separated from other manifolds 3801.3 Construction documents. Where a single container is by a distance of not less than 20 feet (6096 mm). more than 2,000 gallons (7570 L) in water capacity or the aggregate capacity of containers is more than 4,000 gallons (15 3803.2.1.4 Group E and I occupancies.
    [Show full text]
  • Technical Evaluation and Assessment of CNG/LPG Bi-Fuel and Flex-Fuel Vehicle Viability C-ACC-4-14042-01
    May 1994 • NRELffP-425-6544 Technical Eval ·on and Assessment of C !LPG Bi-Fuel and Flex-Fuel V cle Viability J .E. Sinor Consultants, Inc. Niwot, CO •.. •... ···� �=- ·-· ·��-· National Renewable Energy Laboratory 1617• Cole Boulevard Golden, Colorado 80401-3393 A national laboratory of the U.S. Department of Energy Operated by Midwest Research Institute for the U.S. Department of Energy Under Contract No. DE-AC02-83CH)0093_____ _ _ NRELffP-425-6544 • UC Category: 335 • DE94006925 Technical Evaltil*ion··:·:·:·:·:·:·:·: and ·, Assessment of C , /LPG Bi-Fuel and Flex-Fuel Vell�le Viability J J.E. Sinor Consultants, Inc. Niwot, CO technical monitor: C. Colucci NREL �·� .,!!!!!�-· ·� �--­ .. •.·-· ···� National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 A national laboratory operated for the U.S. Department of Energy under contract No. DE-AC02-83CH10093 Prepared under Subcontract No. ACC-4-14042-01 May 1994 Thispub lication was reproducedfrom thebest available camera-readycopy submitted by the subcontractor and received no editorial review at NREL. NOTICE NOTICE: This reportwas prepared as an accountof work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or processdisclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • Worldwide Fuel Charter for Methane-Based Transportation Fuels
    WORLDWIDE FUEL CHARTER first edition METHANE-BASED TRANSPORTATION FUELS FOR COPIES, PLEASE CONTACT ACEA, ALLIANCE, EMA OR JAMA OR VISIT THEIR WEBSITES. 28 OCTOBER 2019 Japan Automobile Alliance of Truck and Engine Manufacturers Association European Automobile Automobile Manufacturers Manufacturers Association Jidosha Kaikan Manufacturers Association 803 7th Street, N.W., Suite 300 333 West Wacker Drive, Suite 810 1-30, Shiba Daimon 1-Chome Avenue des Nerviens 85 Washington D.C., 20001 Chicago, IL 60606 Minato-ku, Tokyo 105-0012 Japan B-1040 Brussels, Belgium Tel: +1 (202) 326-5500 Tel: +1 (312) 929-1970 Tel: +81-3-5405-6125 Tel: +32 2 732 55 50 Fax: +1 (202) 326-5567 Fax: +1 (312) 929-1975 Fax: +81-3-5405-6136 www.acea.be www.autoalliance.org www.truckandenginemanufacturers.org www.jama.or.jp The Worldwide Fuel Charters are published by the members of the Worldwide Fuel Charter Committee as a service to legis- lators, fuel users, producers and other interested parties around the world. They contain information from sources believed to be reliable; however, the Committee makes no warranty, guarantee, or other representation, express or implied, with respect to the Charters’ sufficiency or fitness for any particular purpose. The Charters impose no obligation on any users or producers of fuel, and they do not prohibit use of any engine or vehicle technology or design, fuel, or fuel quality specifica- tion. They are not intended to, and do not, replace engine and vehicle manufacturers’ fuelling recommendations for their engine and vehicle products. Consumers are encouraged to check their vehicle owner manuals for specific guidance and to compare that guidance with fuel dispenser labels.
    [Show full text]
  • General Installation Manual for American Gas Lamp Works Gas & Electric Lamps, Torches & Posts
    General Installation Manual for American Gas Lamp Works Gas & Electric Lamps, Torches & Posts 1 Table of Contents Item #s 1800, 1900, 2000, 2300 & 2301 Post Mount …………………………………………………………… 3 Item #s 1000, 1200, 1400, 1600 & 2900 Post Mount …………………………………………………………… 4 Item # 1700 Post Mount …………………………………………………………………………………………. 5 Item #s 3000, 3701 & 9000 Post Mount ………………………………………………………………………… 6 Item #s 3600 & 4200 Post Mount ……………………………………………………………………………….. 7-8 Item # 4300 Post Mount …………………………………………………………………………………………. 9 Pier Mount ……………………………………………………………………………………………………….. 10 Wall Mount ………………………………………………………………………………………………………. 11 Item #s T5000, T6000 & T6100 Torches ……………………………………………………………………….. TBD Standard Smooth & Fluted Burial Posts ………………………………………………………………………. TBD EPC01: Colonial Post ……………………………………………………………………………………………. TBD EP002: Monroe Post ……………………………………………………………………………………………... TBD EP003: Jefferson Post ……………………………………………………………………………………………. TBD EP023: Adams Post ………………………………………………………………………………………………. TBD EP001: Chartiers Post …………………………………………………………………………………………… TBD EP012: Belle Vernon Post ……………………………………………………………………………………….. TBD EP012: Brentwood Post ………………………………………………………………………………………….. TBD EP123: Oakmont Post …………………………………………………………………………………………… TBD EMB02: Beatrice Post …………………………………………………………………………………………… TBD EMB12: Andrew Post ……………………………………………………………………………………………. TBD EMT12: Middletown Post ……………………………………………………………………………………….. TBD 2 Item #s 1800, 1900, 2000, 2300 & 2301 POST MOUNT FOR OUTDOOR USE ONLY FOR YOUR SAFETY FOR YOUR SAFETY
    [Show full text]
  • Distributed Power Generation Using Biogas Fuelled Microturbines
    DISTRIBUTED POWER GENERATION USING BIOGAS FUELLED MICROTURBINES ETSU Contract B/U1/00670/00/REP DTI/PubURN 02/1345 Contractor Advantica Prepared by Kevin Pointon and Mike Langan The work described in this report was carried out under contract as part of the New and Renewable Energy Programme, managed by ETSU on behalf of the Department of Trade and Industry. The views and judgments expressed in this report are those of the contractor and do not necessarily reflect those of ETSU or the Department of Trade and Industry. First Published 2002 © Advantica Technologies Ltd Executive Summary Background Biogas, from anaerobic digestion (AD) contains a mixture of methane and carbon dioxide, with a calorific value (CV) between 50% and 60% of that of natural gas. According to the UK Government’s renewable energy strategy, there is considerable potential for electricity generation from biomass, and the European Union Renewable Energy Campaign for Take-off sets a target of 1GW of biogas fuelled installations throughout Europe by 2003. The use of AD to generate biogas is a mature technology, however, despite government initiatives to promote its widespread use, biogas generation is limited to the wastewater treatment industry and to a few small farm based projects. One of the limitations is the availability and reliability of small-scale power generation technologies. The development of the biogas compatible microturbine could improve the reliability and performance of the power generation side of the plant. The establishment of a link between a well-characterised biogas demonstration with a microturbine with proven operation on natural gas is a significant extension to existing technology.
    [Show full text]
  • BIOGAS PURIFICATION, COMPRESSION and BOTTLING Ramesh Babu Nallamothu1, Abyot Teferra2, & Prof B.V
    G.J. E.D.T.,Vol.2(6):34-38 (November-December, 2013) ISSN: 2319 – 7293 BIOGAS PURIFICATION, COMPRESSION AND BOTTLING Ramesh Babu Nallamothu1, Abyot Teferra2, & Prof B.V. Appa Rao3 1 Research Scholar, Marine Engineering Department, College of Engineering, Andhra University, Visakhapatnam, India. (Associate Professor, SOE, ASTU, Adama). 2MSc student, SOE, ASTU, Adama. 3 Professor, Marine Engineering Department, College of Engineering, Andhra University, Visakhapatnam, India. Abstract In the present scenario of dwindling petroleum resources and global warming, exploring other avenues for eco- friendly fuels became essential. Biogas which is a clean and environmental friendly fuel emerged as one of the potential alternative fuels. Raw biogas contains about 60-70% methane (CH4), 30-40% carbon dioxide (CO2), traces of hydrogen sulfide (H2S) and fractions of water vapours. But its wide spread use is hampered by the associated problems like low energy density due to the presence of impurities, generation at low pressures and the absence of means for storing and transporting. In this context this work intends to design and establish a facility at the site of biogas production in the campus for purifying, compressing, bottling and making it transportable. This can be done by compressing the gas in cylinders which was possible only after removing its CO2, H2S and water vapour components. To increase the energy density of the gas, different experiments were conducted in removing incombustible and corrosive gas. To remove this impurities steel wool, water and silica gel was used. The steel wool is to react with the hydrogen sulphide, the water is to reduce the percentage of carbon dioxide and the silica gel is to reduce the presence of water vapour in the purified biogas.
    [Show full text]
  • NATURAL GAS (Odorized)
    NATURAL GAS (odorized) XCEL ENERGY Revised: 9/1/2016 SDS Safety Data Sheet Safety Data Sheet Section 1 Identification of the Substance and of the Supplier 1.1 Product Identifier Product Trade Natural Gas (odorized) Name/Identification: Synonyms: Methane Mixture; Fuel Gas; Marsh Gas Product Code: Not Applicable (Previous HAZTRAC ID 003677365) Chemical Family: Aliphatic Hydrocarbons; Alkane series 1.2 Recommended Uses and Restrictions on Use Fuel for heating or combustion applications. Typical gas burning appliances Relevant include: Furnaces or boilers, stoves and ovens; gas fireplaces, water heaters, Identified Uses: and clothes dryers. It is important to know which appliances are gas-burning and make sure that they are properly installed and maintained. No other uses are recommended with the exception of those for which an assessment has been performed indicating that the related risks are controlled. 1.3 Supplier Details Supplier: Xcel Energy Street Address: 414 Nicollet Mall City, State and Zip Code: Minneapolis, Minnesota 55401-1993 Customer Service Telephone: 1-800-895-4999 Public Safety website https://www.xcelenergy.com/community/public_safety These Operating Companies are NSP – Minnesota (NSPM); NSP – Wisconsin (NSPW) distributors of this product: Public Service Company of Colorado (PSCo) 1.4 Emergency Telephone Numbers Gas Emergency: 1-800-895-2999 Emergency Phone Electric Emergency: 1-800-895-1999 Security Operations Center (SOC) 612-330-7842 Numbers: NSP (651) 221-4421 PSCo Region: (800) 541-0918 Hours Available: 24/7 1 Section 2 Hazards Identification 2.1 Classification of the Substance GHS classifications according to OSHA Hazard Communication Standard (29 CFR 1910.1200): Flammable Gas Category 1 Gas under pressure Compressed Gas 2.2 Label Elements Labelling according to 29 CFR 1910.1200 Appendices A, B and C* Hazard Pictogram(s): Signal word: Danger Hazard Extremely Flammable Gas Statement(s): Contains gas under pressure.
    [Show full text]