NFPA 58, Liquefied Petroleum Gas Code
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Combustion and Heat Release Characteristics of Biogas Under Hydrogen- and Oxygen-Enriched Condition
energies Article Combustion and Heat Release Characteristics of Biogas under Hydrogen- and Oxygen-Enriched Condition Jun Li 1, Hongyu Huang 2,*, Huhetaoli 2, Yugo Osaka 3, Yu Bai 2, Noriyuki Kobayashi 1,* and Yong Chen 2 1 Department of Chemical Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan; [email protected] 2 Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; [email protected] (H.); [email protected] (Y.B.); [email protected] (Y.C.) 3 Faculty of Mechanical Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan; [email protected] * Correspondence: [email protected] (H.H.); [email protected] (N.K.); Tel.: +86-20-870-48394 (H.H.); +81-52-789-5428 (N.K.) Received: 10 May 2017; Accepted: 20 July 2017; Published: 13 August 2017 Abstract: Combustion and heat release characteristics of biogas non-premixed flames under various hydrogen-enriched and oxygen-enriched conditions were investigated through chemical kinetics simulation using detailed chemical mechanisms. The heat release rates, chemical reaction rates, and molar fraction of all species of biogas at various methane contents (35.3–58.7%, mass fraction), hydrogen addition ratios (10–50%), and oxygen enrichment levels (21–35%) were calculated considering the GRI 3.0 mechanism and P1 radiation model. Results showed that the net reaction rate of biogas increases with increasing hydrogen addition ratio and oxygen levels, leading to a higher net heat release rate of biogas flame. Meanwhile, flame length was shortened with the increase in hydrogen addition ratio and oxygen levels. -
New Federal Law Addresses Excise Tax on LNG, LPG, And
Multistate Tax EXTERNAL ALERT New federal law addresses excise tax on LNG, LPG, and CNG August 13, 2015 Overview President Obama recently signed into law the Surface Transportation and Veterans Health Care Choice Improvement Act of 2015 (H.R. 3236).1 Effective January 1, 2016, the new law equalizes the federal excise tax treatment of liquefied natural gas (LNG) and liquefied petroleum gas (LPG) and provides further guidance applicable to the taxation of compressed natural gas (CNG). This Tax Alert summarizes these federal excise tax law changes. The federal excise tax on alternative fuels Currently, under Internal Revenue Code (I.R.C.) §4041, the federal excise tax on “alternative fuels” is imposed when such fuels are sold for use or used as a fuel in a motor vehicle or motorboat.2 The term “alternative fuels” includes, but is not limited to, LNG, CNG, and LPG.3 LNG is currently subject to tax at the federal diesel fuel tax rate of 24.3 cents per gallon.4 However, LNG contains a lower energy content than diesel. According to the Oak Ridge National Laboratory, LNG has an energy content of 74,700 Btu per gallon (lower heating value), while diesel has an energy content of 128,450 Btu per gallon (lower heating value).5 Therefore, one gallon of LNG has the energy equivalency of 58 percent of one gallon of diesel fuel, although LNG is currently taxed as having the energy equivalency of 100 percent of one gallon of diesel fuel.6 Similarly, LPG is currently subject to tax at the federal gasoline tax rate of 18.3 cents per gallon.7 However, LPG contains a lower energy content than gasoline. -
Unofficial Electronic Version of the Regulation for the Mandatory Reporting of Greenhouse Gas Emissions
Legal Disclaimer: Unofficial electronic version of the Regulation for the Mandatory Reporting of Greenhouse Gas Emissions. The official legal edition is available via the OAL website: https://oal.ca.gov/publications/ccr/ LEGAL DISCLAIMER & USER’S NOTICE Unofficial Electronic Version of the Regulation for the Mandatory Reporting of Greenhouse Gas Emissions Unofficial Electronic Version This unofficial electronic version of the Regulation for the Mandatory Reporting of Greenhouse Gas Emissions (MRR) following this Disclaimer was produced by California Air Resources Board (ARB) staff for the reader’s convenience. CARB staff has removed the underline-strikeout formatting which exists in the Final Regulation Order approved by the Office of Administrative Law (OAL) on March 29, 2019, and included the full regulatory text for the regulation. However, the following version is not an official legal edition of title 17, California Code of Regulations (CCR), sections 95100-95163. While reasonable steps have been taken to make this unofficial version accurate, the officially published CCR takes precedence if there are any discrepancies. Documents relevant to the rulemaking process for this version of the regulation, including the Final Regulation Order, with underline/strikeout formatting showing additions and deletions to the regulation, is available on the ARB website here: https://ww2.arb.ca.gov/rulemaking/2018/mandatory-reporting-greenhouse-gas- emissions-2018 Official Legal Edition The official legal edition of title 17, CCR, sections 95100-95163 is available via the OAL website (https://oal.ca.gov/). To access relevant provisions of the regulation online, go to the link shown below. Web link from OAL website to California Code of Regulations for Mandatory Reporting Regulation: https://govt.westlaw.com/calregs/Index?transitionType=Default&contextData=%28sc.De fault%29 From the website, follow the links shown to access the MRR. -
Relight Your Pilot Light
Relight Your Pilot Gas Fireplace Tips Resource Guide Gas Fireplace Tips A step by step guide for relighting your pilot If you are like most families and homeowners, relighting the pilot on your gas fireplace after a period of non-use can be confusing. Here’s some tips from the experts at Cressy Door and Fireplace. What type of fuel supports gas fireplaces? Type 1: Liquid Propane Liquid propane is typically located in a large tank that is either above ground or buried near the house. Type 2: Natural Gas Natural Gas is piped in from the street and monitored by a gas meter located outside the residence. How do you assure the gas is present? § Liquid Propane With a liquid propane tank, there is typically a round valve that must be turned counterclockwise to open the flow of gas. Natural Gas With natural gas the valve is located on the outside meter. In order to assure the flow of gas, the valve must be aligned with the pipe. Simply turn the “Flat Quarter-Turn Valve” so that it is inline with the pipe. Gas Fireplace Tips A step by step guide for relighting your pilot Engaging the Igniter Button Igniter buttons are little red buttons that can be found by the main control knob. They are identified by “Off” and “On” markings. Step 1 If the fireplace is in the “On” position, simply turn the valve to the “OFF” position and wait 2 minutes. Step 2 Line up the mark on the knob with the word, “Pilot.” Step 3 Hold down the control knob and hit the igniter a couple of times. -
Final Report Study on the Potential of Increased Use of LPG for Cooking in Developing Countries
Final Report Study on the Potential of Increased Use of LPG for Cooking in Developing Countries September 2020 TABLE OF CONTENTS Executive Summary ....................................................................................................................................................................... 2 List of Abbreviations ...................................................................................................................................................................... 6 Preface .......................................................................................................................................................................................... 7 1 Introduction.......................................................................................................................................................................... 8 1.1 General ................................................................................................................................................................................. 8 1.2 Background ........................................................................................................................................................................... 8 2 Purpose and Scope of the Study ............................................................................................................................................ 9 2.1 Purpose of the Study ........................................................................................................................................................... -
Liquefied Petroleum Gas (LPG)
Liquefied Petroleum Gas (LPG) Demand, Supply and Future Perspectives for Sudan Synthesis report of a workshop held in Khartoum, 12-13 December 2010 The workshop was funded by UKaid from the Department for International Development Cover image: © UNAMID / Albert Gonzalez Farran This report is available online at: www.unep.org/sudan Disclaimer The material in this report does not necessarily represent the views of any of the organisations involved in the preparation and hosting of the workshop. It must be noted that some time has passed between the workshop and the dissemination of this report, during which some important changes have taken place, not least of which is the independence of South Sudan, a fact which greatly affects the national energy context. Critically, following the independence, the rate of deforestation in the Republic of Sudan has risen from 0.7% per year to 2.2% per year, making many of the discussions within this document all the more relevant. Whilst not directly affecting the production of LPG, which is largely derived from oil supplies north of the border with South Sudan, the wider context of the economics of the energy sector, and the economy as a whole, have changed. These changes are not reflected in this document. This being said, it is strongly asserted that this document still represents a useful contribution to the energy sector, particularly given its contribution to charting the breadth of perspectives on LPG in the Republic of Sudan. Liquefied Petroleum Gas (LPG) Demand, Supply and Future Perspectives for Sudan Synthesis report of a workshop held in Khartoum, 12-13 December 2010 A joint publication by: Ministry of Environment, Forestry and Physical Development – Sudan, Ministry of Petroleum – Sudan, United Kingdom Department for International Development, United Nations Development Programme and United Nations Environment Programme Table of contents Acronyms and abbreviations . -
Energy and the Hydrogen Economy
Energy and the Hydrogen Economy Ulf Bossel Fuel Cell Consultant Morgenacherstrasse 2F CH-5452 Oberrohrdorf / Switzerland +41-56-496-7292 and Baldur Eliasson ABB Switzerland Ltd. Corporate Research CH-5405 Baden-Dättwil / Switzerland Abstract Between production and use any commercial product is subject to the following processes: packaging, transportation, storage and transfer. The same is true for hydrogen in a “Hydrogen Economy”. Hydrogen has to be packaged by compression or liquefaction, it has to be transported by surface vehicles or pipelines, it has to be stored and transferred. Generated by electrolysis or chemistry, the fuel gas has to go through theses market procedures before it can be used by the customer, even if it is produced locally at filling stations. As there are no environmental or energetic advantages in producing hydrogen from natural gas or other hydrocarbons, we do not consider this option, although hydrogen can be chemically synthesized at relative low cost. In the past, hydrogen production and hydrogen use have been addressed by many, assuming that hydrogen gas is just another gaseous energy carrier and that it can be handled much like natural gas in today’s energy economy. With this study we present an analysis of the energy required to operate a pure hydrogen economy. High-grade electricity from renewable or nuclear sources is needed not only to generate hydrogen, but also for all other essential steps of a hydrogen economy. But because of the molecular structure of hydrogen, a hydrogen infrastructure is much more energy-intensive than a natural gas economy. In this study, the energy consumed by each stage is related to the energy content (higher heating value HHV) of the delivered hydrogen itself. -
Certification Procedure 501 for Portable Fuel Containers and Spill-Proof Spouts Systems
Certification Procedure 501 for Portable Fuel Containers And Spill-Proof Spouts Systems CP-501 NOTE: This is a new Certification Procedure. For clarity the proposed text is shown in normal type._This document is written in a style to indicate changes from the existing provisions. All existing regulatory language is indicated by plain type. All additions to the regulatory language are indicated by underlined type. All deletions to the regulatory language are indicated by strikeout. Adoption Date: July 26, 2006 Amended: December 9, 2016 TABLE OF CONTENTS 1. GENERAL INFORMATION AND APPLICABILITY 4 1.1. Legislative and Regulatory Requirements of Other State Agencies 4 1.2. Requirement to Comply with All Other Applicable Codes and Regulations 4 2. CERTIFICATION REQUIREMENTS 5 2.1. Openings 6 2.2. Color 6 2.3. Diurnal Emissions Standard 7 2.4. Durability 7 2.5. Leakage 7 2.6. Automatic Closure 7 2.7. Warranty 8 2.8. Operating and Maintenance Instructions 8 2.9. Materials Compatibility with Fuels 9 2.10. Optional Consumer Acceptance Program 9 3. SUBMITTING AN APPLICATION 11 4. APPLICATION REVIEW AND ACCEPTANCE 13 5. ENGINEERING EVALUATION 14 6. ALTERNATE TEST AND INSPECTION PROCEDURES 15 7. DURATION AND CONDITIONS OF CERTIFICATION 16 7.1. Duration of System Certification 16 7.2. Revocation of Certifications 16 California Air Resources Board Page 2 CP-501 8. Certification EXECUTIVE ORDER RENEWAL 16 8.1. Request for Renewal 17 8.2. Review Request 17 8.3. Evaluation of System Deficiencies 18 8.4. Letter of Intent 18 8.5. Renewal of Executive Order 18 8.6. -
Hydrogen-Enriched Compressed Natural Gas (HCNG)
Year 2005 UCD—ITS—RR—05—29 Hydrogen Bus Technology Validation Program Andy Burke Zach McCaffrey Marshall Miller Institute of Transportation Studies, UC Davis Kirk Collier Neal Mulligan Collier Technologies, Inc. Institute of Transportation Studies ◊ University of California, Davis One Shields Avenue ◊ Davis, California 95616 PHONE: (530) 752-6548 ◊ FAX: (530) 752-6572 WEB: http://its.ucdavis.edu/ Hydrogen Bus Technology Validation Program Andy Burke, Zach McCaffrey, Marshall Miller Institute of Transportation Studies, UC Davis Kirk Collier, Neal Mulligan Collier Technologies, Inc. Technology Provider: Collier Technologies, Inc. Grant number: ICAT 01-7 Grantee: University of California, Davis Date: May 12, 2005 Conducted under a grant by the California Air Resources Board of the California Environmental Protection Agency The statements and conclusions in this Report are those of the grantee and not necessarily those of the California Air Resources Board. The mention of commercial products, their source, or their use in connection with material reported herein is not to be construed as actual or implied endorsement of such products 2 Acknowledgments Work on this program was funded by the Federal Transit Administration, the California Air Resources Board, and the Yolo-Solano Air Quality Management District. This Report was submitted under Innovative Clean Air Technologies grant number 01-7 from the California Air Resources Board. 3 Table of Contents Abstract………………………………………………………………………………...................6 Executive Summary…………………………………………………………………...................7 -
Eko 5050 Eko 5060 High Efficiency Flueless Gas Fire Eco 5050
installation and user instructions All instructions must be handed to user for safekeeping Revision A - 06/09 Country(s) of destination - GB/IE eko 5050 eko 5060 high efficiency flueless gas fire eco 5050 eco 5060 INSTALLATION INSTRUCTIONS Preliminary Notes Before Installation This appliance is a high efficiency, flueless, flame effect gas fire. It provides radiant and convected warmth both efficiently and safely utilising the latest type catalytic convertor burner technology. The appliance incorporates a combustion monitoring system (Oxygen Depletion System). It must not be adjusted or put out of operation. If replaced then manufacturers original parts must be used. The appliance is designed to fit various types of situations as listed in the Installation Requirements. This appliance must be installed in accordance with the rules in force and only used in a sufficiently ventilated space. A minimum of 100cm2 (15.5in2) pur- pose provided ventilation is required for this appliance. An openable window or louvre is also required. This appliance is factory set for operation on the gas type, and at the pressure stated on the appliance data plate. The room size should be a minimum of 23m3 (812ft3) to allow adequate circu- lation of air and ensure the correct operation of the fire. This volume may include adjacent spaces but these spaces must not be separated by a door. In order to convert from cubic feet (ft3) to cubic metres (m3) divide the room vol- ume (in ft3) by 35.3. This appliance is intended as a secondary source of heat only and should not be used in a room without some form of background heat- ing present. -
Influence of the Use of Liquefied Petroleum Gas (LPG) Systems In
energies Article Influence of the Use of Liquefied Petroleum Gas (LPG) Systems in Woodchippers Powered by Small Engines on Exhaust Emissions and Operating Costs Łukasz Warguła 1,* , Mateusz Kukla 1 , Piotr Lijewski 2, Michał Dobrzy ´nski 2 and Filip Markiewicz 2 1 Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland; [email protected] 2 Institute of Internal Combustion Engines and Drives, Faculty of Civil Engineering and Transport, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland; [email protected] (P.L.); [email protected] (M.D.); fi[email protected] (F.M.) * Correspondence: [email protected]; Tel.: +48-(61)-665-20-42 Received: 12 August 2020; Accepted: 3 November 2020; Published: 4 November 2020 Abstract: The use of alternative fuels is a contemporary trend in science aimed at the protection of non-renewable resources, reducing the negative impact on people and reducing the negative impact on the natural environment. Liquefied petroleum gas (LPG) is an alternative fuel within the meaning of the European Union Directive (2014/94/UE), as it is an alternative for energy sources derived from crude oil. The use of LPG fuel in low-power internal combustion engines is one of the currently developed scientific research directions. It results from the possibility of limiting air pollutant emissions compared to the commonly used gasoline and the lower cost of this fuel in many countries. By “gasoline 95” the Authors mean non-lead petrol as a flammable liquid that is used primarily as a fuel in most spark-ignited internal combustion engines, whereas 95 is an octane rating (octane number). -
2002-00201-01-E.Pdf (Pdf)
report no. 2/95 alternative fuels in the automotive market Prepared for the CONCAWE Automotive Emissions Management Group by its Technical Coordinator, R.C. Hutcheson Reproduction permitted with due acknowledgement Ó CONCAWE Brussels October 1995 I report no. 2/95 ABSTRACT A review of the advantages and disadvantages of alternative fuels for road transport has been conducted. Based on numerous literature sources and in-house data, CONCAWE concludes that: · Alternatives to conventional automotive transport fuels are unlikely to make a significant impact in the foreseeable future for either economic or environmental reasons. · Gaseous fuels have some advantages and some growth can be expected. More specifically, compressed natural gas (CNG) and liquefied petroleum gas (LPG) may be employed as an alternative to diesel fuel in urban fleet applications. · Bio-fuels remain marginal products and their use can only be justified if societal and/or agricultural policy outweigh market forces. · Methanol has a number of disadvantages in terms of its acute toxicity and the emissions of “air toxics”, notably formaldehyde. In addition, recent estimates suggest that methanol will remain uneconomic when compared with conventional fuels. KEYWORDS Gasoline, diesel fuel, natural gas, liquefied petroleum gas, CNG, LNG, Methanol, LPG, bio-fuels, ethanol, rape seed methyl ester, RSME, carbon dioxide, CO2, emissions. ACKNOWLEDGEMENTS This literature review is fully referenced (see Section 12). However, CONCAWE is grateful to the following for their permission to quote in detail from their publications: · SAE Paper No. 932778 ã1993 - reprinted with permission from the Society of Automotive Engineers, Inc. (15) · “Road vehicles - Efficiency and emissions” - Dr. Walter Ospelt, AVL LIST GmbH.