Description of 42 Unrecorded Bacterial Species in Korea, Belonging to the Class Alphaproteobacteria
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Roseibacterium Beibuensis Sp. Nov., a Novel Member of Roseobacter Clade Isolated from Beibu Gulf in the South China Sea
Curr Microbiol (2012) 65:568–574 DOI 10.1007/s00284-012-0192-6 Roseibacterium beibuensis sp. nov., a Novel Member of Roseobacter Clade Isolated from Beibu Gulf in the South China Sea Yujiao Mao • Jingjing Wei • Qiang Zheng • Na Xiao • Qipei Li • Yingnan Fu • Yanan Wang • Nianzhi Jiao Received: 6 April 2012 / Accepted: 25 June 2012 / Published online: 31 July 2012 Ó Springer Science+Business Media, LLC 2012 Abstract A novel aerobic, bacteriochlorophyll-contain- similarity), followed by Dinoroseobacter shibae DFL 12T ing bacteria strain JLT1202rT was isolated from Beibu Gulf (95.4 % similarity). The phylogenetic distance of pufM genes in the South China Sea. Cells were gram-negative, non- between strain JLT1202rT and R. elongatum OCh 323T was motile, and short-ovoid to rod-shaped with two narrower 9.4 %, suggesting that strain JLT1202rT was distinct from the poles. Strain JLT1202rT formed circular, opaque, wine-red only strain of the genus Roseibacterium. Based on the vari- colonies, and grew optimally at 3–4 % NaCl, pH 7.5–8.0 abilities of phylogenetic and phenotypic characteristics, strain and 28–30 °C. The strain was catalase, oxidase, ONPG, JLT1202rT stands for a novel species of the genus Roseibac- gelatin, and Voges–Proskauer test positive. In vivo terium and the name R. beibuensis sp. nov. is proposed with absorption spectrum of bacteriochlorophyll a presented two JLT1202rT as the type strain (=JCM 18015T = CGMCC peaks at 800 and 877 nm. The predominant cellular fatty 1.10994T). acid was C18:1 x7c and significant amounts of C16:0,C18:0, C10:0 3-OH, C16:0 2-OH, and 11-methyl C18:1 x7c were present. -
Microbial Diversity Under Extreme Euxinia: Mahoney Lake, Canada V
Geobiology (2012), 10, 223–235 DOI: 10.1111/j.1472-4669.2012.00317.x Microbial diversity under extreme euxinia: Mahoney Lake, Canada V. KLEPAC-CERAJ,1,2 C. A. HAYES,3 W. P. GILHOOLY,4 T. W. LYONS,5 R. KOLTER2 AND A. PEARSON3 1Department of Molecular Genetics, Forsyth Institute, Cambridge, MA, USA 2Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, USA 3Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA 4Department of Earth and Planetary Sciences, Washington University, Saint Louis, MO, USA 5Department of Earth Sciences, University of California, Riverside, CA, USA ABSTRACT Mahoney Lake, British Columbia, Canada, is a stratified, 15-m deep saline lake with a euxinic (anoxic, sulfidic) hypolimnion. A dense plate of phototrophic purple sulfur bacteria is found at the chemocline, but to date the rest of the Mahoney Lake microbial ecosystem has been underexamined. In particular, the microbial community that resides in the aphotic hypolimnion and ⁄ or in the lake sediments is unknown, and it is unclear whether the sulfate reducers that supply sulfide for phototrophy live only within, or also below, the plate. Here we profiled distribu- tions of 16S rRNA genes using gene clone libraries and PhyloChip microarrays. Both approaches suggest that microbial diversity is greatest in the hypolimnion (8 m) and sediments. Diversity is lowest in the photosynthetic plate (7 m). Shallower depths (5 m, 7 m) are rich in Actinobacteria, Alphaproteobacteria, and Gammaproteo- bacteria, while deeper depths (8 m, sediments) are rich in Crenarchaeota, Natronoanaerobium, and Verrucomi- crobia. The heterogeneous distribution of Deltaproteobacteria and Epsilonproteobacteria between 7 and 8 m is consistent with metabolisms involving sulfur intermediates in the chemocline, but complete sulfate reduction in the hypolimnion. -
Influencia De La Comunidad Bacteriana En Los Ciclos Biogeoquímicos Del Carbono Y El Nitrógeno En El Ecosistema De Manglar
FACULTAD CIENCIAS DE LA SALUD BACTERIOLOGÍA Y LABORATORIO CLÍNICO BOGOTÁ D.C. 2020 Proyecto: INFLUENCIA DE LA COMUNIDAD BACTERIANA EN LOS CICLOS BIOGEOQUÍMICOS DEL CARBONO Y EL NITRÓGENO EN EL ECOSISTEMA DE MANGLAR Meritoria: _____Si______ Laureada: ___________ Aprobada: ___________ JURADOS _____________________ ________________ ____________________ _________________ _________________________________________________ ASESOR(es) _________ Martha Lucía Posada Buitrago___________________ _________________________________________ ÉTICA, SERVICIO Y SABER INFLUENCIA DE LA COMUNIDAD BACTERIANA EN LOS CICLOS BIOGEOQUÍMICOS DEL CARBONO Y EL NITRÓGENO EN EL ECOSISTEMA DE MANGLAR UNIVERSIDAD COLEGIO MAYOR DE CUNDINAMARCA FACULTAD CIENCIAS DE LA SALUD PROGRAMA BACTERIOLOGÍA Y LABORATORIO CLÍNICO PROYECTO DE GRADO BOGOTÁ D.C 2020 INFLUENCIA DE LA COMUNIDAD BACTERIANA EN LOS CICLOS BIOGEOQUÍMICOS DEL CARBONO Y EL NITRÓGENO EN EL ECOSISTEMA DE MANGLAR Danya Gabriela Ramírez Lozada Nicolás David Rojas Villamil Asesor interno PhD. Martha Lucía Posada Buitrago Monografía para optar al título de Bacteriólogo y Laboratorista Clínico UNIVERSIDAD COLEGIO MAYOR DE CUNDINAMARCA FACULTAD CIENCIAS DE LA SALUD PROGRAMA BACTERIOLOGÍA Y LABORATORIO CLÍNICO PROYECTO DE GRADO BOGOTÁ D.C 2020 INFLUENCIA DE LA COMUNIDAD BACTERIANA EN LOS CICLOS BIOGEOQUÍMICOS DEL CARBONO Y EL NITRÓGENO EN EL ECOSISTEMA DE MANGLAR UNIVERSIDAD COLEGIO MAYOR DE CUNDINAMARCA FACULTAD CIENCIAS DE LA SALUD PROGRAMA BACTERIOLOGÍA Y LABORATORIO CLÍNICO PROYECTO DE GRADO BOGOTÁ D.C 2020 DEDICATORIA A todas las personas y docentes que hicieron parte de nuestro proceso de formación profesional, a nuestras familias y amigos, que nos brindaron su apoyo, tiempo, consejos y paciencia en este camino que no ha culminado y aún está lleno de sueños, esperanzas y metas por alcanzar. AGRADECIMIENTOS Principalmente a nuestras familias porque han sido la base de nuestra formación aportando grandes cosas en nuestras vidas, por confiar y creer en nuestras capacidades y destrezas a lo largo de esta carrera. -
Salt Marsh Bacterial Communities Before and After the Deepwater Horizon Oil Spill
MICROBIAL ECOLOGY crossm Salt Marsh Bacterial Communities before and after the Deepwater Horizon Oil Spill Annette Summers Engel,a Chang Liu,b Audrey T. Paterson,a Laurie C. Anderson,c R. Eugene Turner,d Edward B. Overtone Downloaded from University of Tennessee, Department of Earth and Planetary Sciences, Knoxville, Tennessee, USAa; Louisiana State University, Department Geology and Geophysics, Baton Rouge, Louisiana, USAb; South Dakota School of Mines and Technology, Department of Geology and Geological Engineering, Rapid City, South Dakota, USAc; Louisiana State University, Department of Oceanography and Coastal Sciences, Baton Rouge, Louisiana, USAd; Louisiana State University, Department of Environmental Sciences, Baton Rouge, Louisiana, USAe ABSTRACT Coastal salt marshes along the northern Gulf of Mexico shoreline re- Received 4 April 2017 Accepted 11 July 2017 http://aem.asm.org/ ceived varied types and amounts of weathered oil residues after the 2010 Deepwater Accepted manuscript posted online 4 Horizon oil spill. At the time, predicting how marsh bacterial communities would re- August 2017 spond and/or recover to oiling and other environmental stressors was difficult be- Citation Engel AS, Liu C, Paterson AT, cause baseline information on community composition and dynamics was generally Anderson LC, Turner RE, Overton EB. 2017. Salt marsh bacterial communities before and after unavailable. Here, we evaluated marsh vegetation, physicochemistry, flooding fre- the Deepwater Horizon oil spill. Appl Environ quency, hydrocarbon chemistry, and subtidal sediment bacterial communities from Microbiol 83:e00784-17. https://doi.org/10 16S rRNA gene surveys at 11 sites in southern Louisiana before the oil spill and resa- .1128/AEM.00784-17. Editor Harold L. -
By Christopher Rathgeber Doctor of Philosophy Depar
Diversity of the Aerobic Phototrophic and Heavy Metalloid Reducing Bacteria: Perspectives Gained from the Study of Novel Isolates. By Christopher Rathgeber A Thesis Submitted to the Faculty of Graduate Studies in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Department of Microbiology University of Manitoba Winnipeg, Manitoba Canada December,2006 @ Christopher Rathgeber, 2006 TI{E T]NIVERSITY OF MANITOBA FACT]LTY OF GRADUATE STUDIBS ***** COPYRIGHT PERMISSION Diversity of the Aerobic Phototrophic and Heavy Metalloid Reducing Bacteria: Perspectives Gained from the Study of Novel Isolates BY Christopher Rathgeber A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirement of the degree Doctor of Philosophy Christopher Rathgeber @ 2007 Permission has been granted to the Library of the University of Manitoba to lend or sell copies of this thesis/practicum, to the National Library of Canada to microfïlm this thesis and to lend or sell copies of the film, and to University Microfîlms Inc. to publish an abstract of this thesis/practicum. This reproduction or copy of this thesis has been made available by authority of the copyright owner solely for the purpose of private study and research, and may only be reproduced and copied as permitted by copyright laws or with express written authorization from the copyright owner. Abstract. The research presented focused on the isolation of bacteria from extreme environments and their characterization in terms of phenotype, phylogeny, photosynthetic function and ability to reduce heavy metalloids. Isolates from the meromictic Mahoney Lake and deep ocean hydrothermal vents were examined using classical techniques and several were described taxonomically. -
Mechanisms Driving Genome Reduction of a Novel Roseobacter Lineage Showing
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426902; this version posted January 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Mechanisms Driving Genome Reduction of a Novel Roseobacter Lineage Showing 2 Vitamin B12 Auxotrophy 3 4 Xiaoyuan Feng1, Xiao Chu1, Yang Qian1, Michael W. Henson2a, V. Celeste Lanclos2, Fang 5 Qin3, Yanlin Zhao3, J. Cameron Thrash2, Haiwei Luo1* 6 7 1Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key 8 Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong 9 Kong SAR 10 2Department of Biological Sciences, University of Southern California, Los Angeles, CA 11 USA 12 3Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, 13 College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China 14 a Current Affiliation: Department of Geophysical Sciences, University of Chicago, Chicago, 15 Illinois, USA 16 17 *Corresponding author: 18 Haiwei Luo 19 School of Life Sciences, The Chinese University of Hong Kong 20 Shatin, Hong Kong SAR 21 Phone: (+852) 3943-6121 22 Fax: (+852) 2603-5646 23 E-mail: [email protected] 24 25 Keywords: Roseobacter, CHUG, genome reduction, vitamin B12 auxotrophy 26 27 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426902; this version posted January 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
A Journey Across Genomes Uncovers the Origin of Ubiquinone in Cyanobacteria
GBE A Journey across Genomes Uncovers the Origin of Ubiquinone in Cyanobacteria Mauro Degli Esposti1,2,* 1Italian Institute of Technology, Genoa, Italy 2Center for Genomic Sciences, Universidad National Autonoma de Mexico Campus of Cuernavaca, Cuernavaca, Morelos, Mexico *Corresponding author: E-mail: [email protected]. Accepted: October 31, 2017 Abstract Ubiquinone (Q) is an isoprenoid quinone that functions as membrane electron carrier in mitochondria and bacterial organisms belonging to the alpha, beta, and gamma class of proteobacteria. The biosynthesis of Q follows various biochemical steps catalyzed by diverse proteins that are, in general, homologous in mitochondria and bacteria. Nonorthologous proteins can also contribute to some biochemical steps as originally uncovered in Escherichia coli,which is the best studied organism for Q biosynthesis in prokaryotes. However, the origin of the biosynthetic pathway of Q has remained obscure. Here, I show by genome analysis that Q biosynthesis originated in cyanobacteria and then diversified in anaerobic alpha proteobacteria which have extant relatives in members of the Rhodospirillaceae family. Two distinct biochemical pathways diverged when ambient oxygen reached current levels on earth, one leading to the well-known series of Ubi genes found in E. coli, and the other containing CoQ proteins originally found in eukaryotes. Extant alpha proteobacteria show Q biosynthesis pathways that are more similar to that present in mitochondria than to that of E. coli. Hence, this work clarifies not only the origin but also the evolution of Q biosynthesis from bacteria to mitochondria. Key words: ubiquinone, menaquinone, plastoquinone, quinone biosynthesis, evolution of mitochondria. Introduction higher for Q; 2) the biosynthetic pathway of Q, which is pre- Ubiquinone (Q) is an isoprenoid substituted benzoquinone dominantly membrane-associated and requires oxygen in which shuttles electrons between membrane-bound respira- multiple steps. -
JGI Progress Report 2018
2018 Progress Report U.S. Department of Energy Joint Genome Institute Cover Photo: Located east of Yosemite National Park, Mono Lake has been referred to as “California's Dead Sea” for its alkaline waters. Microbes isolated from Mono Lake have been sequenced and analyzed by the JGI to help understand how these organisms have adapted to thrive where oxygen-rich waters provided by freshwater springs interface with the oxygen poor and salty waters of the lake. (Jon Bertsch) Impact Section Case Study credits (clockwise from top left): Fruiting bodies of L. bicolor colonizing seedlings of Douglas fir (photograph courtesy of D. Vairelles); Soybean helix (Roy Kaltschmidt, Berkeley Lab); SEM of wood being decayed by the white rot fungus Punctularia strigoso-zonata (Robert Blanchette, University of Minnesota); Ivotuk range, Alaska (LANL–Cathy Wilson); Fistulated cow (Jonas Løvaas Gjerstad); poplar leaf (David Gilbert, JGI). jgi.doe.gov Table of Contents 1 JGI Mission 2 Director’s Perspective 8 Achieving the DOE Mission 10 Organizational Structure 12 Impact 2018 18 Case Study: JGI’s Community Science Program at Fifteen 20 Science: A Year in Review 21 Discovery 30 Bioenergy 46 Biogeochemistry 54 Computational Infrastructure 56 Appendices 57 Appendix A: Acronyms at a Glance 59 Appendix B: Glossary 62 Appendix C: 2018 User Program Supported Proposals 68 Appendix D: Advisory and Review Committee Members 70 Appendix E: 13th Annual Genomics of Energy and Environment Meeting 74 Appendix F: 2018 Publications JGI Mission View of the San Francisco Bay from Berkeley. (Mark Lilly Photography) 1 Vision The vision of the U.S. Department of Energy (DOE) Joint Genome Institute (JGI) is to become the leading integrative genome science user facility enabling researchers to solve the world’s evolving energy and environmental challenges. -
Appendix 1. Validly Published Names, Conserved and Rejected Names, And
Appendix 1. Validly published names, conserved and rejected names, and taxonomic opinions cited in the International Journal of Systematic and Evolutionary Microbiology since publication of Volume 2 of the Second Edition of the Systematics* JEAN P. EUZÉBY New phyla Alteromonadales Bowman and McMeekin 2005, 2235VP – Valid publication: Validation List no. 106 – Effective publication: Names above the rank of class are not covered by the Rules of Bowman and McMeekin (2005) the Bacteriological Code (1990 Revision), and the names of phyla are not to be regarded as having been validly published. These Anaerolineales Yamada et al. 2006, 1338VP names are listed for completeness. Bdellovibrionales Garrity et al. 2006, 1VP – Valid publication: Lentisphaerae Cho et al. 2004 – Valid publication: Validation List Validation List no. 107 – Effective publication: Garrity et al. no. 98 – Effective publication: J.C. Cho et al. (2004) (2005xxxvi) Proteobacteria Garrity et al. 2005 – Valid publication: Validation Burkholderiales Garrity et al. 2006, 1VP – Valid publication: Vali- List no. 106 – Effective publication: Garrity et al. (2005i) dation List no. 107 – Effective publication: Garrity et al. (2005xxiii) New classes Caldilineales Yamada et al. 2006, 1339VP VP Alphaproteobacteria Garrity et al. 2006, 1 – Valid publication: Campylobacterales Garrity et al. 2006, 1VP – Valid publication: Validation List no. 107 – Effective publication: Garrity et al. Validation List no. 107 – Effective publication: Garrity et al. (2005xv) (2005xxxixi) VP Anaerolineae Yamada et al. 2006, 1336 Cardiobacteriales Garrity et al. 2005, 2235VP – Valid publica- Betaproteobacteria Garrity et al. 2006, 1VP – Valid publication: tion: Validation List no. 106 – Effective publication: Garrity Validation List no. 107 – Effective publication: Garrity et al. -
Contents Topic 1. Introduction to Microbiology. the Subject and Tasks
Contents Topic 1. Introduction to microbiology. The subject and tasks of microbiology. A short historical essay………………………………………………………………5 Topic 2. Systematics and nomenclature of microorganisms……………………. 10 Topic 3. General characteristics of prokaryotic cells. Gram’s method ………...45 Topic 4. Principles of health protection and safety rules in the microbiological laboratory. Design, equipment, and working regimen of a microbiological laboratory………………………………………………………………………….162 Topic 5. Physiology of bacteria, fungi, viruses, mycoplasmas, rickettsia……...185 TOPIC 1. INTRODUCTION TO MICROBIOLOGY. THE SUBJECT AND TASKS OF MICROBIOLOGY. A SHORT HISTORICAL ESSAY. Contents 1. Subject, tasks and achievements of modern microbiology. 2. The role of microorganisms in human life. 3. Differentiation of microbiology in the industry. 4. Communication of microbiology with other sciences. 5. Periods in the development of microbiology. 6. The contribution of domestic scientists in the development of microbiology. 7. The value of microbiology in the system of training veterinarians. 8. Methods of studying microorganisms. Microbiology is a science, which study most shallow living creatures - microorganisms. Before inventing of microscope humanity was in dark about their existence. But during the centuries people could make use of processes vital activity of microbes for its needs. They could prepare a koumiss, alcohol, wine, vinegar, bread, and other products. During many centuries the nature of fermentations remained incomprehensible. Microbiology learns morphology, physiology, genetics and microorganisms systematization, their ecology and the other life forms. Specific Classes of Microorganisms Algae Protozoa Fungi (yeasts and molds) Bacteria Rickettsiae Viruses Prions The Microorganisms are extraordinarily widely spread in nature. They literally ubiquitous forward us from birth to our death. Daily, hourly we eat up thousands and thousands of microbes together with air, water, food. -
An Alphaproteobacterium Capable of Both Aerobic and Anaerobic Anoxygenic Photosynthesis but Incapable of Photoautotrophy: Charonomicrobium Ambiphototrophicum, Gen
Photosynth Res (2011) 107:257–268 DOI 10.1007/s11120-011-9629-1 REGULAR PAPER An alphaproteobacterium capable of both aerobic and anaerobic anoxygenic photosynthesis but incapable of photoautotrophy: Charonomicrobium ambiphototrophicum, gen. nov., sp. nov. J. T. Csotonyi • E. Stackebrandt • J. Swiderski • P. Schumann • V. Yurkov Received: 13 September 2010 / Accepted: 20 January 2011 / Published online: 10 February 2011 Ó Springer Science+Business Media B.V. 2011 Abstract A facultatively aerobic deep brown coccoid to Keywords Charonomicrobium ambiphototrophicum Á ovoid bacterium, strain EG17T, was isolated from a saline AAP Á Aerobic anoxygenic phototorphs Á Anoxygenic effluent stream in the NaCl-dominated brine spring system photosynthesis Á Purple nonsulfur bacteria Á known as East German Creek in the province of Manitoba, Photoautotrophy Á Bacteriochlorophyll a Canada. The strain produced BChl a incorporated into a functional reaction center and two light-harvesting com- plexes with absorption peaks at 802, 850, and 879 nm. Introduction EG17T is the first reported anoxygenic phototroph capable of photoheterotrophic growth under both oxic and anoxic One of the most consistent dichotomies in microbiology is conditions. It yielded proportionally the greatest aerobic the segregation of aerobic and anaerobic photosynthesis photosynthetic biomass under oligotrophic conditions. The into different species of anoxygenic phototrophs. Purple results of 16S rRNA gene sequence comparisons revealed sulfur and nonsulfur bacteria (Proteobacteria), green sulfur that EG17T was related most closely to the aerobic an- bacteria (Chlorobi), green nonsulfur bacteria (Chloroflexi), oxygenic phototrophs Roseibacterium elongatum (98.3%) and heliobacteria (Firmicutes) all perform photosynthesis and quite distantly to both Dinoroseobacter shibae (95.2%) solely in the absence of oxygen. -
Discovery of Siderophore and Metallophore Production in the Aerobic Anoxygenic Phototrophs
microorganisms Article Discovery of Siderophore and Metallophore Production in the Aerobic Anoxygenic Phototrophs Steven B. Kuzyk, Elizabeth Hughes and Vladimir Yurkov * Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; [email protected] (S.B.K.); [email protected] (E.H.) * Correspondence: [email protected] Abstract: Aerobic anoxygenic phototrophs have been isolated from a rich variety of environments including marine ecosystems, freshwater and meromictic lakes, hypersaline springs, and biological soil crusts, all in the hopes of understanding their ecological niche. Over 100 isolates were chosen for this study, representing 44 species from 27 genera. Interactions with Fe3+ and other metal(loid) cations such as Mg2+,V3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Se4+ and Te2+ were tested using a chromeazurol S assay to detect siderophore or metallophore production, respectively. Representatives from 20 species in 14 genera of α-Proteobacteria, or 30% of strains, produced highly diffusible siderophores that could bind one or more metal(loid)s, with activity strength as follows: Fe > Zn > V > Te > Cu > Mn > Mg > Se > Ni > Co. In addition, γ-proteobacterial Chromocurvus halotolerans, strain EG19 excreted a brown compound into growth medium, which was purified and confirmed to act as a siderophore. It had an approximate size of ~341 Da and drew similarities to the siderophore rhodotorulic acid, a member of the hydroxamate group, previously found only among yeasts. This study is the first to discover siderophore production to be widespread among the aerobic anoxygenic phototrophs, which may be another key method of metal(loid) chelation and potential detoxification within their environments. Citation: Kuzyk, S.B.; Hughes, E.; Yurkov, V.