Mechanisms Driving Genome Reduction of a Novel Roseobacter Lineage Showing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cryptic Carbon and Sulfur Cycling Between Surface Ocean Plankton
Cryptic carbon and sulfur cycling between surface ocean plankton Bryndan P. Durhama, Shalabh Sharmab, Haiwei Luob, Christa B. Smithb, Shady A. Aminc, Sara J. Benderd, Stephen P. Dearthe, Benjamin A. S. Van Mooyd, Shawn R. Campagnae, Elizabeth B. Kujawinskid, E. Virginia Armbrustc, and Mary Ann Moranb,1 aDepartment of Microbiology, University of Georgia, Athens, GA 30602; bDepartment of Marine Sciences, University of Georgia, Athens, GA 30602; cSchool of Oceanography, University of Washington, Seattle, WA 98195; dDepartment of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; and eDepartment of Chemistry, University of Tennessee, Knoxville, TN 37996 Edited by Edward F. DeLong, Univeristy of Hawaii, Manoa, Honolulu, HI, and approved December 2, 2014 (received for review July 12, 2014) About half the carbon fixed by phytoplankton in the ocean is bacterium. As is common among marine eukaryotic phyto- taken up and metabolized by marine bacteria, a transfer that is plankton, T. pseudonana harbors the B12-requiring version of the mediated through the seawater dissolved organic carbon (DOC) methionine synthase gene (metH) yet cannot synthesize B12 (7) pool. The chemical complexity of marine DOC, along with a poor and must obtain it from an exogenous source. The >50 se- understanding of which compounds form the basis of trophic quenced members of the Roseobacter lineage all carry genes for interactions between bacteria and phytoplankton, have impeded B12 biosynthesis (ref. 8; www.roseobase.org). Both groups of efforts to identify key currencies of this carbon cycle link. Here, we organisms are important in the ocean, with diatoms responsible used transcriptional patterns in a bacterial-diatom model system for up to 40% of global marine primary productivity (9) and based on vitamin B12 auxotrophy as a sensitive assay for metabo- roseobacters ubiquitously distributed, metabolically active (10), lite exchange between marine plankton. -
Transcriptome Data for Bacteria Collected Eight Hours After Individual Inoculation Into a Diatom Thalassiosira Psuedonana Culture
Transcriptome data for bacteria collected eight hours after individual inoculation into a diatom Thalassiosira psuedonana culture Website: https://www.bco-dmo.org/dataset/818765 Data Type: experimental Version: 1 Version Date: 2020-07-16 Project » Metabolic Currencies of the Ocean Carbon Cycle (Metabolic Currencies) Contributors Affiliation Role Moran, Mary Ann University of Georgia (UGA) Principal Investigator Copley, Nancy Woods Hole Oceanographic Institution (WHOI BCO-DMO) BCO-DMO Data Manager Abstract Transcriptome data for bacteria Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14, Polaribacter dokdonensis MED152, and Dokdonia MED134 collected eight hours after individual inoculation into a diatom Thalassiosira psuedonana culture. The sequence data description for PRHNA448168 is at https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA448168. Table of Contents Dataset Description Acquisition Description Processing Description Related Publications Related Datasets Parameters Instruments Project Information Funding Coverage Temporal Extent: 2017-02 - 2017-12 Dataset Description Transcriptome data for bacteria Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14, Polaribacter dokdonensis MED152, and Dokdonia MED134 collected eight hours after individual inoculation into a diatom Thalassiosira psuedonana culture. The sequence data description for PRHNA448168 is at https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA448168. Acquisition Description Thalassiosira pseudonana were removed from the co-cultures by pre-filtration through 2.0 µm pore-size filters, and bacteria were collected on 0.2 µm pore-size filters. Filters were incubated in SDS (0.6% final concentration) and proteinase K (120 ng μl –1 final concentration). RNA was extracted from duplicates of each treatment by adding an equal volume of acid phenol:chloroform:isoamyl-alcohol, followed by shaking, centrifugation, and collection of the supernatant. -
Article-Associated Bac- Teria and Colony Isolation in Soft Agar Medium for Bacteria Unable to Grow at the Air-Water Interface
Biogeosciences, 8, 1955–1970, 2011 www.biogeosciences.net/8/1955/2011/ Biogeosciences doi:10.5194/bg-8-1955-2011 © Author(s) 2011. CC Attribution 3.0 License. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea C. Jeanthon1,2, D. Boeuf1,2, O. Dahan1,2, F. Le Gall1,2, L. Garczarek1,2, E. M. Bendif1,2, and A.-C. Lehours3 1Observatoire Oceanologique´ de Roscoff, UMR7144, INSU-CNRS – Groupe Plancton Oceanique,´ 29680 Roscoff, France 2UPMC Univ Paris 06, UMR7144, Adaptation et Diversite´ en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France 3CNRS, UMR6023, Microorganismes: Genome´ et Environnement, Universite´ Blaise Pascal, 63177 Aubiere` Cedex, France Received: 21 April 2011 – Published in Biogeosciences Discuss.: 5 May 2011 Revised: 7 July 2011 – Accepted: 8 July 2011 – Published: 20 July 2011 Abstract. Aerobic anoxygenic phototrophic (AAP) bac- detected in the eastern basin, reflecting the highest diver- teria play significant roles in the bacterioplankton produc- sity of pufM transcripts observed in this ultra-oligotrophic tivity and biogeochemical cycles of the surface ocean. In region. To our knowledge, this is the first study to document this study, we applied both cultivation and mRNA-based extensively the diversity of AAP isolates and to unveil the ac- molecular methods to explore the diversity of AAP bacte- tive AAP community in an oligotrophic marine environment. ria along an oligotrophic gradient in the Mediterranean Sea By pointing out the discrepancies between culture-based and in early summer 2008. Colony-forming units obtained on molecular methods, this study highlights the existing gaps in three different agar media were screened for the production the understanding of the AAP bacteria ecology, especially in of bacteriochlorophyll-a (BChl-a), the light-harvesting pig- the Mediterranean Sea and likely globally. -
Arxiv:2105.11503V2 [Physics.Bio-Ph] 26 May 2021 3.1 Geometry and Swimming Speeds of the Cells
The Bank Of Swimming Organisms at the Micron Scale (BOSO-Micro) Marcos F. Velho Rodrigues1, Maciej Lisicki2, Eric Lauga1,* 1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom. 2 Faculty of Physics, University of Warsaw, Warsaw, Poland. *Email: [email protected] Abstract Unicellular microscopic organisms living in aqueous environments outnumber all other creatures on Earth. A large proportion of them are able to self-propel in fluids with a vast diversity of swimming gaits and motility patterns. In this paper we present a biophysical survey of the available experimental data produced to date on the characteristics of motile behaviour in unicellular microswimmers. We assemble from the available literature empirical data on the motility of four broad categories of organisms: bacteria (and archaea), flagellated eukaryotes, spermatozoa and ciliates. Whenever possible, we gather the following biological, morphological, kinematic and dynamical parameters: species, geometry and size of the organisms, swimming speeds, actuation frequencies, actuation amplitudes, number of flagella and properties of the surrounding fluid. We then organise the data using the established fluid mechanics principles for propulsion at low Reynolds number. Specifically, we use theoretical biophysical models for the locomotion of cells within the same taxonomic groups of organisms as a means of rationalising the raw material we have assembled, while demonstrating the variability for organisms of different species within the same group. The material gathered in our work is an attempt to summarise the available experimental data in the field, providing a convenient and practical reference point for future studies. Contents 1 Introduction 2 2 Methods 4 2.1 Propulsion at low Reynolds number . -
Physiology of Dimethylsulfoniopropionate Metabolism
PHYSIOLOGY OF DIMETHYLSULFONIOPROPIONATE METABOLISM IN A MODEL MARINE ROSEOBACTER, Silicibacter pomeroyi by JAMES R. HENRIKSEN (Under the direction of William B. Whitman) ABSTRACT Dimethylsulfoniopropionate (DMSP) is a ubiquitous marine compound whose degradation is important in carbon and sulfur cycles and influences global climate due to its degradation product dimethyl sulfide (DMS). Silicibacter pomeroyi, a member of the a marine Roseobacter clade, is a model system for the study of DMSP degradation. S. pomeroyi can cleave DMSP to DMS and carry out demethylation to methanethiol (MeSH), as well as degrade both these compounds. Dif- ferential display proteomics was used to find proteins whose abundance increased when chemostat cultures of S. pomeroyi were grown with DMSP as the sole carbon source. Bioinformatic analysis of these genes and their gene clusters suggested roles in DMSP metabolism. A genetic system was developed for S. pomeroyi that enabled gene knockout to confirm the function of these genes. INDEX WORDS: Silicibacter pomeroyi, Ruegeria pomeroyi, dimethylsulfoniopropionate, DMSP, roseobacter, dimethyl sulfide, DMS, methanethiol, MeSH, marine, environmental isolate, proteomics, genetic system, physiology, metabolism PHYSIOLOGY OF DIMETHYLSULFONIOPROPIONATE METABOLISM IN A MODEL MARINE ROSEOBACTER, Silicibacter pomeroyi by JAMES R. HENRIKSEN B.S. (Microbiology), University of Oklahoma, 2000 B.S. (Biochemistry), University of Oklahoma, 2000 A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY ATHENS, GEORGIA 2008 cc 2008 James R. Henriksen Some Rights Reserved Creative Commons License Version 3.0 Attribution-Noncommercial-Share Alike PHYSIOLOGY OF DIMETHYLSULFONIOPROPIONATE METABOLISM IN A MODEL MARINE ROSEOBACTER, Silicibacter pomeroyi by JAMES R. -
Genome Characteristics of a Generalist Marine Bacterial Lineage
The ISME Journal (2010), 1–15 & 2010 International Society for Microbial Ecology All rights reserved 1751-7362/10 $32.00 www.nature.com/ismej ORIGINAL ARTICLE Genome characteristics of a generalist marine bacterial lineage Ryan J Newton1, Laura E Griffin1, Kathy M Bowles1, Christof Meile1, Scott Gifford1, Carrie E Givens1, Erinn C Howard1, Eric King1, Clinton A Oakley2, Chris R Reisch3, Johanna M Rinta-Kanto1, Shalabh Sharma1, Shulei Sun1, Vanessa Varaljay3, Maria Vila-Costa1,4, Jason R Westrich5 and Mary Ann Moran1 1Department of Marine Sciences, University of Georgia, Athens, GA, USA; 2Department of Plant Biology, University of Georgia, Athens, GA, USA; 3Department of Microbiology, University of Georgia, Athens, GA, USA; 4Group of Limnology-Department of Continental Ecology, Centre d’Estudis Avanc¸ats de Blanes-CSIS, Catalunya, Spain and 5Odum School of Ecology, University of Georgia, Athens, GA, USA Members of the marine Roseobacter lineage have been characterized as ecological generalists, suggesting that there will be challenges in assigning well-delineated ecological roles and biogeochemical functions to the taxon. To address this issue, genome sequences of 32 Roseobacter isolates were analyzed for patterns in genome characteristics, gene inventory, and individual gene/ pathway distribution using three predictive frameworks: phylogenetic relatedness, lifestyle strategy and environmental origin of the isolate. For the first framework, a phylogeny containing five deeply branching clades was obtained from a concatenation of 70 conserved single-copy genes. Somewhat surprisingly, phylogenetic tree topology was not the best model for organizing genome characteristics or distribution patterns of individual genes/pathways, although it provided some predictive power. The lifestyle framework, established by grouping isolates according to evidence for heterotrophy, photoheterotrophy or autotrophy, explained more of the gene repertoire in this lineage. -
Roseibacterium Beibuensis Sp. Nov., a Novel Member of Roseobacter Clade Isolated from Beibu Gulf in the South China Sea
Curr Microbiol (2012) 65:568–574 DOI 10.1007/s00284-012-0192-6 Roseibacterium beibuensis sp. nov., a Novel Member of Roseobacter Clade Isolated from Beibu Gulf in the South China Sea Yujiao Mao • Jingjing Wei • Qiang Zheng • Na Xiao • Qipei Li • Yingnan Fu • Yanan Wang • Nianzhi Jiao Received: 6 April 2012 / Accepted: 25 June 2012 / Published online: 31 July 2012 Ó Springer Science+Business Media, LLC 2012 Abstract A novel aerobic, bacteriochlorophyll-contain- similarity), followed by Dinoroseobacter shibae DFL 12T ing bacteria strain JLT1202rT was isolated from Beibu Gulf (95.4 % similarity). The phylogenetic distance of pufM genes in the South China Sea. Cells were gram-negative, non- between strain JLT1202rT and R. elongatum OCh 323T was motile, and short-ovoid to rod-shaped with two narrower 9.4 %, suggesting that strain JLT1202rT was distinct from the poles. Strain JLT1202rT formed circular, opaque, wine-red only strain of the genus Roseibacterium. Based on the vari- colonies, and grew optimally at 3–4 % NaCl, pH 7.5–8.0 abilities of phylogenetic and phenotypic characteristics, strain and 28–30 °C. The strain was catalase, oxidase, ONPG, JLT1202rT stands for a novel species of the genus Roseibac- gelatin, and Voges–Proskauer test positive. In vivo terium and the name R. beibuensis sp. nov. is proposed with absorption spectrum of bacteriochlorophyll a presented two JLT1202rT as the type strain (=JCM 18015T = CGMCC peaks at 800 and 877 nm. The predominant cellular fatty 1.10994T). acid was C18:1 x7c and significant amounts of C16:0,C18:0, C10:0 3-OH, C16:0 2-OH, and 11-methyl C18:1 x7c were present. -
Microbial Diversity Under Extreme Euxinia: Mahoney Lake, Canada V
Geobiology (2012), 10, 223–235 DOI: 10.1111/j.1472-4669.2012.00317.x Microbial diversity under extreme euxinia: Mahoney Lake, Canada V. KLEPAC-CERAJ,1,2 C. A. HAYES,3 W. P. GILHOOLY,4 T. W. LYONS,5 R. KOLTER2 AND A. PEARSON3 1Department of Molecular Genetics, Forsyth Institute, Cambridge, MA, USA 2Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, USA 3Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA 4Department of Earth and Planetary Sciences, Washington University, Saint Louis, MO, USA 5Department of Earth Sciences, University of California, Riverside, CA, USA ABSTRACT Mahoney Lake, British Columbia, Canada, is a stratified, 15-m deep saline lake with a euxinic (anoxic, sulfidic) hypolimnion. A dense plate of phototrophic purple sulfur bacteria is found at the chemocline, but to date the rest of the Mahoney Lake microbial ecosystem has been underexamined. In particular, the microbial community that resides in the aphotic hypolimnion and ⁄ or in the lake sediments is unknown, and it is unclear whether the sulfate reducers that supply sulfide for phototrophy live only within, or also below, the plate. Here we profiled distribu- tions of 16S rRNA genes using gene clone libraries and PhyloChip microarrays. Both approaches suggest that microbial diversity is greatest in the hypolimnion (8 m) and sediments. Diversity is lowest in the photosynthetic plate (7 m). Shallower depths (5 m, 7 m) are rich in Actinobacteria, Alphaproteobacteria, and Gammaproteo- bacteria, while deeper depths (8 m, sediments) are rich in Crenarchaeota, Natronoanaerobium, and Verrucomi- crobia. The heterogeneous distribution of Deltaproteobacteria and Epsilonproteobacteria between 7 and 8 m is consistent with metabolisms involving sulfur intermediates in the chemocline, but complete sulfate reduction in the hypolimnion. -
Aquatic Microbial Ecology 41:15
AQUATIC MICROBIAL ECOLOGY Vol. 41: 15–23, 2005 Published November 11 Aquat Microb Ecol Marine bacterial microdiversity as revealed by internal transcribed spacer analysis Mark V. Brown1, 2,*, Jed A. Fuhrman1 1Department of Biological Sciences and Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, California 90089-0371, USA 2Present address: NASA Astrobiology Institute, University of Hawaii, Honolulu, Hawaii 96822, USA ABSTRACT: A growing body of evidence suggests analysis of 16S rRNA gene sequences provides only a conservative estimate of the actual genetic diversity existing within microbial communities. We examined the less conserved internal transcribed spacer (ITS) region of the ribosomal operon to determine the impact microdiversity may have on our view of marine microbial consortia. Analysis of over 500 ITS sequences and 250 associated 16S rRNA gene sequences from an oceanic time series station in the San Pedro Channel, California, USA, revealed that the community in this region is com- posed of large numbers of distinct lineages, with more than 1000 lineages estimated from 3 clusters alone (the SAR11 clade, the Prochlorococcus low-B/A clade 1, and the Roseobacter NAC11-7 clade). Although we found no instances where divergent ITS sequences were associated with identical 16S rRNA gene sequences, the ITS region showed much greater pairwise divergence between clones. By comparison to our 16S rRNA gene–ITS region linked database, we were able to place all ITS sequences into a phylogenetic framework, allowing them to act as an alternative molecular marker with enhanced resolution. Comparison of SAR11 clade ITS sequences with those available in GenBank indicated phylogenetic groupings based not only on depth but also on geography, potentially indicating localized differentiation or adaptation. -
Horizontal Operon Transfer, Plasmids, and the Evolution of Photosynthesis in Rhodobacteraceae
The ISME Journal (2018) 12:1994–2010 https://doi.org/10.1038/s41396-018-0150-9 ARTICLE Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae 1 2 3 4 1 Henner Brinkmann ● Markus Göker ● Michal Koblížek ● Irene Wagner-Döbler ● Jörn Petersen Received: 30 January 2018 / Revised: 23 April 2018 / Accepted: 26 April 2018 / Published online: 24 May 2018 © The Author(s) 2018. This article is published with open access Abstract The capacity for anoxygenic photosynthesis is scattered throughout the phylogeny of the Proteobacteria. Their photosynthesis genes are typically located in a so-called photosynthesis gene cluster (PGC). It is unclear (i) whether phototrophy is an ancestral trait that was frequently lost or (ii) whether it was acquired later by horizontal gene transfer. We investigated the evolution of phototrophy in 105 genome-sequenced Rhodobacteraceae and provide the first unequivocal evidence for the horizontal transfer of the PGC. The 33 concatenated core genes of the PGC formed a robust phylogenetic tree and the comparison with single-gene trees demonstrated the dominance of joint evolution. The PGC tree is, however, largely incongruent with the species tree and at least seven transfers of the PGC are required to reconcile both phylogenies. 1234567890();,: 1234567890();,: The origin of a derived branch containing the PGC of the model organism Rhodobacter capsulatus correlates with a diagnostic gene replacement of pufC by pufX. The PGC is located on plasmids in six of the analyzed genomes and its DnaA- like replication module was discovered at a conserved central position of the PGC. A scenario of plasmid-borne horizontal transfer of the PGC and its reintegration into the chromosome could explain the current distribution of phototrophy in Rhodobacteraceae. -
An Updated Genome Annotation for the Model Marine Bacterium Ruegeria Pomeroyi DSS-3 Adam R Rivers, Christa B Smith and Mary Ann Moran*
Rivers et al. Standards in Genomic Sciences 2014, 9:11 http://www.standardsingenomics.com/content/9/1/11 SHORT GENOME REPORT Open Access An Updated genome annotation for the model marine bacterium Ruegeria pomeroyi DSS-3 Adam R Rivers, Christa B Smith and Mary Ann Moran* Abstract When the genome of Ruegeria pomeroyi DSS-3 was published in 2004, it represented the first sequence from a heterotrophic marine bacterium. Over the last ten years, the strain has become a valuable model for understanding the cycling of sulfur and carbon in the ocean. To ensure that this genome remains useful, we have updated 69 genes to incorporate functional annotations based on new experimental data, and improved the identification of 120 protein-coding regions based on proteomic and transcriptomic data. We review the progress made in understanding the biology of R. pomeroyi DSS-3 and list the changes made to the genome. Keywords: Roseobacter,DMSP Introduction Genome properties Ruegeria pomeroyi DSS-3 is an important model organ- The R. pomeroyi DSS-3 genome contains a 4,109,437 bp ism in studies of the physiology and ecology of marine circular chromosome (5 bp shorter than previously re- bacteria [1]. It is a genetically tractable strain that has ported [1]) and a 491,611 bp circular megaplasmid, with been essential for elucidating bacterial roles in the mar- a G + C content of 64.1 (Table 3). A detailed description ine sulfur and carbon cycles [2,3] and the biology and of the genome is found in the original article [1]. genomics of the marine Roseobacter clade [4], a group that makes up 5–20% of bacteria in ocean surface waters [5,6]. -
Bacteria Are Important Dimethylsulfoniopropionate Producers in Coastal Sediments
1 Bacteria are important dimethylsulfoniopropionate producers in coastal sediments 2 Beth T. Williams1, Kasha Cowles1, Ana Bermejo Martínez1, Andrew R. J. Curson1, Yanfen 3 Zheng1,2, Jingli Liu1,2, Simone Newton-Payne1, Andrew Hind3, Chun-Yang Li2, Peter Paolo 4 L. Rivera1, Ornella Carrión3, Ji Liu1,2, Lewis G. Spurgin1, Charles A. Brearley1, Brett Wagner 5 Mackenzie5, Benjamin J. Pinchbeck1, Ming Peng4, Jennifer Pratscher6, Xiao-Hua Zhang2, 6 Yu-Zhong Zhang4, J. Colin Murrell3, Jonathan D. Todd1* 7 1School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, 8 NR4 7TJ, UK. 9 2College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 10 266003, China. 11 3School of Environmental Sciences, University of East Anglia, Norwich Research Park, 12 Norwich, NR4 7TJ, UK. 13 4State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, 14 China 15 5Department of Surgery, University of Auckland, Auckland 1142, New Zealand 16 6The Lyell Centre, Heriot-Watt University, Edinburgh, EH14 4AS, UK. 17 *corresponding author 18 Dimethylsulfoniopropionate (DMSP) and its catabolite dimethyl sulfide (DMS) are key 19 marine nutrients1,2, with roles in global sulfur cycling2, atmospheric chemistry3, 20 signalling4,5 and, potentially, climate regulation6,7. DMSP production was previously 21 thought to be an oxic and photic process, mainly confined to the surface oceans. 1 22 However, here we show that DMSP concentrations and DMSP/DMS synthesis rates 23 were higher in surface marine sediment from e.g., saltmarsh ponds, estuaries and the 24 deep ocean than in the overlying seawater. A quarter of bacterial strains isolated from 25 saltmarsh sediment produced DMSP (up to 73 mM), and previously unknown DMSP- 26 producers were identified.