1 TITLE an Updated Phylogeny of the Alphaproteobacteria

Total Page:16

File Type:pdf, Size:1020Kb

1 TITLE an Updated Phylogeny of the Alphaproteobacteria 1 TITLE 2 An updated phylogeny of the Alphaproteobacteria reveals that the parasitic Rickettsiales 3 and Holosporales have independent origins 4 AUTHORS 5 Sergio A. Muñoz-Gómez1,2, Sebastian Hess1,2, Gertraud Burger3, B. Franz Lang3, 6 Edward Susko2,4, Claudio H. Slamovits1,2*, and Andrew J. Roger1,2* 7 AUTHOR AFFILIATIONS 8 1 Department of Biochemistry and Molecular Biology; Dalhousie University; Halifax, 9 Nova Scotia, B3H 4R2; Canada. 10 2 Centre for Comparative Genomics and Evolutionary Bioinformatics; Dalhousie 11 University; Halifax, Nova Scotia, B3H 4R2; Canada. 12 3 Department of Biochemistry, Robert-Cedergren Center in Bioinformatics and 13 Genomics, Université de Montréal, Montreal, Quebec, Canada. 14 4 Department of Mathematics and Statistics; Dalhousie University; Halifax, Nova Scotia, 15 B3H 4R2; Canada. 16 17 *Correspondence to: Department of Biochemistry and Molecular Biology; Dalhousie 18 University; Halifax, Nova Scotia, B3H 4R2; Canada; 1 902 494 2881, [email protected] 1 19 ABSTRACT 20 The Alphaproteobacteria is an extraordinarily diverse and ancient group of bacteria. 21 Previous attempts to infer its deep phylogeny have been plagued with methodological 22 artefacts. To overcome this, we analyzed a dataset of 200 single-copy and conserved 23 genes and employed diverse strategies to reduce compositional artefacts. Such 24 strategies include using novel dataset-specific profile mixture models and recoding 25 schemes, and removing sites, genes and taxa that are compositionally biased. We 26 show that the Rickettsiales and Holosporales (both groups of intracellular parasites of 27 eukaryotes) are not sisters to each other, but instead, the Holosporales has a derived 28 position within the Rhodospirillales. A synthesis of our results also leads to an updated 29 proposal for the higher-level taxonomy of the Alphaproteobacteria. Our robust 30 consensus phylogeny will serve as a framework for future studies that aim to place 31 mitochondria, and novel environmental diversity, within the Alphaproteobacteria. 32 KEYWORDS: Holosporaceae, Holosporales, mitochondria, origin, Finniella inopinata, 33 Stachyamoba, Peranema, photosynthesis, Rhodospirillales, Azospirillaceae, 34 Rhodovibriaceae. 2 35 INTRODUCTION 36 The Alphaproteobacteria is an extraordinarily diverse and disparate group of bacteria 37 and well-known to most biologists for also encompassing the mitochondrial lineage 38 (Williams, Sobral, and Dickerman 2007; Roger, Muñoz-Gómez, and Kamikawa 2017). 39 The Alphaproteobacteria has massively diversified since its origin, giving rise to, for 40 example, some of the most abundant (e.g., Pelagibacter ubique) and metabolically 41 versatile (e.g., Rhodobacter sphaeroides) cells on Earth (Giovannoni 2017; Madigan, 42 Jung, and Madigan 2009). The basic structure of the tree of the Alphaproteobacteria 43 has largely been inferred through the analyses of 16S rRNA genes and several 44 conserved proteins (Garrity 2005; Lee et al. 2005; Rosenberg et al. 2014; Fitzpatrick, 45 Creevey, and McInerney 2006; Williams, Sobral, and Dickerman 2007; Brindefalk et al. 46 2011; Georgiades et al. 2011; Thrash et al. 2011; Luo 2015). Today, eight major orders 47 are well recognized, namely the Caulobacterales, Rhizobiales, Rhodobacterales, 48 Pelagibacterales, Sphingomonadales, Rhodospirillales, Holosporales and Rickettsiales 49 (the latter two formerly grouped into the Rickettsiales sensu lato), and their 50 interrelationships have also recently become better understood (Viklund, Ettema, and 51 Andersson 2012; Viklund et al. 2013; Rodríguez-Ezpeleta and Embley 2012; Wang and 52 Wu 2014, 2015). These eight orders were grouped into two subclasses by Ferla et al. 53 (2013): the subclass Rickettsiidae comprising the order Rickettsiales and 54 Pelagibacterales, and the subclass Caulobacteridae comprising all other orders. 55 The great diversity of the Alphaproteobacteria itself presents a challenge to deciphering 56 the deepest divergences within the group. Such diversity encompasses a broad 57 spectrum of genome (nucleotide) and proteome (amino acid) compositions (e.g., the 58 A+T%-rich Pelagibacterales versus the G+C%-rich Acetobacteraceae) and molecular 59 evolutionary rates (e.g., the fast-evolving Pelagibacteriales, Rickettsiales or 60 Holosporales versus many slow-evolving species in the Rhodospirillales) (Ettema and 61 Andersson 2009). This diversity may lead to pervasive artefacts when inferring the 62 phylogeny of the Alphaproteobacteria, e.g., long-branch attraction (LBA) between the 63 Rickettsiales and Pelagibacterales, especially when including mitochondria (Rodríguez- 64 Ezpeleta and Embley 2012; Viklund, Ettema, and Andersson 2012; Viklund et al. 2013; 3 65 Luo 2015). Moreover, there are still important unknowns about the deep phylogeny of 66 the Alphaproteobacteria (Williams, Sobral, and Dickerman 2007; Ferla et al. 2013), for 67 example, the divergence order among the Rhizobiales, Rhodobacterales and 68 Caulobacterales (Williams, Sobral, and Dickerman 2007), the monophyly of the 69 Pelagibacterales (Viklund et al. 2013) and the Rhodospirillales (Ferla et al. 2013), and 70 the precise placement of the Rickettsiales and its relationship to the Holosporales 71 (Wang and Wu 2015; Martijn et al. 2018). 72 Systematic errors stemming from using over-simplified evolutionary models (which often 73 do not fit complex data as well by, for example, not accounting for compositional 74 heterogeneity across sites or branches) are perhaps the major confounding and limiting 75 factor to inferring deep evolutionary relationships; the number of taxa and genes (or 76 sites) can also be important factors. Previous multi-gene tree studies of the 77 Alphaproteobacteria were compromised by at least one of these problems, namely, 78 simpler or less realistic evolutionary models (because they were not available at the 79 time; e.g., Williams, Sobral, and Dickerman 2007 used the simple WAG+Γ4 model that 80 cannot account for compositional heterogeneity across sites), poor or uneven taxon 81 sampling (because the focus was too narrow or few genomes were available; e.g., 82 Williams, Sobral, and Dickerman 2007 had very few rhodospirillaleans and no 83 holosporaleans; Georgiades et al. 2011 included only 42 alphaproteobacteria with only 84 one pelagibacteralean) or a small number of genes (because the focus was 85 mitochondria; e.g., Rodríguez-Ezpeleta and Embley 2012 used 24 genes; Wang and 86 Wu 2015 relied on 29 genes; Martijn et al. 2018 also used 24 genes; or because only a 87 small set of 28 compositionally homogeneous genes was used, e.g., Luo 2015). The 88 most recent study on the phylogeny of the Alphaproteobacteria, and mitochondria, 89 attempted to counter systematic errors (or phylogenetic artefacts) by reducing amino 90 acid compositional heterogeneity (Martijn et al. 2018). Even though some deep 91 relationships were not robustly resolved, these analyses suggested that the 92 Pelagibacterales, Rickettsiales and Holosporales, which have compositionally-biased 93 genomes, are not each other’s closest relatives (Martijn et al. 2018). A resolved and 94 robust phylogeny of the Alphaproteobacteria is fundamental to addressing questions 95 such as how streamlined bacteria, intracellular parasitic bacteria, or mitochondria 4 96 evolved from their alphaproteobacterial ancestors. Therefore, a systematic study of the 97 different biases affecting the phylogeny of the Alphaproteobacteria, and its underlying 98 data, is much needed. 99 Here, we revised the phylogeny of the Alphaproteobacteria by using a large dataset of 100 200 conserved single-copy genes and employing carefully designed strategies aimed at 101 alleviating phylogenetic artefacts. We found that amino acid compositional 102 heterogeneity, and more generally long-branch attraction, were major confounding 103 factors in estimating phylogenies of the Alphaproteobacteria. In order to counter these 104 biases, we used novel dataset-specific profile mixture models and recoding schemes 105 (both specifically designed to ameliorate compositional heterogeneity), and removed 106 sites, genes and taxa that were compositionally biased. We also present three draft 107 genomes for endosymbiotic alphaproteobacteria belonging to the Rickettsiales and 108 Holosporales: (1) an undescribed midichloriacean endosymbiont of Peranema 109 trichophorum, (2) an undescribed rickettsiacean endosymbiont of Stachyamoeba 110 lipophora, and (3) the holosporalean ‘Candidatus Finniella inopinata’, an endosymbiont 111 of the rhizarian amoeboflagellate Viridiraptor invadens (Hess, Suthaus, and Melkonian 112 2015). Our results provide the first strong evidence that the Holosporales is unrelated to 113 the Rickettsiales and originated instead from within the Rhodospirillales. We incorporate 114 these and other insights regarding the deep phylogeny of the Alphaproteobacteria into 115 an updated taxonomy. 116 RESULTS 117 The genomes and phylogenetic positions of three novel endosymbiotic 118 alphaproteobacteria (Rickettsiales and Holosporales) 119 We sequenced the genomes of the novel holosporalean ‘Candidatus Finniella 120 inopinata’, an endosymbiont of the rhizarian amoeboflagellate Viridiraptor invadens 121 (Hess, Suthaus, and Melkonian 2015), and two undescribed rickettsialeans, one 122 associated with the heterolobosean amoeba Stachyamoeba lipophora and the other 123 with the euglenoid flagellate Peranema trichophorum. The three genomes are small with 124 a reduced gene number and high A+T% content, strongly suggesting
Recommended publications
  • Endobacter Medicaginis Gen. Nov. Sp. Nov. Isolated from Alfalfa Nodules In
    IJSEM Papers in Press. Published September 21, 2012 as doi:10.1099/ijs.0.041368-0 1 Endobacter medicaginis gen. nov. sp. nov. isolated from alfalfa nodules in an acidic 2 soil in Spain 3 4 Martha Helena Ramírez-Bahena1,2, Carmen Tejedor3, Isidro Martín3, Encarna 5 Velázquez2, 3, Alvaro Peix1,2* 6 7 8 1: Instituto de Recursos Naturales y Agrobiología de Salamanca. Consejo Superior de 9 Investigaciones Científicas. (IRNASA-CSIC). Salamanca. Spain. 10 2: Unidad Asociada Grupo de Interacciones planta-microorganismo Universidad de 11 Salamanca-IRNASA (CSIC). Salamanca. Spain 12 3: Departamento de Microbiología y Genética. Universidad de Salamanca. Salamanca. 13 Spain 14 15 16 17 18 Running title: Endobacter medicaginis gen. nov. sp. nov. 19 20 Abstract 21 A bacterial strain designed M1MS02T was isolated from a surface sterilised nodule of 22 Medicago sativa in Zamora (Spain). The 16S rRNA gene sequence of this strain showed 23 96.5 and 96.2% identities, respectively, with respect to Gluconacetobacter liquefaciens 24 IFO 12388T and Granulibacter bethesdensis CGDNIH1T from the Family 25 Acetobacteraceae. The isolate was Gram negative, non-sporulated aerobic motile by a 26 subpolar flagellum coccoid to rod-shaped bacterium. Major fatty acid is C18:1 7c 27 (39.94%) and major ubiquinone is Q-10. The lipid profile consisted of 28 diphosphatidylglycerol, phosphatidylethanolamine, two aminophospholipids, three 29 aminolipids, four glycolipids, two phospholipids and a lipid. Catalase positive and 30 oxidase and urease negative. Acetate and lactate are not oxydized. Acetic acid is 31 produced from ethanol in culture media supplemented with 2% CaCO3. Ammonium 32 sulphate is assimilated in glucose medium.
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • The Lichens' Microbiota, Still a Mystery?
    fmicb-12-623839 March 24, 2021 Time: 15:25 # 1 REVIEW published: 30 March 2021 doi: 10.3389/fmicb.2021.623839 The Lichens’ Microbiota, Still a Mystery? Maria Grimm1*, Martin Grube2, Ulf Schiefelbein3, Daniela Zühlke1, Jörg Bernhardt1 and Katharina Riedel1 1 Institute of Microbiology, University Greifswald, Greifswald, Germany, 2 Institute of Plant Sciences, Karl-Franzens-University Graz, Graz, Austria, 3 Botanical Garden, University of Rostock, Rostock, Germany Lichens represent self-supporting symbioses, which occur in a wide range of terrestrial habitats and which contribute significantly to mineral cycling and energy flow at a global scale. Lichens usually grow much slower than higher plants. Nevertheless, lichens can contribute substantially to biomass production. This review focuses on the lichen symbiosis in general and especially on the model species Lobaria pulmonaria L. Hoffm., which is a large foliose lichen that occurs worldwide on tree trunks in undisturbed forests with long ecological continuity. In comparison to many other lichens, L. pulmonaria is less tolerant to desiccation and highly sensitive to air pollution. The name- giving mycobiont (belonging to the Ascomycota), provides a protective layer covering a layer of the green-algal photobiont (Dictyochloropsis reticulata) and interspersed cyanobacterial cell clusters (Nostoc spec.). Recently performed metaproteome analyses Edited by: confirm the partition of functions in lichen partnerships. The ample functional diversity Nathalie Connil, Université de Rouen, France of the mycobiont contrasts the predominant function of the photobiont in production Reviewed by: (and secretion) of energy-rich carbohydrates, and the cyanobiont’s contribution by Dirk Benndorf, nitrogen fixation. In addition, high throughput and state-of-the-art metagenomics and Otto von Guericke University community fingerprinting, metatranscriptomics, and MS-based metaproteomics identify Magdeburg, Germany Guilherme Lanzi Sassaki, the bacterial community present on L.
    [Show full text]
  • Pinpointing the Origin of Mitochondria Zhang Wang Hanchuan, Hubei
    Pinpointing the origin of mitochondria Zhang Wang Hanchuan, Hubei, China B.S., Wuhan University, 2009 A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Biology University of Virginia August, 2014 ii Abstract The explosive growth of genomic data presents both opportunities and challenges for the study of evolutionary biology, ecology and diversity. Genome-scale phylogenetic analysis (known as phylogenomics) has demonstrated its power in resolving the evolutionary tree of life and deciphering various fascinating questions regarding the origin and evolution of earth’s contemporary organisms. One of the most fundamental events in the earth’s history of life regards the origin of mitochondria. Overwhelming evidence supports the endosymbiotic theory that mitochondria originated once from a free-living α-proteobacterium that was engulfed by its host probably 2 billion years ago. However, its exact position in the tree of life remains highly debated. In particular, systematic errors including sparse taxonomic sampling, high evolutionary rate and sequence composition bias have long plagued the mitochondrial phylogenetics. This dissertation employs an integrated phylogenomic approach toward pinpointing the origin of mitochondria. By strategically sequencing 18 phylogenetically novel α-proteobacterial genomes, using a set of “well-behaved” phylogenetic markers with lower evolutionary rates and less composition bias, and applying more realistic phylogenetic models that better account for the systematic errors, the presented phylogenomic study for the first time placed the mitochondria unequivocally within the Rickettsiales order of α- proteobacteria, as a sister clade to the Rickettsiaceae and Anaplasmataceae families, all subtended by the Holosporaceae family.
    [Show full text]
  • Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
    www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms.
    [Show full text]
  • The Role of Charcoal and Dietary Crude Protein Supplemented with Probiotic Escherchia Coli Strains UM2 and UM7
    Gut microbiome analysis in piglet models infected with Escherchia coli K88: The role of charcoal and dietary crude protein supplemented with probiotic Escherchia coli strains UM2 and UM7. by Shahab Meshkibaf A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE Department of Medical Microbiology and Infectious Diseases University of Manitoba Winnipeg Copyright © 2011 by Shahab Meshkibaf ABSTRACT Entrotoxigenic Escherichia coli (ETEC) K88 is a causative agent of post-weaning diarrhea (PWD) in early-weaned pigs. This study investigated the efficacy of two alternative diets, charcoal (0.1, 0.5, 1, and 2%) and a low crude protein (CP) diet (17%) supplemented with probiotic E. coli strains (UM2 and UM7), against PWD infection in ETEC K88 challenged piglets. The present study found that charcoal had no effect on the challenged piglets’ performance, ileal and colonic microbiota or their fermentation end products. There was, however, a correlation between charcoal dosage and fecal consistency score. Charcoal reduced the ileal mucosal attached ETEC K88. Feeding a low-CP diet resulted in a lower ileal ammonia concentration. The low-CP diet reduced the E. coli populations in the ileal digesta as well as lowered mRNA expression of the IL-1ß. We concluded that the use of both 1-2% charcoal diet and a low-CP diet supplemented with probiotic E. coli strains were effective in reducing the incidence and severity of PWD infection. ACKNOWLEDGEMENTS I would like to thank all people who have helped and inspired me during my graduate study.
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • Article-Associated Bac- Teria and Colony Isolation in Soft Agar Medium for Bacteria Unable to Grow at the Air-Water Interface
    Biogeosciences, 8, 1955–1970, 2011 www.biogeosciences.net/8/1955/2011/ Biogeosciences doi:10.5194/bg-8-1955-2011 © Author(s) 2011. CC Attribution 3.0 License. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea C. Jeanthon1,2, D. Boeuf1,2, O. Dahan1,2, F. Le Gall1,2, L. Garczarek1,2, E. M. Bendif1,2, and A.-C. Lehours3 1Observatoire Oceanologique´ de Roscoff, UMR7144, INSU-CNRS – Groupe Plancton Oceanique,´ 29680 Roscoff, France 2UPMC Univ Paris 06, UMR7144, Adaptation et Diversite´ en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France 3CNRS, UMR6023, Microorganismes: Genome´ et Environnement, Universite´ Blaise Pascal, 63177 Aubiere` Cedex, France Received: 21 April 2011 – Published in Biogeosciences Discuss.: 5 May 2011 Revised: 7 July 2011 – Accepted: 8 July 2011 – Published: 20 July 2011 Abstract. Aerobic anoxygenic phototrophic (AAP) bac- detected in the eastern basin, reflecting the highest diver- teria play significant roles in the bacterioplankton produc- sity of pufM transcripts observed in this ultra-oligotrophic tivity and biogeochemical cycles of the surface ocean. In region. To our knowledge, this is the first study to document this study, we applied both cultivation and mRNA-based extensively the diversity of AAP isolates and to unveil the ac- molecular methods to explore the diversity of AAP bacte- tive AAP community in an oligotrophic marine environment. ria along an oligotrophic gradient in the Mediterranean Sea By pointing out the discrepancies between culture-based and in early summer 2008. Colony-forming units obtained on molecular methods, this study highlights the existing gaps in three different agar media were screened for the production the understanding of the AAP bacteria ecology, especially in of bacteriochlorophyll-a (BChl-a), the light-harvesting pig- the Mediterranean Sea and likely globally.
    [Show full text]
  • 1 Supplementary Information Ugly Ducklings – the Dark Side of Plastic
    Supplementary Information Ugly ducklings – The dark side of plastic materials in contact with potable water Lisa Neu1,2, Carola Bänziger1, Caitlin R. Proctor1,2, Ya Zhang3, Wen-Tso Liu3, Frederik Hammes1,* 1 Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland 2 Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland 3 Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, USA Table of contents Table S1 Exemplary online blog entries on biofouling in bath toys Figure S1 Images of all examined bath toys Figure S2 Additional images of bath toy biofilms by OCT Figure S3 Additional images on biofilm composition by SEM Figure S4 Number of bacteria and proportion of intact cells in bath toy biofilms Table S2 Classification of shared OTUs between bath toys Table S3 Shared and ‘core’ communities in bath toys from single households Table S4 Richness and diversity Figure S5 Classification of abundant OTUs in real bath toy biofilms Table S5 Comparison of most abundant OTUs in control bath toy biofilms Figure S6 Fungal community composition in bath toy biofilms Table S6 Conventional plating results for indicator bacteria and groups Table S7 Bioavailability of migrating carbon from control bath toys’ material Water chemistry Method and results (Table S8) Table S9 Settings for Amplification PCR and Index PCR reactions 1 Table S1: Exemplary online blog entries on biofouling inside bath toys Issue - What is the slime? Link Rub-a-dub-dub, https://www.babble.com/baby/whats-in-the-tub/ what’s in the tub? What’s the black stuff http://blogs.babycenter.com/momstories/whats-the-black- in your squeeze toys? stuff-in-your-squeeze-toys/ Friday Find: NBC’s http://www.bebravekeepgoing.com/2010/03/friday-find-nbcs- Today Show segment: today-show-segment-do.html Do bath toys carry germs? Yuck.
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • Marine Bacteria with a Hybrid Engine 15 February 2007
    Marine Bacteria with a Hybrid Engine 15 February 2007 Growth experiments showed that KT71 is heterotrophic and depends on carbon sources like sugars and small peptides. After they obtained and analysed the genome data from the Craig Venter Institute in the USA, the researchers were quite surprised to find all the genes for bacterial photosynthesis. KT71 was unlike other photosynthetic bacteria not pigmented and therefore the big question was: „Is KT71 really mediating photosynthesis?“ Their colleagues at the laboratory of the German Collection of Microorganisms and Cell Cultures (DSMZ) could show that KT71 grows better with light, when Bernhard Fuchs and his culture of Congegribacter nutrients were depleted. The scientists assume that (Source MPI/ D. Todd) KT71 switches from carbon burning to photovoltaic mode, depending on the environmental conditions. During periods of starvation KT71 can also rely on internal storage compounds. Interestingly, in culture What was considered a breakthrough in the KT71 often forms aggregates and prefers low automobile industry almost five years ago is in fact oxygen concentrations for growth. a million year old success story of nature - the ability to use a mix of different energy sources. Genetic fingerprints from a novel group of bacteriochlorophyll a containing Some organisms like plants and green algae Gammaproteobacteria were found five years ago. depend on light and carbon dioxide, while others Now it is clear that Congregibacter litoralis KT71 is like animals and fungi need complex nutrition the first member of this group of photoheterotrophic (proteins and carbohydrates). And some even may marine bacteria which can be cultivated in the use a mix of energy.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]