ORIGINAL RESEARCH published: 21 December 2018 doi: 10.3389/fmicb.2018.03206 Novel Insights Into Bacterial Dimethylsulfoniopropionate Catabolism in the East China Sea Jingli Liu 1,2†, Ji Liu 1,2†, Sheng-Hui Zhang 3, Jinchang Liang 1, Heyu Lin 1, Delei Song 1, Gui-Peng Yang 3,4, Jonathan D. Todd 2* and Xiao-Hua Zhang 1,4* 1 College of Marine Life Sciences, Ocean University of China, Qingdao, China, 2 School of Biological Sciences, University of East Anglia, Norwich, United Kingdom, 3 College of Chemistry and Chemical Engineering, Ocean University of China, Edited by: Qingdao, China, 4 Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Alison Buchan, Science and Technology, Qingdao, China University of Tennessee, Knoxville, United States Reviewed by: The compatible solute dimethylsulfoniopropionate (DMSP), made by many marine Jozef I. Nissimov, organisms, is one of Earth’s most abundant organosulfur molecules. Many marine Rutgers State University of New bacteria import DMSP and can degrade it as a source of carbon and/or sulfur via Jersey, United States Naomi Levine, DMSP cleavage or DMSP demethylation pathways, which can generate the climate University of Southern California, active gases dimethyl sulfide (DMS) or methanthiol (MeSH), respectively. Here we used United States culture-dependent and -independent methods to study bacteria catabolizing DMSP in *Correspondence: Jonathan D. Todd the East China Sea (ECS). Of bacterial isolates, 42.11% showed DMSP-dependent
[email protected] DMS (Ddd+) activity, and 12.28% produced detectable levels of MeSH. Interestingly, Xiao-Hua Zhang although most Ddd+ isolates were Alphaproteobacteria (mainly Roseobacters), many
[email protected] gram-positive Actinobacteria were also shown to cleave DMSP producing DMS.