The Influence of Bacteria on the Adaptation to Changing Environments in Ectocarpus : a Systems Biology Approach Hetty Kleinjan

Total Page:16

File Type:pdf, Size:1020Kb

The Influence of Bacteria on the Adaptation to Changing Environments in Ectocarpus : a Systems Biology Approach Hetty Kleinjan The influence of bacteria on the adaptation to changing environments in Ectocarpus : a systems biology approach Hetty Kleinjan To cite this version: Hetty Kleinjan. The influence of bacteria on the adaptation to changing environments in Ectocar- pus : a systems biology approach. Molecular biology. Sorbonne Université, 2018. English. NNT : 2018SORUS267. tel-02868508 HAL Id: tel-02868508 https://tel.archives-ouvertes.fr/tel-02868508 Submitted on 15 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Université ED 227 - Sciences de la Nature et de l'Homme : écologie & évolution Laboratoire de Biologie Intégrative des Modèles Marins Equipe Biologie des algues et interactions avec l'environnement The influence of bacteria on the adaptation to changing environments in Ectocarpus: a systems biology approach Par Hetty KleinJan Thèse de doctorat en Biologie Marine Dirigée par Simon Dittami et Catherine Boyen Présentée et soutenue publiquement le 24 septembre 2018 Devant un jury composé de : Pr. Ute Hentschel Humeida, Rapportrice GEOMAR, Kiel, Germany Dr. Suhelen Egan, Rapportrice UNSW Sydney, Australia Dr. Fabrice Not, Examinateur Sorbonne Université – CNRS Dr. David Green, Examinateur SAMS, Oban, UK Dr. Aschwin Engelen, Examinateur CCMAR, Faro, Portugal Dr. Catherine Boyen, Directrice de thèse Sorbonne Université – CNRS Dr. Simon Dittami, Co-directeur de thèse Sorbonne Université – CNRS To my sister, the biggest hero of all time Acknowledgments All good things must come to end and today, although I hardly believe it and I don’t dare to say it out loud yet, is the end of my thesis, or at least the writing of it. I hereby wish to express my gratitude to everyone who has contributed to this work, or to the process of getting here in any other way. First and foremost, I wish to thank my supervisors, Simon and Catherine, for giving me the opportunity to start the PhD, and also for their continued support until this very moment. Special thanks to Simon, for putting faith in me as a person and as a scientist. I could not have wished for anyone more kind, more motivating, or more efficient in proofreading ;-) I would like to thank the members of my thesis committee, Thomas Wichard, Christian Jeanthon, and Christophe Destombe, for their valuable input and scientific guidance throughout the three years. Also a pre-thank you (if you can say that) for the members of my jury, Fabrice Not, Suhelen Egan, Ute Hentschel Humeida, David Green, and Aschwin Engelen. I hope you enjoy reading the manuscript! A great thanks to all collaborators in this project. Thomas Wichard, who let me work in his laboratory to do metabolomics. Christian Jeanthon, who helped during the cultivation experiments in the first year of my thesis, and introduced me to the challenges of marine microbiology. Thanks to Eileen Bresnan and Kevin MacKenzie for their hospitality and warm welcome when I arrived in Aberdeen earlier this year. I will never forget how excited we all were about the fusilli-shaped bacteria! Thanks to Anne Siegel, Clémence Frioux and Enora Fremy for their computational expertise and know-how on metabolic networks especially towards the end of the thesis (sorry for letting you wait for the data!). Thanks to everyone at the ABiMs platform for letting me use the server and for solving all technical issues related to that. Special thanks to Erwan Corre for his input regarding the transcriptomic/metagenomic work and for making this project work from an informatic point of view. I want to thank Laurence Dartevelle for her advice on how to best culture Ectocarpus with and without bacteria and for her help in the laboratory. It is very much appreciated! A special thanks to Bertille Burgunter-Delamare for her enthusiasm and passion for her master project, which was truly amazing. The work you accomplished is very impressive and I’m very convinced you’ll do great in your PhD! I want to thank everyone in the ALFF consortium, and all supervisors, for putting together such a nice group of PhD students :-) I am very grateful to have met so many new people, from so many different places. The first post-PhD student meeting is already arranged, and I am convinced we will keep meeting each other, be it in an academic setting or just for fun (hopefully the latter of course). In particular, I want to thank Gianmaria Califano for always seeing the bright side of things (I truly need that!), and also for helping me with the analysis of the metabolite data. Finally, I want to thank my friends who helped me take my mind off the thesis from time to time. Miriam, who has been a great friend since the very first moment we met in Bonn and was always there when I needed someone to talk to. Svenja, Martina, Margot, and Zujaila for making me laugh all the time :-). Nick and Jaro for playing soccer and games and for always being in for fun. Nick also for making me appreciate napping time!! Yao for sharing food and thoughts with me in the office. Simon B. for always being friendly in the morning and teaching me some very handy Unix tricks. Josselin, for just being there :D. Djoyce, who helped me realize that the even the tiniest steps will make you move forward. Martine, who made me apply to this project three years ago. Wiebren, for following me on this journey and for sticking around until the end. Merci! Bedankt! Thank you! Table of contents ACKNOWLEDGMENTS ...................................................................................................................................... 3 TABLE OF CONTENTS ........................................................................................................................................ 5 GLOSSARY ........................................................................................................................................................ 7 GENERAL INTRODUCTION .............................................................................................................................. 10 HOLOBIONTS IN MULTICELLULAR EUKARYOTES - CHALLENGES & KEY QUESTIONS ................................................................ 10 HOLOBIONTS IN TERRESTRIAL MODELS ....................................................................................................................... 12 HOLOBIONTS IN BROWN MACROALGAE - A UNIQUE GROUP OF MULTICELLULAR EUKARYOTES ................................................ 13 FACTORS THAT SHAPE THE ALGAL HOLOBIONT ............................................................................................................. 16 MACROALGAL HOLOBIONTS IN A CHANGING ENVIRONMENT ........................................................................................... 23 THESIS SUBJECT: THE RESPONSE OF ECTOCARPUS HOLOBIONTS TO CHANGING SALINITY ....................................................... 24 CHAPTER 1. EXPLORING THE CULTIVABLE ECTOCARPUS MICROBIOME .......................................................... 28 ABSTRACT ............................................................................................................................................................ 29 INTRODUCTION ..................................................................................................................................................... 30 MATERIAL AND METHODS ....................................................................................................................................... 31 RESULTS .............................................................................................................................................................. 38 DISCUSSION ......................................................................................................................................................... 44 CONFLICT OF INTEREST ........................................................................................................................................... 50 AUTHOR CONTRIBUTIONS ....................................................................................................................................... 50 FUNDING ............................................................................................................................................................. 50 ACKNOWLEDGMENTS ............................................................................................................................................. 50 CHAPTER 2. CULTIVABLE BACTERIA FROM THE ECTOCARPUS SURFACE – APPLICATIONS ............................... 52 INTRODUCTION ..................................................................................................................................................... 52 I. THE IMPACT OF CULTIVABLE BACTERIAL SYMBIONTS ON THE FRESHWATER RESPONSE IN ECTOCARPUS SUBULATUS FRESHWATER STRAIN .............................................................................................................................................. 54 II. SPECIFICITY OF CROSS-LINEAGE CROSS-TALK: DO ECTOCARPUS-DERIVED BACTERIA INTERACT WITH
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • A Polysaccharide-Degrading Marine Bacterium Flammeovirga Sp. MY04 and Its Extracellular Agarase System
    中国科技论文在线 http://www.paper.edu.cn J. Ocean Univ. China (Oceanic and Coastal Sea Research) DOI 10.1007/s11802-012-1929-3 ISSN 1672-5182, 2012 11 (3): 375-382 http://www.ouc.edu.cn/xbywb/ E-mail:[email protected] A Polysaccharide-Degrading Marine Bacterium Flammeovirga sp. MY04 and Its Extracellular Agarase System HAN Wenjun1), 2), 3), GU Jingyan1), 3), YAN Qiujie2), LI Jungang2), WU Zhihong3), *, GU Qianqun1), *, and LI Yuezhong3) 1) Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R . C hi n a 2) School of Life Science and Biotechnology, Mianyang Normal University, Mianyang 621000, P. R. China 3) State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, P. R. China (Received February 2, 2012; revised April 8, 2012; accepted May 29, 2012) © Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2012 Abstract Bacteria of the genus Flammeovirga can digest complex polysaccharides (CPs), but no details have been reported re- garding the CP depolymerases of these bacteria. MY04, an agarolytic marine bacterium isolated from coastal sediments, has been identified as a new member of the genus Flammeovirga. The MY04 strain is able to utilize multiple CPs as a sole carbon source and -1 -1 grows well on agarose, mannan, or xylan. This strain produces high concentrations of extracellular proteins (490 mg L ± 18.2 mg L liquid culture) that exhibit efficient and extensive degradation activities on various polysaccharides, especially agarose. These pro- -1 -1 teins have an activity of 310 U mg ± 9.6 U mg proteins.
    [Show full text]
  • The Hydrocarbondegrading Marine Bacterium Cobetia Sp. Strain
    bs_bs_banner The hydrocarbon-degrading marine bacterium Cobetia sp. strain MM1IDA2H-1 produces a biosurfactant that interferes with quorum sensing of fish pathogens by signal hijacking C. Ibacache-Quiroga,1 J. Ojeda,1 G. quorum sensing signals. Using biosensors for Espinoza-Vergara,1 P. Olivero,3 M. Cuellar2 and quorum sensing based on Chromobacterium viol- M. A. Dinamarca1* aceum and Vibrio anguillarum, we showed that when 1Laboratorio de Biotecnología Microbiana and the purified biosurfactant was mixed with N-acyl 2Departamento de Ciencias Químicas y Recursos homoserine lactones produced by A. salmonicida, Naturales, Facultad de Farmacia, Universidad de quorum sensing was inhibited, although bacterial Valparaíso, Gran Bretaña 1093, 2360102, Valparaíso, growth was not affected. In addition, the transcrip- Chile. tional activities of A. salmonicida virulence genes 3Centro de Investigaciones Biomédicas, Facultad de that are controlled by quorum sensing were Medicina, Universidad de Valparaíso, Hontaneda 2653, repressed by both the purified biosurfactant and the 2341369, Valparaíso, Chile. growth in the presence of Cobetia sp. MM1IDA2H-1. We propose that the biosurfactant, or the lipid struc- tures interact with the N-acyl homoserine lactones, Summary inhibiting their function. This could be used as a strat- Biosurfactants are produced by hydrocarbon- egy to interfere with the quorum sensing systems of degrading marine bacteria in response to the pres- bacterial fish pathogens, which represents an attrac- ence of water-insoluble hydrocarbons. This is tive alternative to classical antimicrobial therapies in believed to facilitate the uptake of hydrocarbons fish aquaculture. by bacteria. However, these diffusible amphiphilic surface-active molecules are involved in several Introduction other biological functions such as microbial compe- tition and intra- or inter-species communication.
    [Show full text]
  • Pinpointing the Origin of Mitochondria Zhang Wang Hanchuan, Hubei
    Pinpointing the origin of mitochondria Zhang Wang Hanchuan, Hubei, China B.S., Wuhan University, 2009 A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Biology University of Virginia August, 2014 ii Abstract The explosive growth of genomic data presents both opportunities and challenges for the study of evolutionary biology, ecology and diversity. Genome-scale phylogenetic analysis (known as phylogenomics) has demonstrated its power in resolving the evolutionary tree of life and deciphering various fascinating questions regarding the origin and evolution of earth’s contemporary organisms. One of the most fundamental events in the earth’s history of life regards the origin of mitochondria. Overwhelming evidence supports the endosymbiotic theory that mitochondria originated once from a free-living α-proteobacterium that was engulfed by its host probably 2 billion years ago. However, its exact position in the tree of life remains highly debated. In particular, systematic errors including sparse taxonomic sampling, high evolutionary rate and sequence composition bias have long plagued the mitochondrial phylogenetics. This dissertation employs an integrated phylogenomic approach toward pinpointing the origin of mitochondria. By strategically sequencing 18 phylogenetically novel α-proteobacterial genomes, using a set of “well-behaved” phylogenetic markers with lower evolutionary rates and less composition bias, and applying more realistic phylogenetic models that better account for the systematic errors, the presented phylogenomic study for the first time placed the mitochondria unequivocally within the Rickettsiales order of α- proteobacteria, as a sister clade to the Rickettsiaceae and Anaplasmataceae families, all subtended by the Holosporaceae family.
    [Show full text]
  • {Replace with the Title of Your Dissertation}
    The Mechanism of Foaming in Deep-Pit Swine Manure Storage A Dissertation SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Mi Yan IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Adviser: Bo Hu October, 2016 © Mi Yan 2016 i Acknowledgements There are many people that contribute to this PhD thesis with their work, advice or encouragement. First of all, I would like to thank my advisor Dr. Bo Hu, who gave me the opportunity and long term support to write this dissertation. He gave me the freedom to work on my idea and plans, and gave great suggestions when I need support. There are many difficult time during this research, but there is always great support provided from him, from technical discussion to mental encouragement. I am also grateful to my committee members Dr. Larry Jacobson, Dr. Steve Severtson and Dr. Gerald Shurson. They took time from their tight schedule to make critical remarks and helpful suggestions, as well as their confidence on me and my work. Thanks are also dedicated to several experts, particularly to Dr. Chuck Clanton and David Schmidt for their valuable inputs and inspiring discussions. Besides valuable discussions, Dr. Brian Hetchler and Dr. Neslihan Akdeniz provide a great amount of valuable samples for experiments. I am also grateful to Dr. Michael Sadowsky that provided great help in microbial sequencing analysis, to Dr. LeeAnn Higgins and Dr. Susan Viper that provided great help in proteomic analysis. My colleagues at Bioproducts and Biosystems Engineering played an important role towards the successful completion of this dissertation.
    [Show full text]
  • The Subway Microbiome: Seasonal Dynamics and Direct Comparison Of
    Gohli et al. Microbiome (2019) 7:160 https://doi.org/10.1186/s40168-019-0772-9 RESEARCH Open Access The subway microbiome: seasonal dynamics and direct comparison of air and surface bacterial communities Jostein Gohli1* , Kari Oline Bøifot1,2, Line Victoria Moen1, Paulina Pastuszek3, Gunnar Skogan1, Klas I. Udekwu4 and Marius Dybwad1,2 Abstract Background: Mass transit environments, such as subways, are uniquely important for transmission of microbes among humans and built environments, and for their ability to spread pathogens and impact large numbers of people. In order to gain a deeper understanding of microbiome dynamics in subways, we must identify variables that affect microbial composition and those microorganisms that are unique to specific habitats. Methods: We performed high-throughput 16S rRNA gene sequencing of air and surface samples from 16 subway stations in Oslo, Norway, across all four seasons. Distinguishing features across seasons and between air and surface were identified using random forest classification analyses, followed by in-depth diversity analyses. Results: There were significant differences between the air and surface bacterial communities, and across seasons. Highly abundant groups were generally ubiquitous; however, a large number of taxa with low prevalence and abundance were exclusively present in only one sample matrix or one season. Among the highly abundant families and genera, we found that some were uniquely so in air samples. In surface samples, all highly abundant groups were also well represented in air samples. This is congruent with a pattern observed for the entire dataset, namely that air samples had significantly higher within-sample diversity. We also observed a seasonal pattern: diversity was higher during spring and summer.
    [Show full text]
  • Reclassification of Agrobacterium Ferrugineum LMG 128 As Hoeflea
    International Journal of Systematic and Evolutionary Microbiology (2005), 55, 1163–1166 DOI 10.1099/ijs.0.63291-0 Reclassification of Agrobacterium ferrugineum LMG 128 as Hoeflea marina gen. nov., sp. nov. Alvaro Peix,1 Rau´l Rivas,2 Martha E. Trujillo,2 Marc Vancanneyt,3 Encarna Vela´zquez2 and Anne Willems3 Correspondence 1Departamento de Produccio´n Vegetal, Instituto de Recursos Naturales y Agrobiologı´a, Encarna Vela´zquez IRNA-CSIC, Spain [email protected] 2Departamento de Microbiologı´a y Gene´tica, Lab. 209, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain 3Laboratory of Microbiology, Dept Biochemistry, Physiology and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium Members of the species Agrobacterium ferrugineum were isolated from marine environments. The type strain of this species (=LMG 22047T=ATCC 25652T) was recently reclassified in the new genus Pseudorhodobacter, in the order ‘Rhodobacterales’ of the class ‘Alphaproteobacteria’. Strain LMG 128 (=ATCC 25654) was also initially classified as belonging to the species Agrobacterium ferrugineum; however, the nearly complete 16S rRNA gene sequence of this strain indicated that it does not belong within the genus Agrobacterium or within the genus Pseudorhodobacter. The closest related organism, with 95?5 % 16S rRNA gene similarity, was Aquamicrobium defluvii from the family ‘Phyllobacteriaceae’ in the order ‘Rhizobiales’. The remaining genera from this order had 16S rRNA gene sequence similarities that were lower than 95?1 % with respect to strain LMG 128. These phylogenetic distances suggested that strain LMG 128 belonged to a different genus. The major fatty acid present in strain LMG 128 was mono-unsaturated straight chain 18 : 1v7c.
    [Show full text]
  • Revised Taxonomy of the Family Rhizobiaceae, and Phylogeny of Mesorhizobia Nodulating Glycyrrhiza Spp
    Division of Microbiology and Biotechnology Department of Food and Environmental Sciences University of Helsinki Finland Revised taxonomy of the family Rhizobiaceae, and phylogeny of mesorhizobia nodulating Glycyrrhiza spp. Seyed Abdollah Mousavi Academic Dissertation To be presented, with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public examination in lecture hall 3, Viikki building B, Latokartanonkaari 7, on the 20th of May 2016, at 12 o’clock noon. Helsinki 2016 Supervisor: Professor Kristina Lindström Department of Environmental Sciences University of Helsinki, Finland Pre-examiners: Professor Jaakko Hyvönen Department of Biosciences University of Helsinki, Finland Associate Professor Chang Fu Tian State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University, China Opponent: Professor J. Peter W. Young Department of Biology University of York, England Cover photo by Kristina Lindström Dissertationes Schola Doctoralis Scientiae Circumiectalis, Alimentariae, Biologicae ISSN 2342-5423 (print) ISSN 2342-5431 (online) ISBN 978-951-51-2111-0 (paperback) ISBN 978-951-51-2112-7 (PDF) Electronic version available at http://ethesis.helsinki.fi/ Unigrafia Helsinki 2016 2 ABSTRACT Studies of the taxonomy of bacteria were initiated in the last quarter of the 19th century when bacteria were classified in six genera placed in four tribes based on their morphological appearance. Since then the taxonomy of bacteria has been revolutionized several times. At present, 30 phyla belong to the domain “Bacteria”, which includes over 9600 species. Unlike many eukaryotes, bacteria lack complex morphological characters and practically phylogenetically informative fossils. It is partly due to these reasons that bacterial taxonomy is complicated.
    [Show full text]
  • Comparative Proteomic Profiling of Newly Acquired, Virulent And
    www.nature.com/scientificreports OPEN Comparative proteomic profling of newly acquired, virulent and attenuated Neoparamoeba perurans proteins associated with amoebic gill disease Kerrie Ní Dhufaigh1*, Eugene Dillon2, Natasha Botwright3, Anita Talbot1, Ian O’Connor1, Eugene MacCarthy1 & Orla Slattery4 The causative agent of amoebic gill disease, Neoparamoeba perurans is reported to lose virulence during prolonged in vitro maintenance. In this study, the impact of prolonged culture on N. perurans virulence and its proteome was investigated. Two isolates, attenuated and virulent, had their virulence assessed in an experimental trial using Atlantic salmon smolts and their bacterial community composition was evaluated by 16S rRNA Illumina MiSeq sequencing. Soluble proteins were isolated from three isolates: a newly acquired, virulent and attenuated N. perurans culture. Proteins were analysed using two-dimensional electrophoresis coupled with liquid chromatography tandem mass spectrometry (LC–MS/MS). The challenge trial using naïve smolts confrmed a loss in virulence in the attenuated N. perurans culture. A greater diversity of bacterial communities was found in the microbiome of the virulent isolate in contrast to a reduction in microbial community richness in the attenuated microbiome. A collated proteome database of N. perurans, Amoebozoa and four bacterial genera resulted in 24 proteins diferentially expressed between the three cultures. The present LC–MS/ MS results indicate protein synthesis, oxidative stress and immunomodulation are upregulated in a newly acquired N. perurans culture and future studies may exploit these protein identifcations for therapeutic purposes in infected farmed fsh. Neoparamoeba perurans is an ectoparasitic protozoan responsible for the hyperplastic gill infection of marine cultured fnfsh referred to as amoebic gill disease (AGD)1.
    [Show full text]
  • Sequence from B4 Sponge with (A) the First BLAST Hit Asbestopluma Lycopodium and (B) the Sequence of M
    Supplementary Material Figure S1. Alignments of CO1 (PorCOI2fwd/PorCOI2rev) sequence from B4 sponge with (A) the first BLAST hit Asbestopluma lycopodium and (B) the sequence of M. acerata displaying low query cover. 1 Figure S2. Alignment of CO1 (dgLCO1490/dgHCO2198) sequence from B4 sponge with the first BLAST hit (M. acerata). 2 Figure S3. Alignment of CO1 (dgLCO1490/dgHCO2198) sequence from D4 sponge with the first BLAST hit (H. pilosus). 3 Figure S4. Taxonomy Bar Plot, reporting the relative frequencies (in percentage, %) of the bacteria taxons more representative for each of the four sponges under analysis . Sample code: B4= M. (Oxymycale) acerata; D4= H. pilosus, D6= M. sarai, C6= H. (Rhizoniera) dancoi. Each taxon is highlighted by a different color. 4 Figure S5. Krona plot at the seven increasing complexity levels: (a) Regnum, (b) Phylum, (c) Class, (d) Order, (e) Family, (f) Genus and (g) Species. a) 5 b) 6 c) 7 d) 8 e) 9 f) 10 g) 11 Figure S6. Distribution of ASV’s frequencies. 12 Figure S7. Distribution of ASV’s frequencies for each sample (reported as a blue bar). 13 Table S1. BLAST results from B4 sponge (Mycale (Oxymycale) acerata). The primer names, sequence length in base pairs (bp), first hits (highlighted in bold), hits at low significance displaying the correct species (where present), query cover and identity percentages (%) were reported. Sequence Query Identity Primers BLAST results length (bp) cover (%) (%) Mycale macilenta voucher 0CDN7203‐O small subunit 18S A/B 1700 99 98 ribosomal RNA gene, partial sequence Mycale
    [Show full text]
  • M., 2012. Brown Algae from Chaojing, Keelung City, Taiwan. Memoirs Of
    ῒῐΐ ῌ (48), pp. 149ῌ157, 2012 ῕ 3 ῑ 28 ῔ Mem. Natl. Mus. Nat. Sci., Tokyo, (48), pp. 149ῌ157, March28, 2012 Brown Algae from Chaojing, Keelung City, Taiwan Taiju Kitayama1, ῍ and Showe-Mei Lin2 1 Department of Botany, National Museum of Nature and Science, 4ῌ1ῌ1 Amakubo, Tsukuba, Ibaraki 305ῌ0005, Japan 2 Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China ῍ E-mail: [email protected] Abstract. Sixteen species of brown algae (Phaeophyceae) were reported from the shore of Chaojing, Keelung, Taiwan. Among them eight species belong to the Dictyotales and two to the Fucales. Consequently, the seaweed community of Chaojing is considered as typical of subtropical one, while it has also several temperate species together. Spatoglossum asperum, Ralfsia verrucosa, Feldmannia irregularis and Scytosiphon gracilis are new records for Taiwan. Key words: brown algae, Feldmannia irregularis, flora, Keelung, Phaeophyceae, Spatoglossum asperum, Taiwan. brown algae. Introduction Brown algae (Phaeophyceae, Ochrophyta, Materials and Methods kingdom Chromista) are most important bo- tanical components of coastal marine com- The collections of brown algae were carried munities, in terms of productivity and biomass. out at the coast of Chaojing, Keelung City, In Taiwan the marine macro-algal flora has Taiwan (33῍07῎49῏N, 139῍48῎24῏E) on been well investigated and published numerous March 2, March 3, May 25, May 27 in 2010. reports by many algologists since Martens The samples were collected from both inter- (1868) and there had been recorded over 500 tidal zone and subtidal zone by walking and species of marine algae from the coasts and snorkeling.
    [Show full text]
  • 1 Microbial Transformations of Organic Chemicals in Produced Fluid From
    Microbial transformations of organic chemicals in produced fluid from hydraulically fractured natural-gas wells Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Morgan V. Evans Graduate Program in Environmental Science The Ohio State University 2019 Dissertation Committee Professor Paula Mouser, Advisor Professor Gil Bohrer, Co-Advisor Professor Matthew Sullivan, Member Professor Ilham El-Monier, Member Professor Natalie Hull, Member 1 Copyrighted by Morgan Volker Evans 2019 2 Abstract Hydraulic fracturing and horizontal drilling technologies have greatly improved the production of oil and natural-gas from previously inaccessible non-permeable rock formations. Fluids comprised of water, chemicals, and proppant (e.g., sand) are injected at high pressures during hydraulic fracturing, and these fluids mix with formation porewaters and return to the surface with the hydrocarbon resource. Despite the addition of biocides during operations and the brine-level salinities of the formation porewaters, microorganisms have been identified in input, flowback (days to weeks after hydraulic fracturing occurs), and produced fluids (months to years after hydraulic fracturing occurs). Microorganisms in the hydraulically fractured system may have deleterious effects on well infrastructure and hydrocarbon recovery efficiency. The reduction of oxidized sulfur compounds (e.g., sulfate, thiosulfate) to sulfide has been associated with both well corrosion and souring of natural-gas, and proliferation of microorganisms during operations may lead to biomass clogging of the newly created fractures in the shale formation culminating in reduced hydrocarbon recovery. Consequently, it is important to elucidate microbial metabolisms in the hydraulically fractured ecosystem.
    [Show full text]