Peat Swamps at Giral Lignite Field of Barmer Basin, Rajasthan, Western

Total Page:16

File Type:pdf, Size:1020Kb

Peat Swamps at Giral Lignite Field of Barmer Basin, Rajasthan, Western Int J Coal Sci Technol DOI 10.1007/s40789-016-0137-y Peat swamps at Giral lignite field of Barmer basin, Rajasthan, Western India: understanding the evolution through petrological modelling 1 1 1 1 1 2 Prakash K. Singh • P. K. Rajak • M. P. Singh • V. K. Singh • A. S. Naik • Alok K. Singh Received: 25 November 2015 / Revised: 23 January 2016 / Accepted: 23 February 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract The lignite samples collected from Giral lignite field of Barmer basin have been subjected to petrological investigation. The data generated has been discussed to understand the evolution of the paleomires of these lignites. The present study reveals that these low rank C coals are chiefly composed of huminite group macerals, mainly telohuminite and detrohuminite, while liptinite and inertinite group macerals occur in subordinate amounts. Not much variation in the maceral composition from Seam-I to Seam-VIII has been observed. Barmer lignites are characterized by a very high GI ([10) and moderate TPI indicating topogenous mire in the basin which was permanently flooded. The GI and TPI values and the petrography-based facies critical models indicate that these lignites originated mostly under wet forest swamp to clastic marsh having telmatic to limno-telmatic conditions with a moderate rate of subsidence and a very slow fall in ground water table. Further, the GWI and VI values are suggestive of mesotrophic to rheotrophic hydrological conditions having the dominance of herbaceous to marginal aquatic vegetation. There were spells of periodic drowning of peat especially during the formation of Seam-VII. Moderately high concentration of calcium in these lignites along with the presence of framboidal pyrite indicate enhanced sulphate-reducing bacterial activity present in carbonate and sulphate-rich waters in the basin during peat formation. Keywords Peat swamp Á Petrography Á Giral lignite Á Barmer basin Á Western India 1 Introduction There is general agreement on the factors such as the type of peat-forming flora, climate, geomorphologic, and tec- The relation of petrographic elements with the evolution of tonic framework, but the precise role of these factors is still peat swamps has been studied by a number of researchers a subject of interest and further study. In India, most of the (Teichmu¨ller 1950, 1962, 1989; Thompson 1951; Teich- petrographic studies relating to the evolution of peat mu¨ller and Thompson 1958; Hiltmann 1976; Schneider swamps are on Gondwana coals and not much has been 1978, 1980; von der Brelie and Wolf 1981; Diessel done on lignites. Although, some lignite deposits have been 1982, 1986; Hunt et al. 1986; Kalkreuth et al. 1991; Singh investigated by Singh et al. (2010a, b, 2012a, b, c), but such and Singh 1996; Singh et al. 2010a, b, 2012a, b, 2013). studies are lacking with the Rajasthan lignites, especially those of the Barmer basin, the current study area (Fig. 1). Development of Barmer basin is considered as a com- & Prakash K. Singh posite, second-order graben which is indicated by the [email protected] presence of Cretaceous-Paleocene volcanogenic sediments (Sharma 2007). Initially, terrestrial sediments of the Jurassic 1 Coal & Organic Petrology Lab, Centre of Advanced Study in Geology, Banaras Hindu University, to Cretaceous periods were deposited while there was Varanasi 221005, Uttar Pradesh, India deposition of coastal, marine, and shallow water sediments 2 Rajiv Gandhi Institute of Petroleum Technology, during Paleocene to Eocene period (Sharma 2007). It is Rae Bareli 229316, UP, India believed that the fragmentation of Gondwanaland during 123 P. K. Singh et al. Fig. 1 Regional geological map of northern part of Rajasthan showing Barmer Basin (after Roy and Jakhar 2002) Mesozoic caused extensional tectonics in the northwestern lithosphere. This led to the development of rift basins in Indian shield. The extensional tectonics continued and Gujarat and Rajasthan (Sharma 2007). The Cambay-San- resulted into deep fractures in the continental and oceanic chor-Barmer rift formed within the continental lithosphere. 123 Peat swamps at Giral lignite field of Barmer basin, Rajasthan, Western India… Lignite was initially reported in this basin, by Oldham the lignite seams. These lignite seams laterally as well as (1886) who carried out systematic mapping. Subsequently, vertically grade into carbonaceous clay and lignitic clay. various aspects of the area were studied by a number of The occurrence of lignite has been reported from Botiya– workers on (La Touche 1902; Bhola 1946; Barooah 1946; Bharka and Giral area in Barmer basin (Joshi et al. 1990). Siddiquie 1963; Deshmukh and Mishra 1971). Siddiquie The exploratory drilling carried out by Geological Survey and Bahl (1965) initially worked out on the lignite-bearing of India (GSI) in the Botiya–Bharka–Thumbli area indi- Akli Formation (Fig. 2). This Formation has two members, cates that the lignite seams are not persistent in quality as the lowermost is the Thumbli Member and the upper one is well as quantity (Bhattacharya and Dutta 1985). They Akli Bentonite Member (Das Gupta 1974; Sisodia and occur at depths of 6–100, 100–160, and 160–241 m from Singh 2000). The lower member consists of sandstones, the surface and are respectively named zones A, B, and C. lignites, and shales which were deposited in a lagoonal, The lignite seams maintain low dip of 3°–4° and are spread delta-front setting while the upper one comprises of shal- over a 3-km strike length and 1.5 km down dip (Jodha low marine bentonite clays. Ash-grey to dark-brown lig- 2003). The lignite seams are thin and the individual seams nitic clay, lignite, clay, and siltstones are associated with vary in thickness from 0.3 to 7.20 m (Jodha 2003). Fig. 2 Litho column showing various rock units in Barmer Basin along with lignite seam profiles at Giral 123 P. K. Singh et al. Thickness of seams is function of subsidence and peat potential through geological and geophysical tools by Oil accumulation rate (McCabe 1991). Considering the thin and Natural Gas Corporation (ONGC). The Barmer basin lignite seams in the basin, it appears that peat accumulation is connected to the Cambay basin through tectonic could not keep pace with basin subsidence for long time embayment. There are numerous cross-trends within the and the subsidence exceeded peat accumulation rate. The basin graben which occur in the form of transverse and sedimentary sequences of Middle Jurassic to Early Eocene oblique faults, uplifts, and geomorphic lineaments. The were deposited under shallow marine to fluviatile envi- formations have a regional trend of NNE–SSW with 3°– ronment (Jodha 2003). In the eastern and central part of the 4° dip towards SE. Subsurface data indicates the presence Barmer basin there is merging of fluvial sediments of Akli of several intra-basinal normal oblique and cross faults formation with the near shore to shallow inner shelf marine consequently forming horst and graben structure (Jodha sediments. The core samples analysed by GSI have yielded 2003) and disrupting the lignite occurrences. Based on the numerous palynomorphs. Their studies have shown the dominance of calcium carbonate, attapulgite, and xero- presence of Proxaperitites, Spinizonocolpites, and spinose phytic flora recovered from the fullers’ earth, it is sug- grains in high concentration which are comparable with the gested that arid environment commences during early Paleocene–early Eocene sediments of India (Jodha 2003). Eocene (Jodha 2003). Based on the palynotaxa recovered from the Akli succession The general stratigraphic succession of the Barmer basin of Barmer like Dandotiaspora dilate, Lygodiumsporites based on the informations compiled through several sour- lakiensis, Proxapertites cursus, Kielmeyerapollenites eoceni- ces, are furnished in Table 1 while the general geological cus,andPalmidites plicatus,Tripathietal.(2009) assigned a map of the area is shown in Fig. 1. The lithocolumn along late Paleocene (Thanetian to Ypresian) age to the Akli For- with the megascopic seam profile is presented in Fig. 2. mation. They observed relatively high abundance of biode- graded phytoclasts compared to other lithotypes in the lignite seams. 3 Method of study The present work aims to study the vertical variation of petrographic and chemical attributes and based on them Lignite samples were collected from Seam-I to Seam- evolution of the paleomire of these lignites has been VIII from Giral mine of Barmer basin, Rajasthan (Fig. 1) discussed. adopting pillar sampling method as per Schopf (1960). The lignite samples were crushed and reduced in quan- tity through quartering and coning to prepare 31 com- 2 Geological setting posite samples (from 102 number of individual lignite samples) and were analysed for their petrographic and The Barmer basin is a narrow, elongated rift graben chemical composition. The -18 mesh size samples were which trends in north–south direction over a length of used to prepare polished mounts for petrography and 100 km. The eastern and western margin of basin is -70 mesh size samples were used for proximate analy- bounded by faults. Oriented along north–south a number sis. Maceral analysis was performed on a Leitz Ortho- of sub-basins also occur which run parallel to the basin plan-Pol Microscope equipped with Wild Photoautomat edge. The main basin is floored by Malani Igneous MPS-45 in the Coal and Organic Petrology Laboratory, Complex and pre-rift sedimentation of Paleozoic and Centre of Advanced Study in Geology, Banaras Hindu Jurassic. Established delta systems formed during post University. The line-to-line and point-to-point spacing rift period and are represented by the Mataji-Ka-Donger was 0.4 mm and more than 600 counts were taken on and Akli Formations. The Akli Formation comprises of each sample. The method described by Taylor et al. delta plain and lagoonal shales, sandstones and lignites (1998) was followed; huminite macerals were termed and with clay rich bentonite.
Recommended publications
  • Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela
    Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela Open-File Report 2008-1230 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Dirk A. Kempthorne, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Hackley, P.C., Kolak, J.J., 2008, Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela: U.S. Geological Survey Open-File Report 2008-1230, 36 p., http://pubs.usgs.gov/of/2008/1230. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Introduction ........................................................................................................................................................................1 Methods ..............................................................................................................................................................................1
    [Show full text]
  • And Pb-Enriched Coals from Jungar Coalfield, Northwestern China
    minerals Article The Petrography, Mineralogy and Geochemistry of Some Cu- and Pb-Enriched Coals from Jungar Coalfield, Northwestern China Dongna Liu 1,3 ID , Anchao Zhou 1, Fangui Zeng 1,3, Fenghua Zhao 2,3,* and Yu Zou 2 1 College of Minging Engineering, Taiyuan University of Technology, Taiyuan 030024, China; [email protected] (D.L.); [email protected] (A.Z.); [email protected] (F.Z.) 2 College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China; [email protected] 3 Key Laboratory of Coal and Coal Gas Geology of Shanxi Province, Taiyuan 030024, China * Correspondence: [email protected]; Tel.: +86-010-62331878 Received: 24 September 2017; Accepted: 21 December 2017; Published: 27 December 2017 Abstract: The petrological, geochemical, and mineralogical composition of the Carboniferous-Permian coal deposit in the Jungar coalfield of inner Mongolia, Northwestern China, were investigated using optical microscopy and field emission scanning electron microscopy in conjunction with an energy-dispersive X-ray spectrometer (SEM-EDX), as well as X-ray powder diffraction, X-ray fluorescence, and inductively coupled plasma mass spectrometry. The Jungar coal is of high volatile C/B bituminous quality with 0.58% vitrinite reflectance and has a low sulfur content of 0.70% on average. Inertinite (mineral-free basis) generally dominates in coal from the lower part of the Shanxi formation, and vitrinite is the major maceral assemblage in the coal from the Taiyuan formation, which exhibits forms suggesting variation in the sedimentary environment. The Jungar coal is characterized by higher concentrations of copper (Cu) in No.
    [Show full text]
  • Characteristics of Early Cretaceous Wildfires in Peat-Forming Environment, NE China Shuai Wang, Long-Yi Shao*, Zhi-Ming Yan, Ming-Jian Shi and Yun-He Zhang
    Wang et al. Journal of Palaeogeography (2019) 8:17 https://doi.org/10.1186/s42501-019-0035-5 Journal of Palaeogeography ORIGINAL ARTICLE Open Access Characteristics of Early Cretaceous wildfires in peat-forming environment, NE China Shuai Wang, Long-Yi Shao*, Zhi-Ming Yan, Ming-Jian Shi and Yun-He Zhang Abstract Inertinite maceral compositions in coals from the Early Cretaceous Erlian, Hailar, and Sanjiang Basins in NE China are analyzed in order to reveal palaeowildfire events and palaeoclimate variations. Although huminite is the dominant maceral group in the studied basins, the inertinite group, as a byproduct of palaeowildfires, makes up a considerable proportion. Occurrence of inertinite macerals indicates that wildfires were widespread and frequent, and supports the opinion that the Early Cretaceous was a “high-fire” interval. Inertinite contents vary from 0.2% to 85.0%, mostly within the range of 10%–45%, and a model-based calculation suggests that the atmospheric oxygen levels during the Aptian and Albian (Early Cretaceous) were around 24.7% and 25.3% respectively. Frequent fire activity during Early Cretaceous has been previously related to higher atmospheric oxygen concentrations. The inertinite reflectance, ranging from 0.58%Ro to 2.00%Ro, indicates that the palaeowildfire in the Early Cretaceous was dominated by ground fires, partially reaching-surface fires. These results further support that the Cretaceous earliest angiosperms from NE China were growing in elevated O2 conditions compared to the present day. Keywords: Inertinite, Coal, Wildfire, Palaeo-atmospheric oxygen level, Angiosperm, Early Cretaceous, NE China 1 Introduction 2004;Bowmanetal.2009). The minimum oxygen content As a byproduct of peatland evolution under the common that can support combustion in nature is 15% (Belcher influence of geological conditions including palaeoclimate, and McElwain 2008).
    [Show full text]
  • On the Fundamental Difference Between Coal Rank and Coal Type
    International Journal of Coal Geology 118 (2013) 58–87 Contents lists available at ScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo Review article On the fundamental difference between coal rank and coal type Jennifer M.K. O'Keefe a,⁎, Achim Bechtel b,KimonChristanisc, Shifeng Dai d, William A. DiMichele e, Cortland F. Eble f,JoanS.Esterleg, Maria Mastalerz h,AnneL.Raymondi, Bruno V. Valentim j,NicolaJ.Wagnerk, Colin R. Ward l, James C. Hower m a Department of Earth and Space Sciences, Morehead State University, Morehead, KY 40351, USA b Department of Applied Geosciences and Geophysics, Montan Universität, Leoben, Austria c Department of Geology, University of Patras, 265.04 Rio-Patras, Greece d State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China e Department of Paleobiology, Smithsonian Institution, Washington, DC 20013-7012, USA f Kentucky Geological Survey, University of Kentucky, Lexington, KY 40506, USA g School of Earth Sciences, The University of Queensland, QLD 4072, Australia h Indiana Geological Survey, Indiana University, 611 North Walnut Grove, Bloomington, IN 47405-2208, USA i Department of Geology and Geophysics, College Station, TX 77843, USA j Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences, University of Porto and Geology Centre of the University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal k School Chemical & Metallurgical Engineering, University of Witwatersrand, 2050, WITS, South Africa l School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia m University of Kentucky, Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511, USA article info abstract Article history: This article addresses the fundamental difference between coal rank and coal type.
    [Show full text]
  • Maceral Types and Quality of Coal in the Tuli Coalfield: a Case
    applied sciences Article Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of Coal in the Madzaringwe Formation in the Vele Colliery, Limpopo Province, South Africa Elelwani Denge * and Christopher Baiyegunhi Department of Geology and Mining, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa; [email protected] * Correspondence: [email protected] Featured Application: Authors are encouraged to provide a concise description of the specific application or a potential application of the work. This section is not mandatory. Abstract: The Madzaringwe Formation in the Vele colliery is one of the coal-bearing Late Palaeozoic units of the Karoo Supergroup, consisting of shale with thin coal seams and sandstones. Maceral group analysis was conducted on seven representative coal samples collected from three existing boreholes—OV125149, OV125156, and OV125160—in the Vele colliery to determine the coal rank and other intrinsic characteristics of the coal. The petrographic characterization revealed that vitrinite is the dominant maceral group in the coals, representing up to 81–92 vol.% (mmf) of the total sample. Collotellinite is the dominant vitrinite maceral, with a total count varying between 52.4 vol.% (mmf) and 74.9 vol.% (mmf), followed by corpogelinite, collodetrinite, tellinite, and pseudovitrinite with a Citation: Denge, E.; Baiyegunhi, C. count ranging between 0.8 and 19.4 vol.% (mmf), 1.5 and 17.5 vol.% (mmf), 0.8 and 6.5 vol.% (mmf) Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of and 0.3 and 5.9 vol.% (mmf), respectively. The dominance of collotellinite gives a clear indication Coal in the Madzaringwe Formation that the coals are derived from the parenchymatous and woody tissues of roots, stems, and leaves.
    [Show full text]
  • Early Paleogene Wildfires in Peat-Forming Environments at Schöningen, Germany
    Robson, B. E., Collinson, M. E., Riegel, W., Wilde, V., Scott, A. C., & Pancost, R. D. (2015). Early Paleogene wildfires in peat-forming environments at Schöningen, Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 437, 53-62. https://doi.org/10.1016/j.palaeo.2015.07.016 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1016/j.palaeo.2015.07.016 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Elsevier at http://www.sciencedirect.com/science/article/pii/S0031018215003764. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Palaeogeography, Palaeoclimatology, Palaeoecology 437 (2015) 53–62 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Early Paleogene wildfires in peat-forming environments at Schöningen, Germany Brittany E. Robson a,⁎, Margaret E. Collinson a, Walter Riegel b,VolkerWildec, Andrew C. Scott a, Richard D. Pancost d a Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK b Geowissenschaftliches
    [Show full text]
  • Funginite and Secretinite in Coals Southern
    1672 Goldschmidt Conference Abstracts Funginite and secretinite in coals Classical geothermobarometry versus Southern Pechora basin pseudosections: Practical experiences ;.S. PROTSKO and strange encounters Institute of Geology of Komi Science Center Ural Branch of A. PROYER1* AND E. BRUAND2 Russian Academy of Sciences, Syktyvkar 1 Institute of Earth Sciences, University of Graz, 8010 Graz, ([email protected]) Austria (*correspondence: [email protected]) p.a.: Inst. of Geological Sciences, FU Berlin, 12249, Funginite and Secretinite are one of not enough studied Berlin components inertinite maceral group. Earlier these 2 SEES, University of Portsmouth, Portsmouth PO1 3QL, UK components were called Sclerotinite. These components are rare in the Permian coals and sedimentary rocks (1-3 %). Practical experiences with geothermobarometry of the Content funginite and secretinite a increased to 10 % in classical type and with pseudosections have revealed a number Permian coals of their Nechensky layer. Nechensky low-rank of particularities that might be of interest to both petrologists coal deposits located in southern Pechora basin. The well and geodynamicists trying to transform P-T data into section consists from is thin-is rhythmical alternating layers of geodynamic models. As an example, Fe-Mg geothermometry different types coals, coals argillites and clays. with grt-cpx in an eclogite can err considerably when ferric Secretinite occur in 15 samples, contents <1 - 9.5 %, on iron is not measured but calculated from stoichiometry. Such a the average 3-5 %. The maximum content is revealed in the deviation by >200°C could only be detected after Moessbauer high part of a layer coals argillite, in other samples don’t microspectroscopy on garnet and clinopyroxene.
    [Show full text]
  • Germanium Isotopic Systematics in Ge-Rich Coal from the Lincang Ge Deposit, Yunnan, Southwestern China
    Chemical Geology 286 (2011) 252–265 Contents lists available at ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo Germanium isotopic systematics in Ge-rich coal from the Lincang Ge deposit, Yunnan, Southwestern China Hua-Wen Qi a,⁎, Olivier Rouxel b, Rui-Zhong Hu a, Xian-Wu Bi a, Han-Jie Wen a a State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China b Institut Universitaire Européen de la Mer (IUEM), Université Européene de Bretagne (UEB), IFREMER Dept. Géosciences Marines, Plouzané 29280, France article info abstract Article history: Organic matter plays an important role in the transport and precipitation of germanium (Ge) in coal-hosted Received 2 March 2011 Ge deposits. In this paper, Ge isotopes of coal samples and their combustion products were analyzed in order Received in revised form 14 May 2011 to investigate the potential use of Ge isotopes as tracers of Ge sources and enrichment mechanisms in coal. Accepted 16 May 2011 Germanium isotopic composition of various samples (mainly Ge-rich lignite) from the Lincang Ge deposit, Available online 24 May 2011 Yunnan, Southwest China was analyzed using a continuous flow hydride generation system coupled to a Multi Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS) and the standard-sample bracketing Editor: Dr. J.D. Blum 74 70 74 approach. Variations of Ge/ Ge ratios are expressed as δ Ge values relative to NIST SRM 3120a Ge standard 74 Keywords: solution. Ge-rich lignite samples show large Ge isotopic fractionation (δ Ge values range from −2.59‰ to 74 Germanium 4.72‰), and their δ Ge values negatively correlate with Ge concentrations.
    [Show full text]
  • Maceral Composition and Molecular Markers of Two Condensed Middle Holocene Peat Profiles in N Spain
    Maceral composition and molecular markers of two condensed Middle Holocene peat profiles in N Spain. V. López-Días, J. Urbanczyk, C.G. Blanco, Á.G. Borrego* Instituto Nacional del Carbón (CSIC), c/ Francisco Pintado Fe 26, 33011 Oviedo, Spain *Corresponding Author: Ángeles G. Borrego Instituto Nacional del Carbón, CSIC c/ Francisco Pintado Fe 26, 33011 Oviedo, Spain Phone: +34985119090 Fax: +34985297662 Email: [email protected] López Días et al COGEL 2016 2/36 ABSTRACT This study deals with the palaeohydrological information obtained from lipids composition and vegetal tissue preservation of two peat cores from Asturias, North Spain. The two profiles differ in the type of peatland (raised bog in La Borbolla and blanket bog in Buelna) and the type of organic matter being more bryophytic in the raised bog and more herbaceous in the blanket bog. The peatlands are located close to the coast on impermeable, old flat erosion surfaces which favoured peat accumulation within a distance of 3.5 km from each other. The accumulation rate varied between 0.05 and 0.07 mm/yr and the records extend from around 9000 to 2500 cal. yr BP. The main differences between the two peat sites can be summarized as follows: the raised bog has lower mineral matter content and H/C atomic ratio and higher C/N ratio and extraction yields compared to the blanket bog. It has also a higher Tissue Preservation Index for Huminite macerals and increasing Inertodetrinite Index with depth. Regarding biomarkers, the raised bog has a relatively higher concentration of n- alkane-2-ones compared to the corresponding n-alkane of similar carbon number, higher concentration of medium- vs.
    [Show full text]
  • Geochemistry, Petrology, and Palynology of the Princess No. 3 Coal, Greenup County, Kentucky
    University of Kentucky UKnowledge Center for Applied Energy Research Faculty Publications Center for Applied Energy Research 12-2020 Geochemistry, Petrology, and Palynology of the Princess No. 3 Coal, Greenup County, Kentucky Madison M. Hood University of Kentucky, [email protected] Cortland F. Eble University of Kentucky, [email protected] James C. Hower University of Kentucky, [email protected] Shifeng Dai China University of Mining and Technology, China Follow this and additional works at: https://uknowledge.uky.edu/caer_facpub Part of the Geology Commons, and the Mining Engineering Commons Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Repository Citation Hood, Madison M.; Eble, Cortland F.; Hower, James C.; and Dai, Shifeng, "Geochemistry, Petrology, and Palynology of the Princess No. 3 Coal, Greenup County, Kentucky" (2020). Center for Applied Energy Research Faculty Publications. 34. https://uknowledge.uky.edu/caer_facpub/34 This Article is brought to you for free and open access by the Center for Applied Energy Research at UKnowledge. It has been accepted for inclusion in Center for Applied Energy Research Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Geochemistry, Petrology, and Palynology of the Princess No. 3 Coal, Greenup County, Kentucky Digital Object Identifier (DOI) https://doi.org/10.1007/s40789-020-00298-0 Notes/Citation Information Published in International Journal of Coal Science & Technology, v. 7, issue 4. © The Author(s) 2020 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
    [Show full text]
  • U.S. Geological Survey Open-File Report 2005-1134
    Organic Petrography of Coals from a Coalbed Methane Test Well, Ouachita Parish, Louisiana By Paul C. Hackley and Peter D. Warwick, USGS Reston, VA 20192 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade, product, or firm names is for descriptive purposes only, and does not imply endorsement by the U.S. Geological Survey. Open-File Report 2005-1134 U.S. Department of the Interior U.S. Geological Survey Organic Petrography of Coals from a Coalbed Methane Test Well, Ouachita Parish, Louisiana By Paul C. Hackley and Peter D. Warwick, increases to subbituminous B (Warwick and others, USGS Reston, VA 20192 2004b). Previous studies suggest that the coals were deposited in stacked interdistributary environments on Introduction a progradational fluvial-deltaic plain (Holly Springs In March, 2003, the U.S. Geological Survey, the delta complex) influenced by the positive structural Louisiana Geological Survey, and EnerVest elements of the Monroe Uplift to the northeast and Management Partners Ltd., participated in a the Sabine Uplift to the northwest (fig. 1) (Ayers and Cooperative Research and Development Agreement Lewis, 1985; Kaiser, 1990; Echols, 2001; Scott, 2003). (CRADA) to drill and core the Fairbanks Real Estate The Monroe Uplift, on which the FRE No. 359 test No. 359 (FRE No. 359) coalbed methane test well in well is located, is a broad subsurface dome of Tertiary Ouachita Parish, Louisiana (fig. 1) (Warwick and and Upper Cretaceous strata occurring over northern others, 2004a). This effort was in support of ongoing Louisiana, southern Arkansas, and western U.S.
    [Show full text]
  • The Environmental Effects of Coal Fires
    University of Kentucky UKnowledge Theses and Dissertations--Earth and Environmental Sciences Earth and Environmental Sciences 2015 The Environmental Effects of Coal Fires Trent Garrison University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Garrison, Trent, "The Environmental Effects of Coal Fires" (2015). Theses and Dissertations--Earth and Environmental Sciences. 31. https://uknowledge.uky.edu/ees_etds/31 This Doctoral Dissertation is brought to you for free and open access by the Earth and Environmental Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Earth and Environmental Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.
    [Show full text]