Mineralogy and Geochemistry of Permian Coal Seams of the Sydney Basin, Australia, and the Songzao Coalfield, Sw China

Total Page:16

File Type:pdf, Size:1020Kb

Mineralogy and Geochemistry of Permian Coal Seams of the Sydney Basin, Australia, and the Songzao Coalfield, Sw China MINERALOGY AND GEOCHEMISTRY OF PERMIAN COAL SEAMS OF THE SYDNEY BASIN, AUSTRALIA, AND THE SONGZAO COALFIELD, SW CHINA BY Lei Zhao B.E. (Environmental Engineering) M.Sc. (Environmental Science) Supervisors: Professor Colin Ward Dr Ian Graham Dr David French A dissertation submitted in fulfillment of the requirement for the degree of Doctor of Philosophy In Applied Geology School of Biological, Earth and Environmental Sciences University of New South Wales, Sydney, Australia 2012 ACKNOWLEDGEMENTS I would like to thank the following people and organisations for their assistance during my study and in completing this thesis. I sincerely appreciate my supervisor, Prof. Colin Ward, and co-supervisors, Dr. Ian Graham and Dr. David French, for providing training opportunities, consistent professional advice, and the immeasurable time they committed towards this work. Thank you for your assistance and encouragement throughout this study and the writing-up of the thesis. I would like to gratefully acknowledge the China Scholarship Council for financial support during this study. I am indebted to Dr. Chen-Lin Chou of Illinois State Geological Survey, and Prof. Kuilli Jin, Prof. Shifeng Dai and Prof. Longyi Shao of China University of Mining and Technology (Beijing), for their support and advice on my PhD study. I also would like to thank Dr. Zhongsheng Li of CSIRO for his professional support and technical assistance during the duration of my study. Thanks are expressed to CSIRO Energy Technology, Prof. Shifeng Dai of China University of Mining and Technology (Beijing), and Peter Krempin of the Austar coal mine, for providing samples and other relevant data for conducting the investigation. Thanks are also expressed to Rad Flossman and Joanne Wilde of UNSW, for preparation of the polished sections and thin-sections, to Irene Wainwright, Dorothy Yu, and Yu Wang of the Mark Wainwright Analytical Centre, UNSW, and Owen Farrell of CSIRO, for chemical analyses and technical assistance in the XRD analysis, and to Eugene White of the Electron Microscope Unit, Mark Wainwright Analytical Centre, UNSW, for technical assistance in the SEM analysis. Thanks are also expressed to the technical and administrative staff, especially Michael De Mol and Jonathan Russell, for their assistance with different aspects of the research program. Postgraduate students of School of BEES, UNSW, especially Justin Ugbo, Asep Permana, and Kaydy Pinetown, are thanked for their general advice and encouragement. Students of University of Mining and Technology, Beijing, especially Xibo Wang, Yanfeng Lu and Xingwei Zhu, are thanked for collecting samples from the Songzao underground coal mines. i The comments on the REE minerals from Dr. Vladimir Seredin of Russian Academy of Sciences are highly appreciated. I would also like to thank the reviewers, Dr. Robert Finkelman of U.S. Geological Survey and Prof. David Spears of University of Sheffield, for their careful review and constructive comments on the manuscript. Finally, special thanks are expressed to my parents for their great understanding, patience and encouragement throughout the duration of my study. I am forever indebted to you for your endless love and support. ii ABSTRACT This study is an investigation of the abundance and modes of occurrence of the mineral matter and trace elements in the Permian coal seams of the Sydney Basin, eastern Australia and the Songzao Coalfield, SW China, as well as the relationships between trace elements and mineral matter components within the different parts of the coal seams. A range of analytical techniques have been used to obtain relevant data, including optical microscopy, electron microscopy/microprobe analyses, quantitative X-ray diffraction, geochemical techniques (ICP-MS/OES, CV-AFS, HG-AFS and Eschka method), and Laser Raman spectroscopy analysis. The Greta coal is a high-volatile bituminous coal and typically contains a high proportion of liptinite. The upper section of the Greta seam has several different indicators of marine influence, such as anomalously low vitrinite reflectance and abundant syngenetic pyrite, in the top part of the seam. Pyrite typically comprises 40 to 56% of the mineral assemblage in the coals from the marine-influenced upper section. In contrast, the mineral matter in the lower section contains minor pyrite, and relatively abundant dawsonite, which may have been formed by reactions between earlier-precipitated kaolinite and Na2CO3-or NaHCO3-bearing fluids. The minerals, including most of the clay minerals, pyrite, siderite and quartz, within most of the Greta coal plies are largely of authigenic origin. Authigenic Na-rich I/S may have been syngenetically precipitated, probably after the peat was accumulated, with abundant Na and relatively minor K ions being supplied by the marine water. Coals from the Great Northern and Bulli seams are mainly high volatile A bituminous and medium volatile bituminous in rank, respectively. The mineral fractions of the coals, especially in the middle parts of the seams, are dominated by authigenic kaolinite with a very low abundance of quartz and carbonate minerals. Apart from tonstein bands in the Great Northern seam, authigenic processes therefore appear to be the dominant mechanism of mineral matter formation in both coal seams. Authigenic K-feldspar also occurs in the lower part of the Great Northern seam, with a variety of unusual modes of occurrence. A late syngenetic low-temperature hydrothermal fluid injection process is suggested for formation of this feldspar component. iii Both quartz and non-kaolinite clay minerals are also abundant in the lowermost ply of the coal seams, suggesting that the immediate base of the peat bed in each case was made- up of organic matter admixed with the same detrital sediment as supplied to the basin. K- feldspar, which is present in the coals and non-coal bands in the lower metre of the Great Northern seam section, is not present in the Bulli seam. This may reflect deposition of the Bulli seam at a greater distance from the sediment source, which was located in the New England Fold Belt. The coals from the Songzao Coalfield are mainly high ash, high sulphur semianthracites. XRD analysis indicates that minerals within the Songzao coals are mainly kaolinite, pyrite (or marcasite in some cases), and quartz, with minor proportions of carbonates, feldspar, anatase and sulphate minerals. Some of the illite and I/S is Na-rich in some of Datong coal samples. The I/S in the Songzao coals is mainly an alteration product of the original dispersed volcanic ash, due to the availability of necessary ions (e.g. K, Na, Mg) in the marine-influenced coal swamp. Organically-bound Na, which was expelled from the organic matter with coal rank advance, especially with anthracitization, may have supplied additional Na for the formation of Na-rich illite and I/S. Authigenic I/S also commonly occurs in a Tonghua coal ply that is overlain by a mafic bentonite and underlain by an alkali tonstein. K, Na and Mg for the formation of the I/S were probably derived from the leaching of the adjacent alkali tonstein and mafic bentonite. Although the marine water was also a possible supplier of the alkali elements, authigenic I/S is rare in other coals that occur further away from the altered volcanic layers. REE minerals, which occur as fracture infillings in a Tonghua coal sample, were probably crystallized from ascending hydrothermal fluids carrying high REE concentrations, which may in turn have been associated with contemporaneous volcanic activity. Two groups of REE minerals, probably REE-hydroxides or oxyhydroxides, and REE-carbonates, were tentatively identified. Tonstein bands in the Great Northern seam consist essentially of kaolinite. The occurrence of idiomorphic crystals of K-feldspar, which may represent members of the anorthoclase-sanidine series or a sodic sanidine, indicates an acid to intermediate volcanic ash input. Two tonstein and one K-bentonite bands in the Songzao coal seams have kaolinite and I/S as the dominant clay minerals, respectively. The volcanic ash layers in the peat swamp may have been originally converted to smectite, which was in turn altered to I/S and illite during diagenesis and/or rank advance, assuming that necessary iv ions (e.g. K, Na and Mg) were available from the marine water percolating in the peat swamp. Na-rich I/S may also have been formed in the claystones, with the additional Na probably being released from the organic matter during the coal’s rank advance. The thin tonstein layers were formed, with relevant ions having been largely removed, probably due to a greater leaching efficiency. In the relatively low-ash coals of the Greta, Great Northern, and Bulli seams, the concentrations of most trace elements are lower than that of average worldwide coals. By contrast, the high-ash Songzao coals have relatively high concentrations of most trace elements compared to averages for worldwide coals. In the sulphur-rich Songzao and Greta coals, most of the chalcophile trace elements show either poor or negative correlations with total iron sulphide contents. Only Hg and Se in the Songzao coals and Hg, Tl and As in the Greta coals are positively correlated with iron sulphides, respectively. This may be because the pyrite in the Songzao and Greta coals is mostly of syngenetic origin. Some chalcophile elements are correlated with Al2O3,which most likely indicates a common source. The absence of traditional pyrite-metal associations may reflect wide variations in the concentrations of these elements in individual pyrite/marcasites, or simply poor retention of those elements in the pyrite/marcasite of the relevant coals. In addition to the lithophile elements, chalchophile elements in the Great Northern coals, including Se, Pb and Cu, also appear to be associated with kaolinite, and more likely a common source as well. The geochemistry of the coals has been affected by the adjacent tonstein/bentonite bands.
Recommended publications
  • Rugby World Cup Quiz
    Rugby World Cup Quiz Round 1: Stats 1. The first eight World Cups were won by only four different nations. Which of the champions have only won it once? 2. Which team holds the record for the most points scored in a single match? 3. Bryan Habana and Jonah Lomu share the record for the most tries in the final stages of Rugby World Cup Tournaments. How many tries did they each score? 4. Which team holds the record for the most tries in a single match? 5. In 2011, Welsh youngster George North became the youngest try scorer during Wales vs Namibia. How old was he? 6. There have been eight Rugby World Cups so far, not including 2019. How many have New Zealand won? 7. In 2003, Australia beat Namibia and also broke the record for the largest margin of victory in a World Cup. What was the score? Round 2: History 8. In 1985, eight rugby nations met in Paris to discuss holding a global rugby competition. Which two countries voted against having a Rugby World Cup? 9. Which teams co-hosted the first ever Rugby World Cup in 1987? 10. What is the official name of the Rugby World Cup trophy? 11. In the 1995 England vs New Zealand semi-final, what 6ft 5in, 19 stone problem faced the English defence for the first time? 12. Which song was banned by the Australian Rugby Union for the 2003 World Cup, but ended up being sang rather loudly anyway? 13. In 2003, after South Africa defeated Samoa, the two teams did something which touched people’s hearts around the world.
    [Show full text]
  • Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela
    Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela Open-File Report 2008-1230 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Dirk A. Kempthorne, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Hackley, P.C., Kolak, J.J., 2008, Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela: U.S. Geological Survey Open-File Report 2008-1230, 36 p., http://pubs.usgs.gov/of/2008/1230. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Introduction ........................................................................................................................................................................1 Methods ..............................................................................................................................................................................1
    [Show full text]
  • Update on Lignite Firing
    Update on lignite firing Qian Zhu CCC/201 ISBN 978-92-9029-521-1 June 2012 copyright © IEA Clean Coal Centre Abstract Low rank coals have gained increasing importance in recent years and the long-term future of coal -derived energy supplies will have to include the greater use of low rank coal. However, the relatively low economic value due to the high moisture content and low calorific value, and other undesirable properties of lignite coals limited their use mainly to power generation at, or, close to, the mining site. Another important issue regarding the use of lignite is its environmental impact. A range of advanced combustion technologies has been developed to improve the efficiency of lignite-fired power generation. With modern technologies it is now possible to produce electricity economically from lignite while addressing environmental concerns. This report reviews the advanced technologies used in modern lignite-fired power plants with a focus on pulverised lignite combustion technologies. CFBC combustion processes are also reviewed in brief and they are compared with pulverised lignite combustion technologies. Acronyms and abbreviations CFB circulating fluidised bed CFBC circulating fluidised bed combustion CFD computational fluid dynamics CV calorific value EHE external heat exchanger GRE Great River Energy GWe gigawatts electric kJ/kg kilojoules per kilogram kWh kilowatts hour Gt billion tonnes FBC fluidised bed combustion FBHE fluidised bed heat exchanger FEGT furnace exit gas temperature FGD flue gas desulphurisation GJ
    [Show full text]
  • 278 Subpart B—Coal Preparation Plants and Coal Preparation Plant
    § 434.20 40 CFR Ch. I (7–1–16 Edition) treat coal rine drainage, coal prepara- ration plants and coal preparation tion plant process wastewater, or plant association areas, as indicated, drainage from coal preparation plant including discharges which are associated areas, which remove pollut- pumped, siphoned, or drained from the ants regulated by this part from such coal preparation plant water circuit waters. This includes all pipes, chan- and coal storage, refuse storage, and nels, ponds, basins, tanks and all other ancillary areas related to the cleaning equipment serving such structures. or beneficiation of coal of any rank in- (p) The term ‘‘coal refuse disposal cluding, but not limited to, bitu- pile’’ means any coal refuse deposited minous, lignite, and anthracite. on the earth and intended as perma- nent dispoal or long-term storage § 434.21 [Reserved] (greater than 180 days) of such mate- rial, but does not include coal refuse § 434.22 Effluent limitation guidelines deposited within the active mining representing the degree of effluent area or coal refuse never removed from reduction attainable by the applica- tion of the best practicable control the active mining area. technology currently available (q) The term ‘‘controlled surface (BPT). mine drainage’’ means any surface mine drainage that is pumped or si- (a) Except as provided in 40 CFR phoned from the active mining area. 125.30–125.32, 40 CFR 401.17, and §§ 434.61, (r) The term ‘‘abandoned mine’’ 434.62 and 434.63 of this part, the fol- means a mine where mining operations
    [Show full text]
  • Rugby Wc26 Latest
    The Final Four How the teams match up in the Rugby World Cup’s penultimate stage ENGLAND NEW ZEALAND Today, 3.45pm World ranking: 2nd • World ranking: 1st • Singtel TV Ch141 & StarHub Ch222 Owen Farrell v Beauden Barrett POOL STAGE Full-back Barrett often comes into the line at rst receiver, a move POOL STAGE Tonga 3 35 that makes the most of his speed and superb handling skills. 23 13 South Inside centre Farrell leads from the front with extraordinary physical Africa USA 7 45 commitment in defence, which tends to overshadow his passing 63 0 Canada ability. He is the more reliable goalkicker of the two Argentina 10 39 playmakers, which could prove decisive. 71 9 Namibia Cancelled – draw Q-FINAL S-FINAL Q-FINAL Cancelled – draw France Italy 40 46 16 14 Australia Ireland Maro Itoje v Brodie Retallick Retallick is a considerable force in open play and will be an acid test of Itoje's progress. The Englishman’s athleticism at the set piece is matched by dynamism in open play and an ability to win turnover ball. Previous meetings England v NZ (At RWC: 0-3) 15* Nov 2018 16 Jonny May v George Bridge 21* Nov 2014 24 The two electric wings add a valuable cutting edge. England New Zealand May has a ne record of 27 tries in 50 appearances, 13 June 2014 36* including a double against Australia. Bridge made his Owen Farrell 44 Most 37 Richie Mo'unga 27 June 2014 28* debut only last year but already has nine tries in eight points 15 June 2014 20* Tests, including one in the win over Ireland.
    [Show full text]
  • 1 Revision 2 1 K-Bentonites
    1 Revision 2 2 K-Bentonites: A Review 3 Warren D. Huff 4 Department of Geology, University of Cincinnati, Cincinnati, OH 45221 USA 5 Email: [email protected] 6 Keywords: K-bentonite, bentonite, tephra, explosive volcanism, volcanic ash 7 Abstract 8 Pyroclastic material in the form of altered volcanic ash or tephra has been reported and described 9 from one or more stratigraphic units from the Proterozoic to the Tertiary. This altered tephra, 10 variously called bentonite or K-bentonite or tonstein depending on the degree of alteration and 11 chemical composition, is often linked to large explosive volcanic eruptions that have occurred 12 repeatedly in the past. K-bentonite and bentonite layers are the key components of a larger group of 13 altered tephras that are useful for stratigraphic correlation and for interpreting the geodynamic 14 evolution of our planet. Bentonites generally form by diagenetic or hydrothermal alteration under 15 the influence of fluids with high Mg content and that leach alkali elements. Smectite composition is 16 partly controlled by parent rock chemistry. Studies have shown that K-bentonites often display 17 variations in layer charge and mixed-layer clay ratios and that these correlate with physical 18 properties and diagenetic history. The following is a review of known K-bentonite and related 19 occurrences of altered tephra throughout the time scale from Precambrian to Cenozoic. 20 Introduction 21 Volcanic eruptions are often, although by no means always, associated with a profuse output 22 of fine pyroclastic material, tephra. Tephra is a term used to describe all of the solid material 23 produced from a volcano during an eruption (Thorarinsson, 1944).
    [Show full text]
  • Sector Overview 3 2
    Table of contents Contents Page 1. Sector Overview 3 2. National Mineral Policy 4 3. Summary of Fiscal Regime. 5 4. Major Mineral Resources Of Pakistan and Map 6-13 5. Top Fifteen Minerals of Pakistan 14 1. Aluminium 14 2. Iron Ore 14 3. Copper 14 4. Chromite Ore 15 5. Zinc / Lead 16 6. Coal 17 7. Gypsum / Anhydrite 18 8. Phosphates 19 9. Rock Salt 20 10. Solar Salt 21 11. Magnesite 21 12. Limestone for lime 21 13. Kaolin (China Clay) 22 14. Natural Stones as Building Materials 22 i). Granite 22 ii). Marble and Onyx 22 15. Gemstones 23 6. Trade Statistics 24 i). Exports 24 ii). Imports 25 1 7. Annuexures. i) Characteristics of major Coal fields 26 ii) Coal- Potential opportunities 27 iii) Province wise Break-up of Marble and Granite. 29 iv) Gems and Precious Stones Found in Pakistan 30 v) Gemstones Productive Areas. 31 vi) Potential Projects. 32 vii) Exports Potential of Mineral Products 34 viii) Export Potenial of Mineral and Gemstones 35 ix) Country specific Strategy 36 x) Types of Mineral Titles 37 xi) List of On-going Mineral Sector projects 38 xii) Extraction of Principal Minerals and FDI Inflow in Mining and Quarrying 39 xiii) Investment opportunity in Mineral sector 40 xiv) List of companies in minerals sector 41 2 Sector Overview Pakistan is endowed with significant mineral resources and emerging as a very promising area for exploration of mineral deposits. Based on available information, country’s more than 6, 00, 000 sq.kms of outcrop area demonstrates varied geological potential for metallic / non-metallic mineral deposits.
    [Show full text]
  • Geographic Information System (GIS) Representation of Coal-Bearing Areas in India and Bangladesh
    Geographic Information System (GIS) Representation of Coal-Bearing Areas in India and Bangladesh Compiled by Michael H. Trippi and Susan J. Tewalt Open-File Report 2011–1296 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia 2011 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Trippi, M.H., and Tewalt, S.J., comps., 2011, Geographic information system (GIS) representation of coal-bearing areas in India and Bangladesh: U.S. Geological Survey Open-File Report 2011–1296, 27 p., available only at http:// pubs.usgs.gov/of/2011/1296. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Contents Overview ........................................................................................................................................................................ 1 India ..............................................................................................................................................................................
    [Show full text]
  • Effect of Water Quality on Coal Thermoplasticity Feng Zhang
    Effect of water quality on coal thermoplasticity Feng Zhang A thesis in fulfilment of the requirements for the degree of Master of Philosophy in Engineering School of Minerals and Energy Resources Engineering Faculty of Engineering June 2018 II III Acknowledgements I would like to thank my supervisors Associate Professor Seher Ata and Dr. Ghislain Bournival for their support, guidance and encouragement throughout my research study. I am especially grateful to Seher, who was the supervisor of my undergraduate thesis, for trusting my ability to complete this research degree. Special thanks to Professor Alan Buckley for his help with my understanding on coal surface chemistry and surface analysis. Also, many thanks to Mr. Noel Lambert, for providing valuable information related to this research topic, as well as preparing and transporting the coal and process water samples. I appreciate Dr. Bin Gong, Dr. Yin Yao for their help with the XPS analysis and SEM analysis. I would like to thank Australian Coal Association Research Program (ACARP) for funding this research project and providing the coal and process water samples. Lastly, thanks to my family and friends, especially to my girlfriend, Hongni Yin, for their endless support throughout these two years. IV Abstract Process water reuse is a common practice in Australian coal preparation plants. It is an effective solution to on-site water scarcity and to minimize environmental impacts. This study investigates the effect of inorganic mineral salts in the process water on the thermoplastic properties of metallurgical coals after a short period of mild oxidation. Two different Australian metallurgical coals were treated with the process water received from a coal preparation plant based in Queensland, AU, and exposed to air at ambient temperature.
    [Show full text]
  • Solutions for Energy Crisis in Pakistan I
    Solutions for Energy Crisis in Pakistan i ii Solutions for Energy Crisis in Pakistan Solutions for Energy Crisis in Pakistan iii ACKNOWLEDGEMENTS This volume is based on papers presented at the two-day national conference on the topical and vital theme of Solutions for Energy Crisis in Pakistan held on May 15-16, 2013 at Islamabad Hotel, Islamabad. The Conference was jointly organised by the Islamabad Policy Research Institute (IPRI) and the Hanns Seidel Foundation, (HSF) Islamabad. The organisers of the Conference are especially thankful to Mr. Kristof W. Duwaerts, Country Representative, HSF, Islamabad, for his co-operation and sharing the financial expense of the Conference. For the papers presented in this volume, we are grateful to all participants, as well as the chairpersons of the different sessions, who took time out from their busy schedules to preside over the proceedings. We are also thankful to the scholars, students and professionals who accepted our invitation to participate in the Conference. All members of IPRI staff — Amjad Saleem, Shazad Ahmad, Noreen Hameed, Shazia Khurshid, and Muhammad Iqbal — worked as a team to make this Conference a success. Saira Rehman, Assistant Editor, IPRI did well as stage secretary. All efforts were made to make the Conference as productive and result oriented as possible. However, if there were areas left wanting in some respect the Conference management owns responsibility for that. iv Solutions for Energy Crisis in Pakistan ACRONYMS ADB Asian Development Bank Bcf Billion Cubic Feet BCMA
    [Show full text]
  • The Dirty Secrets of Coal Cleaning: Pollution and Enforcement Options At
    The Dirty Secrets of Coal Cleaning: Pollution and Enforcement Options at Pennsylvania Coal Preparation Plants October 14, 2014 The Environmental Integrity Project • Lisa Widawsky Hallowell Grant funding was made possible through the Foundation for Pennsylvania Watersheds (FPW), and is intended to support Clear Water Conservancy’s work in advancing the quality of our environment. FPW is a nonprofit, grant-making organization supporting water quality needs throughout Pennsylvania. Table of Contents I. EXECUTIVE SUMMARY .................................................................................................... 2 II. OVERVIEW OF COAL PREP PLANT PERMITS ............................................................... 4 III. ANALYSIS: WATER POLLUTION .................................................................................. 5 A. Summary of Laws Related to Releases to Water and Land ............................................. 6 1. The Clean Water Act .................................................................................................... 6 2. Other Laws Requiring Disclosure of Chemicals and Releases .................................... 9 B. Storage of Large Volumes of Chemicals at Coal Preparation Plants ............................. 10 C. Incomplete Permit Applications that Fail to Disclose Metals and other Coal Pollutants in Permit Applications .............................................................................................................. 12 D. No Limits for Metals or Coal Cleaning Pollutants Commonly
    [Show full text]
  • And Pb-Enriched Coals from Jungar Coalfield, Northwestern China
    minerals Article The Petrography, Mineralogy and Geochemistry of Some Cu- and Pb-Enriched Coals from Jungar Coalfield, Northwestern China Dongna Liu 1,3 ID , Anchao Zhou 1, Fangui Zeng 1,3, Fenghua Zhao 2,3,* and Yu Zou 2 1 College of Minging Engineering, Taiyuan University of Technology, Taiyuan 030024, China; [email protected] (D.L.); [email protected] (A.Z.); [email protected] (F.Z.) 2 College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China; [email protected] 3 Key Laboratory of Coal and Coal Gas Geology of Shanxi Province, Taiyuan 030024, China * Correspondence: [email protected]; Tel.: +86-010-62331878 Received: 24 September 2017; Accepted: 21 December 2017; Published: 27 December 2017 Abstract: The petrological, geochemical, and mineralogical composition of the Carboniferous-Permian coal deposit in the Jungar coalfield of inner Mongolia, Northwestern China, were investigated using optical microscopy and field emission scanning electron microscopy in conjunction with an energy-dispersive X-ray spectrometer (SEM-EDX), as well as X-ray powder diffraction, X-ray fluorescence, and inductively coupled plasma mass spectrometry. The Jungar coal is of high volatile C/B bituminous quality with 0.58% vitrinite reflectance and has a low sulfur content of 0.70% on average. Inertinite (mineral-free basis) generally dominates in coal from the lower part of the Shanxi formation, and vitrinite is the major maceral assemblage in the coal from the Taiyuan formation, which exhibits forms suggesting variation in the sedimentary environment. The Jungar coal is characterized by higher concentrations of copper (Cu) in No.
    [Show full text]