Charcoal, Forests, and Earth's Palaeozoic Geochemical Oxygen Cycle

Total Page:16

File Type:pdf, Size:1020Kb

Charcoal, Forests, and Earth's Palaeozoic Geochemical Oxygen Cycle i UNIVERSITY OF SOUTHAMPTON FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES Ocean and Earth Science CHARCOAL, FORESTS, AND EARTH’S PALAEOZOIC GEOCHEMICAL OXYGEN CYCLE by David Kevin Carpenter Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy September 2016 ii iii UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES Ocean and Earth Sciences Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy CHARCOAL, FORESTS AND EARTH’S PALAEOZOIC GEOCHEMICAL OXYGEN CYCLE By David Kevin Carpenter It is widely assumed that the Devonian transition to a forested planet, and subsequent massive expansion of coal-swamp environments during the Carboniferous, significantly increased the production and retention of atmospheric oxygen by fuelling increased organic carbon burial, fundamentally altering the biotic regulation of Earth's long-term oxygen cycle. Modelling approaches to the reconstruction of Phanerozoic pO2 are hampered by the unavoidable complexity of the models, and the difficulty in testing their inherent assumptions. This has led to a wide variety of predictions for atmospheric O2 during this critical 120 million-year interval. The abundance of microscopic charcoal (‘inertinite’) in coals has previously been used as the basis for a direct pO2 reconstruction, on the assumption that fire activity correlates with oxygen supply; however, coals are scarce prior to the Viséan. A high-resolution Devonian–Carboniferous dataset charting inertinite abundance in dispersed organic matter indicates that O2 could not have fallen below c. 16.5% vol. at any stage, and that a previously identified Mid-Devonian ‘charcoal gap’ is most likely an artefact of low sampling density. Thus, models predicting intervals of profound hypoxia cannot be correct, and the hypothesis that the Tournaisian tetrapod diversity crisis (‘Romer’s Gap’) was the result of global hypoxia is not supported. Both coal and DOM charcoal records indicate gently declining fire activity during the Mississippian, followed by a sharp rise in the Mid-Pennsylvanian; this is consistent with the GEOCARBSULF palaeoatmosphere model, and suggests a substantial lag between afforestation and pO2 increase. This is turn suggests it was not the rise of forests per se but the formation of very large wetland basins, which was tectonically driven, that led to enhanced coal formation and a late Palaeozoic oxygen pulse. An interesting corollary of this interpretation is that high pO2 was not the main driver of arthropod gigantism during the Palaeozoic. iv v Table of Contents List of tables...................................................................................................................................... vii List of figures ..................................................................................................................................... ix List of supplementary information ................................................................................................ xvii DECLARATION OF AUTHORSHIP ..................................................................................................... xix Acknowledgements ......................................................................................................................... xxi List of definitions and abbreviations ............................................................................................ xxiii 1. Introduction .................................................................................................................................... 1 1.1: The evolution of atmospheric O2 through geological time ...................................................... 3 1.2: Modelling Phanerozoic O2 ........................................................................................................ 7 1.3: Atmospheric O2 and wildfire activity ..................................................................................... 10 1.4: Is all inertinite charcoal? ........................................................................................................ 18 1.5: Testing the models: establishing a new Silurian–Carboniferous charcoal dataset ............... 28 2. Identifying and quantifying charcoal in the fossil record: materials, methods, and rationale .................................................................................................................................... 30 2.1: Sample preparation and analysis ........................................................................................... 30 2.2: Data analysis .......................................................................................................................... 34 2.3: Relationship between fusinite and total inertinite ................................................................ 45 2.4: Reflectance, fire intensity, and pO2 ....................................................................................... 48 2.5: Maceral oxidation .................................................................................................................. 49 2.6: Taphonomic considerations ................................................................................................... 54 2.7: Summary ................................................................................................................................ 59 3. The Devonian charcoal gap .......................................................................................................... 61 3.1: The Catskill Delta complex in New York and Pennsylvania .................................................... 63 3.2: Sampling localities – Devonian, USA ...................................................................................... 67 3.3: Sampling localities – Silurian, USA ....................................................................................... 109 3.4: The Catskill Delta complex in eastern Canada ..................................................................... 112 3.5: The Devonian in Gondwana: the Malvinokaffric realm ....................................................... 116 3.6: Results .................................................................................................................................. 123 3.7: Discussion ............................................................................................................................. 131 3.8: Summary .............................................................................................................................. 134 4. Atmospheric O2 during Romer’s Gap ......................................................................................... 135 4.1: Sampling localities – Northumberland, Fife, and the Scottish Borders ............................... 139 4.2: Sampling localities – Central East Greenland ...................................................................... 147 vi 4.3: Sampling localities – Spitsbergen ........................................................................................ 150 4.4: Results .................................................................................................................................. 154 4.5: Discussion ............................................................................................................................ 158 4.6: Summary .............................................................................................................................. 160 4.7: Tetrapod World: early evolution and diversification .......................................................... 161 5. Late Palaezoic hyperoxia ........................................................................................................... 176 5.1: Sampling localities ............................................................................................................... 179 5.2: Results .................................................................................................................................. 187 5.3: Discussion ............................................................................................................................ 192 5.4: Summary .............................................................................................................................. 196 6. Conclusions ................................................................................................................................ 197 7. Appendix 1: high-vitrinite samples ........................................................................................... 203 7.1: Tynemouth (DOM) ............................................................................................................... 203 7.2: Tynemouth (coals) ............................................................................................................... 205 7.3: Willie’s Hole (DOM) ............................................................................................................. 207 7.4: Fife (DOM) ........................................................................................................................... 209 7.5: Fife (coals) ............................................................................................................................ 211 7.6: Fife (carbonaceous shales) .................................................................................................. 213 8. Appendix 2 – keys for
Recommended publications
  • Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela
    Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela Open-File Report 2008-1230 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Dirk A. Kempthorne, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Hackley, P.C., Kolak, J.J., 2008, Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela: U.S. Geological Survey Open-File Report 2008-1230, 36 p., http://pubs.usgs.gov/of/2008/1230. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Introduction ........................................................................................................................................................................1 Methods ..............................................................................................................................................................................1
    [Show full text]
  • Update on Lignite Firing
    Update on lignite firing Qian Zhu CCC/201 ISBN 978-92-9029-521-1 June 2012 copyright © IEA Clean Coal Centre Abstract Low rank coals have gained increasing importance in recent years and the long-term future of coal -derived energy supplies will have to include the greater use of low rank coal. However, the relatively low economic value due to the high moisture content and low calorific value, and other undesirable properties of lignite coals limited their use mainly to power generation at, or, close to, the mining site. Another important issue regarding the use of lignite is its environmental impact. A range of advanced combustion technologies has been developed to improve the efficiency of lignite-fired power generation. With modern technologies it is now possible to produce electricity economically from lignite while addressing environmental concerns. This report reviews the advanced technologies used in modern lignite-fired power plants with a focus on pulverised lignite combustion technologies. CFBC combustion processes are also reviewed in brief and they are compared with pulverised lignite combustion technologies. Acronyms and abbreviations CFB circulating fluidised bed CFBC circulating fluidised bed combustion CFD computational fluid dynamics CV calorific value EHE external heat exchanger GRE Great River Energy GWe gigawatts electric kJ/kg kilojoules per kilogram kWh kilowatts hour Gt billion tonnes FBC fluidised bed combustion FBHE fluidised bed heat exchanger FEGT furnace exit gas temperature FGD flue gas desulphurisation GJ
    [Show full text]
  • Potential Capacity for Geologic Carbon Sequestration in the Midcontinent Rift System in Minnesota
    MINNESOTA GEOLOGICAL SURVEY Harvey Thorleifson, Director POTENTIAL CAPACITY FOR GEOLOGIC CARBON SEQUESTRATION IN THE MIDCONTINENT RIFT SYSTEM IN MINNESOTA L. Harvey Thorleifson, Minnesota Geological Survey, Editor A report prepared in fulfillment of the requirements of Minnesota Legislative Session 85 Bill S. F. 2096 Minnesota Geological Survey Open File Report OFR-08-01 University of Minnesota Saint Paul – 2008 Cover figure credit: Iowa Geological Survey 2 POTENTIAL CAPACITY FOR GEOLOGIC CARBON SEQUESTRATION IN THE MIDCONTINENT RIFT SYSTEM IN MINNESOTA 3 This open file is accessible from the web site of the Minnesota Geological Survey (http://www.geo.umn.edu/mgs/) as a PDF file readable with Acrobat Reader. Date of release: 24 January 2008 Recommended citation Thorleifson, L. H., ed., 2008, Potential capacity for geologic carbon sequestration in the Midcontinent Rift System in Minnesota, Minnesota Geological Survey Open File Report OFR-08-01, 138 p Minnesota Geological Survey 2642 University Ave West Saint Paul, Minnesota 55114-1057 Telephone: 612-627-4780 Fax: 612-627-4778 Email address: [email protected] Web site: http://www.geo.umn.edu/mgs/ ©2008 by the Regents of the University of Minnesota All rights reserved The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, color, creed, religion, national origin, sex, age, marital status, disability, public assistance status, veteran status, or sexual orientation. 4 CONTENTS EXECUTIVE SUMMARY L. H. Thorleifson . 7 INTRODUCTION L. H. Thorleifson . 11 CLIMATE CHANGE L. H. Thorleifson . 11 Introduction . 11 Intergovernmental Panel on Climate Change (IPCC) .
    [Show full text]
  • Catskill Trails, 9Th Edition, 2010
    Harriman-Bear Mountain Trails, 13th Edition, 2010 New York-New Jersey Trail Conference Index Feature Map (119BM = Bear Mtn Inset) 1777 E Trail 119, 119BM 1777 W Trail 119, 119BM 1779 Trail 119, 119BM Abrams Road 119 ADK Camp Nawakwa 118 Agony Grind 119 Almost Perpendicular 118 American Canoe Association Camp 118 Anchor Monument 119 Anthony Wayne Recreation Area 119 Anthony Wayne Trail 119 Anthonys Nose 119 Appalachian Trail 119, 119BM Arden 119 Arden Brook 119 Arden House 119 Arden Road 119 Arden Valley Road 119 Arden-Surebridge Trail 118, 119 Augusta Mine 118 Baileytown Cemetery 119 Baileytown Road 119 Baker Camp 118 Bald Mountain 118, 119 Bald Rocks Shelter 118, 119 Barnes Lake 119 Barnes Mine 118 Bear Mountain 119, 119BM Bear Mountain Administration Building 119BM Bear Mountain Bridge 119, 119BM Bear Mountain Bridge Road 119 Bear Mountain Dock 119BM Bear Mountain Historical Museum 119BM Bear Mountain Inn 119BM Bear Mountain Merry-Go-Round 119BM Bear Mountain Picnic Area 119BM Bear Mountain Skating Rink 119BM Bear Mountain State Park 119, 119BM Bear Mountain Swimming Pool 119BM Bear Mountain Trailside Museums and Zoo 119BM Beaver Pond Brook 118 Beaver Pond Campground 118, 119 p1 Beech Trail 118, 119 Beech Trail Cemetery 118, 119 Beechy Bottom Road 119 Bensons Point 119 Big Bog Mountain 119 Big Hill 118 Big Hill Shelter 118 Black Ash Mine 118 Black Ash Mountain 118 Black Ash Swamp 118 Black Mountain 119 Black Rock 118, 119 Black Rock Mountain 118, 119 Blauvelt Mountain 118 Blendale Lake 119 Blue Disc Trail 118 Blythea Lake 119 Bockberg
    [Show full text]
  • The Engineering of the Giant Dragonflies of the Permian: Revised Body Mass, Power, Air Supply, Thermoregulation and the Role of Air Density Alan E
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb185405. doi:10.1242/jeb.185405 COMMENTARY The engineering of the giant dragonflies of the Permian: revised body mass, power, air supply, thermoregulation and the role of air density Alan E. R. Cannell ABSTRACT abdomen as well as spiny and surprisingly robust legs. Illustrations An engineering examination of allometric and analogical data on the of M. monyi and a female Meganeurula selysii (Shear and flight of giant Permian insects (Protodonata, Meganeura or griffinflies) Kukalova-Peck, 1990) also indicate creatures with strong mouth indicates that previous estimates of the body mass of these insects parts, well-developed pincers and strong long thick legs. In both are too low and that the largest of these insects (wingspan of 70 cm or drawings, the abdomen is similar in diameter to the thorax, unlike more) would have had a mass of 100–150 g, several times greater the structure of most modern dragonflies, which have much more – – than previously thought. Here, the power needed to generate lift and slender abdomens. This large size and consequently high mass fly at the speeds typical of modern large dragonflies is examined has attracted attention for over a hundred years as there are no extant together with the metabolic rate and subsequent heat generated by insects of this size and their physiology in terms of power generation the thoracic muscles. This evaluation agrees with previous work and thermoregulation is not understood. This Commentary suggesting that the larger specimens would rapidly overheat in the examines the questions of mass, power generation to fly and high ambient temperatures assumed in the Permian.
    [Show full text]
  • Sector Overview 3 2
    Table of contents Contents Page 1. Sector Overview 3 2. National Mineral Policy 4 3. Summary of Fiscal Regime. 5 4. Major Mineral Resources Of Pakistan and Map 6-13 5. Top Fifteen Minerals of Pakistan 14 1. Aluminium 14 2. Iron Ore 14 3. Copper 14 4. Chromite Ore 15 5. Zinc / Lead 16 6. Coal 17 7. Gypsum / Anhydrite 18 8. Phosphates 19 9. Rock Salt 20 10. Solar Salt 21 11. Magnesite 21 12. Limestone for lime 21 13. Kaolin (China Clay) 22 14. Natural Stones as Building Materials 22 i). Granite 22 ii). Marble and Onyx 22 15. Gemstones 23 6. Trade Statistics 24 i). Exports 24 ii). Imports 25 1 7. Annuexures. i) Characteristics of major Coal fields 26 ii) Coal- Potential opportunities 27 iii) Province wise Break-up of Marble and Granite. 29 iv) Gems and Precious Stones Found in Pakistan 30 v) Gemstones Productive Areas. 31 vi) Potential Projects. 32 vii) Exports Potential of Mineral Products 34 viii) Export Potenial of Mineral and Gemstones 35 ix) Country specific Strategy 36 x) Types of Mineral Titles 37 xi) List of On-going Mineral Sector projects 38 xii) Extraction of Principal Minerals and FDI Inflow in Mining and Quarrying 39 xiii) Investment opportunity in Mineral sector 40 xiv) List of companies in minerals sector 41 2 Sector Overview Pakistan is endowed with significant mineral resources and emerging as a very promising area for exploration of mineral deposits. Based on available information, country’s more than 6, 00, 000 sq.kms of outcrop area demonstrates varied geological potential for metallic / non-metallic mineral deposits.
    [Show full text]
  • Geographic Information System (GIS) Representation of Coal-Bearing Areas in India and Bangladesh
    Geographic Information System (GIS) Representation of Coal-Bearing Areas in India and Bangladesh Compiled by Michael H. Trippi and Susan J. Tewalt Open-File Report 2011–1296 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia 2011 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Trippi, M.H., and Tewalt, S.J., comps., 2011, Geographic information system (GIS) representation of coal-bearing areas in India and Bangladesh: U.S. Geological Survey Open-File Report 2011–1296, 27 p., available only at http:// pubs.usgs.gov/of/2011/1296. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Contents Overview ........................................................................................................................................................................ 1 India ..............................................................................................................................................................................
    [Show full text]
  • Chemical and Physical Structural Studies on Two Inertinite-Rich Lump
    CHEMICAL AND PHYSICAL STRUCTURAL STUDIES ON TWO INERTINITE-RICH LUMP COALS. Nandi Malumbazo A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philoso- phy in the School of Chemical and Metallurgical Engineering at the University of the Witwatersrand. Johannesburg, 2011 DECLARATION I, Nandi Malumbazo, declare that the thesis entitled: “CHEMICAL AND PHYSICAL STRUCTURAL STUDIES ON TWO INER- TINITE-RICH LUMP COALS” is my own work and that all sources I have used or quoted have been indicated and ac- knowledged by means of references. Signature: ……………………………………………………………….. Date:………………………………………………………………………… Page i ABSTRACT ABSTRACT Two Highveld inertinite-rich lump coals were utilized as feed coal samples in order to study their physical, chemical structural and petrographic variations during heat treat- ment in a packed-bed reactor unit combustor. The two feed lump coals were selected as it is claimed that Coal B converts at a slower rate in a commercial coal conversion process when compared to Coal A. The reason for this requires detailed investigation. Chemical structural variations were determined by proximate and coal char CO2 reactiv- ity analysis. Physical structural variations were determined by FTIR, BET adsorption methods, XRD and 13C Solid state NMR analysis. Carbon particle type analysis was con- ducted to determine the petrographic constituents of the reactor generated samples, their maceral associations (microlithotype), and char morphology. This analysis was undertaken with the intention of tracking the carbon conversion and char formation and consumption behaviour of the two coal samples within the reactor. Proximate analysis revealed that Coal A released 10 % more of its volatile matter through the reactor compared to Coal B.
    [Show full text]
  • Faflak 5379 6208 0448F Final Pass.Indd
    Marking Time Romanticism & Evolution EditEd by JoEl FaFlak MARKING TIME Romanticism and Evolution EDITED BY JOEL FAFLAK Marking Time Romanticism and Evolution UNIVERSITY OF TORONTO PRESS Toronto Buffalo London © University of Toronto Press 2017 Toronto Buffalo London www.utorontopress.com ISBN 978-1-4426-4430-4 (cloth) Library and Archives Canada Cataloguing in Publication Marking time : Romanticism and evolution / edited by Joel Faflak. Includes bibliographical references and index. ISBN 978-1-4426-4430-4 (hardcover) 1. Romanticism. 2. Evolution (Biology) in literature. 3. Literature and science. I. Faflak, Joel, 1959–, editor PN603.M37 2017 809'.933609034 C2017-905010-9 CC-BY-NC-ND This work is published subject to a Creative Commons Attribution Non-commercial No Derivative License. For permission to publish commercial versions please contact University of Tor onto Press. This book has been published with the help of a grant from the Federation for the Humanities and Social Sciences, through the Awards to Scholarly Publications Program, using funds provided by the Social Sciences and Humanities Research Council of Canada. University of Toronto Press acknowledges the financial assistance to its publishing program of the Canada Council for the Arts and the Ontario Arts Council, an agency of the Government of Ontario. Funded by the Financé par le Government gouvernement of Canada du Canada Contents List of Illustrations vii Acknowledgments ix Introduction – Marking Time: Romanticism and Evolution 3 joel faflak Part One: Romanticism’s Darwin 1 Plants, Analogy, and Perfection: Loose and Strict Analogies 29 gillian beer 2 Darwin and the Mobility of Species 45 alan bewell 3 Darwin’s Ideas 68 matthew rowlinson Part Two: Romantic Temporalities 4 Deep Time in the South Pacifi c: Scientifi c Voyaging and the Ancient/Primitive Analogy 95 noah heringman 5 Malthus Our Contemporary? Toward a Political Economy of Sex 122 maureen n.
    [Show full text]
  • December 2010 - February 2011 Ably Increased
    Skiing | Running | Hiking | Biking Paddling | Triathlon | Fitness | Travel FREE! DECEMBER 20,000 CIRCULATION CAPITAL REGION • SARATOGA • GLENS FALLS • ADIRONDACKS 2010 bra ele ti C n g ASF HAVING FUN DURING THE CAMP SARATOGA 8K SNOWSHOE RACE AT THE WILTON WILDLIFE PRESERVE AND PARK IN 2009. PHOTO BY BRIAN TEAGUE Visit Us on the Web! AdkSports.com 2011 SNOWSHOE RACING SEASON by Laura Clark CONTENTS Back to the Future n the Stephen Spielberg trilogy, Back to the Future, a played with all the neighborhood children, albeit in boots, Iteenager travels through time and must correct the and I can’t help but wonder if she had seen it snowshoed ARTICLES & FEATURES results of his interference, lest his present become mere when she was a girl. 1 Running & Walking speculation. While for now this remains mere conjecture, Closer to the spirit of the Northeast’s 2011 Dion it is interesting to note how fluid past, present, and future Snowshoe Series at dionsnowshoes.com for runners and 2011 Snowshoe Racing Preview are even in a pre-time travel era. walkers, however, were New England’s early snowshoe 3 Cross-Country Skiing We all know that prehistoric migrants crossed the clubs. Participants would meet once or twice a week with & Snowshoeing Bering Sea on snowshoes, that early French explorers a different member responsible for selecting the route. At raquetted their way to North American fur trade empires, the halfway mark they would stop at a farmhouse or inn Nordic Ski Centers Ready for Season and that Rogers’ Rangers, the original Special Forces unit, for supper and then hike back by a different path, pref- 9 Alpine Skiing & Snowboarding achieved enviable winter snowshoe maneuverability in erably one which included a fun downhill slide.
    [Show full text]
  • An Insight from Density Functional Theory Calculations And
    www.nature.com/scientificreports OPEN Model representations of kerogen structures: An insight from density functional theory calculations and Received: 22 February 2017 Accepted: 26 June 2017 spectroscopic measurements Published online: 1 August 2017 Philippe F. Weck1, Eunja Kim2, Yifeng Wang1, Jessica N. Kruichak1, Melissa M. Mills1, Edward N. Matteo1 & Roland J.-M. Pellenq3,4,5 Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Signifcant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematically compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fngerprints for tracing kerogen evolution. Kerogen is a high-molecular weight, carbonaceous polymer material resulting from the condensation of organic residues in sedimentary rocks; such organic constituent is insoluble either in aqueous solvents or in common organic solvents1.
    [Show full text]
  • Further Paleomagnetic Evidence for Oroclinal Rotation in the Central Folded Appalachians from the Bloomsburg and the Mauch Chunk Formations
    TECTONICS, VOL. 7, NO. 4, PAGES 749-759, AUGUST 1988 FURTHER PALEOMAGNETIC EVIDENCE FOR OROCLINAL ROTATION IN THE CENTRAL FOLDED APPALACHIANS FROM THE BLOOMSBURG AND THE MAUCH CHUNK FORMATIONS Dennis V. Kent Lamont-DohertyGeological Observatory and Departmentof GeologicalSciences ColumbiaUniversity, Palisades, New York Abstract.Renewed paleomagnetic investigations of red fromthe Bloomsburg, Mauch Chunk, and revised results bedsof theUpper Silurian Bloomsburg and the Lower recentlyreported for theUpper Devonian Catskill Formation Carboniferous Mauch Chunk Formations were undertaken togetherindicate 22.8•>+_11.9 oof relativerotation, accounting with theobjective of obtainingevidence regarding the for approximatelyhalf thepresent change in structuraltrend possibilityof oroclinalbending as contributing to thearcuate aroundthe Pennsylvania salient. The oroclinalrotation can be structuraltrend of thePennsylvania salient. These formations regardedas a tightenS.*'.3 o/'a lessarcuate depositional package cropout on both limbs of thesalient and earlier, but less thatdeveloped across a basementreentrant, to achievea definitivepaleomagnetic studies on these units indicate that curvaturecloser to that of the earlierzigzag continental margin earlyacquired magnetizations can be recovered. Oriented outline. sampleswere obtained from nine sites on the southern limb of thesalient and eight sites from the northern limb in the INTRODUCTION Bloomsburg.The naturalremanent magnetizations are multivectorial,dominated by a component(B) with a A testof the oroclinehypothesis
    [Show full text]