Chemical and Physical Structural Studies on Two Inertinite-Rich Lump

Total Page:16

File Type:pdf, Size:1020Kb

Chemical and Physical Structural Studies on Two Inertinite-Rich Lump CHEMICAL AND PHYSICAL STRUCTURAL STUDIES ON TWO INERTINITE-RICH LUMP COALS. Nandi Malumbazo A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philoso- phy in the School of Chemical and Metallurgical Engineering at the University of the Witwatersrand. Johannesburg, 2011 DECLARATION I, Nandi Malumbazo, declare that the thesis entitled: “CHEMICAL AND PHYSICAL STRUCTURAL STUDIES ON TWO INER- TINITE-RICH LUMP COALS” is my own work and that all sources I have used or quoted have been indicated and ac- knowledged by means of references. Signature: ……………………………………………………………….. Date:………………………………………………………………………… Page i ABSTRACT ABSTRACT Two Highveld inertinite-rich lump coals were utilized as feed coal samples in order to study their physical, chemical structural and petrographic variations during heat treat- ment in a packed-bed reactor unit combustor. The two feed lump coals were selected as it is claimed that Coal B converts at a slower rate in a commercial coal conversion process when compared to Coal A. The reason for this requires detailed investigation. Chemical structural variations were determined by proximate and coal char CO2 reactiv- ity analysis. Physical structural variations were determined by FTIR, BET adsorption methods, XRD and 13C Solid state NMR analysis. Carbon particle type analysis was con- ducted to determine the petrographic constituents of the reactor generated samples, their maceral associations (microlithotype), and char morphology. This analysis was undertaken with the intention of tracking the carbon conversion and char formation and consumption behaviour of the two coal samples within the reactor. Proximate analysis revealed that Coal A released 10 % more of its volatile matter through the reactor compared to Coal B. Unburnt carbon in the ash bed zone was ob- served for both coal samples (Coal A and B), and it was attributed to incomplete carbon conversion. Coal char CO2 reactivity analysis showed that indeed Coal A is more reac- tive than Coal B. Page ii ABSTRACT Qualitative FTIR analysis showed that both coals follow similar trends when exposed to high temperatures. Coal structural characterization revealed that Coal A has higher sur- face area when compared to Coal B. XRD analysis revealed that Coal A has less aromatic crystallites and lower Lc values compared to Coal B. It was observed that the coal struc- tural properties of Coal A became more ordered and aligned at lower temperatures (289 0C), whereas Coal B starts at higher temperatures (693 0C). 13C Solid state NMR results showed that Coal B is more aromatic than Coal A implying that it is difficult to gasify/combust Coal B. Petrography analysis showed that Coal A has 34.6 vol % reactive macerals of which 78 % is from liptinite and vitrinite contents. Coal B has 53.6 vol % of reactive macerals of which 49 % was from liptinite and vitrinite, the other 51 % is from reactive semifusinite and inertodetrinite. The 49/51 split between reactive maceral value for Coal B may explain the lower reactivity compared to Coal A. Coal B appeared to produce more inert char particles, ran at higher temperatures in the ash bed because of its aromatic richness than Coal A. This was also attributed to the fact that Coal B has higher inertinite content than Coal A. The allocation of parent coal samples to “reactive” and “inert” macerals gave more in depth results that were able to show a possible rea- son behind reactivity difference occurring during the coal conversion process and sup- port the structural analysis results obtained for these parent coal samples. The reactiv- ity difference of these parent lump coal samples appears to be greatly influenced by the chemical reactions (structure) of these samples more than the kinetic reactions (pres- sure, temperature, reaction rates etc.) of these samples. Page iii DEDICATION I dedicate this work to my son Hlumelo and my husband Mvuselelo Mathebula. Page iv ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS I would like to extend my gratitude to the following: God almighty for guiding me throughout my studies and making my dreams come true. To my ancestors for opening doors and guiding me throughout the difficulties of my varsity life. My ancestors from maternal side: Oonkomo, Oogolela, Oomasikela, Ooyongwane, Oomntungwa, Oomalinga, Oomasikane, Oonkumbuzo. My ancestors from my paternal side: Oonyawuza, Oo- faku, Oompondo, Oondayeli, Uziqelekazi uhlamba ngobubende, OoDakile. To my parents (Mrs. Bukelwa Malumbazo-Ndayi and Mr. Makwedinana Ndayi) for giving me this life and raising me to be the person that I am today. To my siblings Thabiso Malumbazo, Zikhona “titi” Malumbazo and Yanga Ndayi, I was doing this to motivate you guys to continue with your studies no matter what. To my husband Mvuselelo Mathebula for his encouragement and motivation for me to study this far. To my supervisors, Prof. Wagner and Prof. Bunt for your constant guidance, support and pa- tience to develop my skills in coal research and also for believing in me. To Sasol for financial assistance and to the following people working at Coal processing Tech- nologies Prof. J. van Heerden, Dr. D. van Niekerk, Ms. H. Assumption, Mr Ben Ashton, Dr. R. Coet- zer, Mr. S. Duplessis and Dr. B. Hlatshwayo for your constructive support and always avail your- selves when I needed your help. To my close friends and Carbon and Coal Group colleagues for always putting a smile on my face whenever I need it, you know who you are. Page v CONTENTS Contents Chapter 1 ............................................................................................................................................ 1 1. INTRODUCTION.................................................................................................................................. 1 1.1 Background and motivation of the study......................................................................... 1 1.1.1 Coal Structure ............................................................................................................................. 2 1.2 Research Questions .................................................................................................................. 4 1.3 Aim and Objectives of the study .......................................................................................... 5 1.4 Scope of the thesis..................................................................................................................... 6 Chapter 2 ............................................................................................................................................ 7 2. LITERATURE REVIEW ...................................................................................................................... 7 2.1 Origins and Formation of Coal ............................................................................................. 7 2.2 Geological Occurrence and uses of Coal in South Africa ............................................ 9 2.2.1 South African Coalfields ....................................................................................................... 11 2.3 Classification of Coal ............................................................................................................. 13 2.4 Coal Structure .......................................................................................................................... 15 2.4.1 Analytical methods utilized for the Coal Structural Studies. ................................. 17 2.4.1.1 Fourier Transform Infrared Spectroscopy (FTIR) studies for Coals .................. 18 2.4.1.2 X-ray powder diffraction studies for Coals .................................................................. 21 2.4.1.3 13C Solid State Nuclear Magnetic Resonance Spectroscopy studies for Coals. 26 2.4.1.4 BET Adsorption studies for Coals .................................................................................... 29 2.5 Coal petrography .................................................................................................................... 30 2.5.1 Macerals ..................................................................................................................................... 34 Page vi CONTENTS 2.5.1.1 Liptinite ...................................................................................................................................... 35 2.5.1.2 Vitrinite ...................................................................................................................................... 36 2.5.1.3 Inertinite .................................................................................................................................... 36 2.5.2 Microlithotypes ....................................................................................................................... 38 2.5.3 Mineral Matter ......................................................................................................................... 40 2.6 Coal Conversion ...................................................................................................................... 40 Chapter 3 .......................................................................................................................................... 45 3. EXPERIMENTAL METHOD .......................................................................................................... 45 3.1 Origin of the feed coal samples ........................................................................................
Recommended publications
  • Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela
    Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela Open-File Report 2008-1230 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Dirk A. Kempthorne, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Hackley, P.C., Kolak, J.J., 2008, Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela: U.S. Geological Survey Open-File Report 2008-1230, 36 p., http://pubs.usgs.gov/of/2008/1230. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Introduction ........................................................................................................................................................................1 Methods ..............................................................................................................................................................................1
    [Show full text]
  • NUCLEAR TECHNIQUES in the COAL INDUSTRY IAEA, VIENNA, 1995 IAEA-TECDOC-845 ISSN 1011-4289 IAEA© , 1995 Printed by the IAEA in Austria November 1995 FOREWORD
    IAEA-TECDOC-845 Nuclear techniques coalinthe industry Proceedings finala of Research Co-ordination Meeting held in Krakow, Poland, 9-12 May 1994 W INTERNATIONAL ATOMIC ENERGY AGENCY ULr^ïïfî IAEe Th A doe t normallsno y maintain stock f reportso thin si s series. However, microfiche copie f thesso e reportobtainee b n sca d from IN IS Clearinghouse International Atomic Energy Agency Wagramerstrasse 5 0 10 x P.OBo . A-1400 Vienna, Austria Orders should be accompanied by prepayment of Austrian Schillings 100,- in the form of a cheque or in the form of IAEA microfiche service coupons orderee whicb y hdma separately fro INIe mth S Clearinghouse. The originating Section of this publication in the IAEA was: Industrial Application Chemistrd san y Section International Atomic Energy Agency Wagramerstrasse 5 0 10 P.Ox Bo . A-1400 Vienna, Austria NUCLEAR TECHNIQUES IN THE COAL INDUSTRY IAEA, VIENNA, 1995 IAEA-TECDOC-845 ISSN 1011-4289 IAEA© , 1995 Printed by the IAEA in Austria November 1995 FOREWORD e yearlasw fe Th t s have witnessed many important advance e developmenth n i s d an t application nucleaf so r technique coae th l n sindustryi . Nuclear borehole logging techniques basen do measurement of natural radioactivity, X and gamma ray absorption and scattering and neutron interactions are extensively employed for exploration programmes and in situ evaluation of coal. On-line analysis based on a variety of techniques is widely used to optimize coal processing operations increasee th ; d product yiel assuref do d qualit reductiod yan energn ni y usage have resulted in enormous economic benefits to the coal industry.
    [Show full text]
  • Evaluating the Extent to Which Wildfire History Can Be Interpreted From
    International Journal of Coal Geology 89 (2012) 13–25 Contents lists available at ScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo Evaluating the extent to which wildfire history can be interpreted from inertinite distribution in coal pillars: An example from the Late Permian, Kuznetsk Basin, Russia V. Hudspith a,⁎, A.C. Scott a, M.E. Collinson a, N. Pronina b, T. Beeley c a Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK b Geology Department, Moscow State University, Vorobyovy Gory, 119992 Moscow, Russia c Fuels and Combustion, RWE Npower, Windmill Hill Business Park, Whitehill Way, Swindon, Wiltshire SN5 6PB, UK article info abstract Article history: Inertinite (charcoal) distributions in two randomly sampled in situ coal pillars (seams 78 and 88) from the Late Received 15 January 2011 Permian Kuznetsk Basin, Siberia, were analysed using petrographic techniques to determine palaeowildfire Received in revised form 25 July 2011 histories (fire occurrence, type and return interval). In situ coal pillars are judged to be essential for this type of Accepted 29 July 2011 research as they retain information on the original inertinite distribution and maceral clast size ranges which Available online 4 August 2011 can never be obtained from the crushed coals typically used for petrographic analysis. The seams represent an ombrotrophic mire (seam 78) and mire with mire lake (seam 88) depositional Keywords: fi Coal petrography settings but both environments show the same pattern of re history. Charcoal is present in all lithotype Charcoal units in both pillars. Both pillars contain episodic charcoal horizons representing local surface fires within the Mire peat-forming environment, interspersed with frequent regional background fire events (as shown by small Fire return interval scattered inertinite).
    [Show full text]
  • The Coal Mining Heritage of Lafayette
    The Coal Mining Heritage of Lafayette From the late I 880s until the I 930s, Lafayette was a major coal town. Read the history of the coal mining era, examine the location of coal mines within the Lafayette area, and enjoy historic photos of the Waneka Lake Power Plant and the Simpson Mine with the attached Coal Mines of the Lafaveti’e Area brochure. This brochure was created by the Lafayette Historic Preservation board, and it highlights the fascinating Coal Mining Heritage of Lafayette. oft/ic — • Coal Mines Lafayette Area page 1 • Coal Mines of the Lafayette Area - page 2 • Coal Mines f the Lfa)’ette Area — map ____________________________ Historic Preservation Board, City of Lafayette, Colorado The social legacy. The social legacy of mining is equally important to contemporary Lafayette The mines required far more labor than was available locally and quickly attracted experienced miners and laborers from Europe and other parts of the U.S. The result was a community comprised of many ethnic groups, including Welsh, English. Scottish, Irish, central European, Hispanic, Italian, and Swedish workers and their families. Local farmers and ranchers also shared in the coal boom and worked as miners in the winter when coal production was high and agricultural work slow. A sense of this ethnic diversity can be gained by walking through the Lafayette cemetery at Baseline and 111th Street. The variety of family names gives a sense of the many nationalities that have contributed to Lafayette’s history. Although the mining life was hard, families were fun-loving and many social activities centered around schools and churches.
    [Show full text]
  • Coal Characteristics
    CCTR Indiana Center for Coal Technology Research COAL CHARACTERISTICS CCTR Basic Facts File # 8 Brian H. Bowen, Marty W. Irwin The Energy Center at Discovery Park Purdue University CCTR, Potter Center, 500 Central Drive West Lafayette, IN 47907-2022 http://www.purdue.edu/dp/energy/CCTR/ Email: [email protected] October 2008 1 Indiana Center for Coal Technology Research CCTR COAL FORMATION As geological processes apply pressure to peat over time, it is transformed successively into different types of coal Source: Kentucky Geological Survey http://images.google.com/imgres?imgurl=http://www.uky.edu/KGS/coal/images/peatcoal.gif&imgrefurl=http://www.uky.edu/KGS/coal/coalform.htm&h=354&w=579&sz= 20&hl=en&start=5&um=1&tbnid=NavOy9_5HD07pM:&tbnh=82&tbnw=134&prev=/images%3Fq%3Dcoal%2Bphotos%26svnum%3D10%26um%3D1%26hl%3Den%26sa%3DX 2 Indiana Center for Coal Technology Research CCTR COAL ANALYSIS Elemental analysis of coal gives empirical formulas such as: C137H97O9NS for Bituminous Coal C240H90O4NS for high-grade Anthracite Coal is divided into 4 ranks: (1) Anthracite (2) Bituminous (3) Sub-bituminous (4) Lignite Source: http://cc.msnscache.com/cache.aspx?q=4929705428518&lang=en-US&mkt=en-US&FORM=CVRE8 3 Indiana Center for Coal Technology Research CCTR BITUMINOUS COAL Bituminous Coal: Great pressure results in the creation of bituminous, or “soft” coal. This is the type most commonly used for electric power generation in the U.S. It has a higher heating value than either lignite or sub-bituminous, but less than that of anthracite. Bituminous coal
    [Show full text]
  • References for Chapters 7-9, 11
    REFERENCES Adams, L.M., J.P. Capp and D.W. Gillmore. 1972. Coal mine spoil and refuse bank reclamation. In: Third Mineral Waste Utilization Symposium. Chicago, IL. Adriano, D.C., A.L. Page, A.A. Elseewi, A.C. Chang, and I. Straughan. 1980. Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: A review. Journal of Environmental Quality. 9:333-344. Adriano, D.C., T.A. Woodford and T.G. Ciravolo. 1978. Growth and elemental composition of corn and bean seedlings as influenced by soil application of coal ash. Journal of Environmental Quality. 7:416-421. Allison, J.D., D.S. Brown and K.J. Novo-Gradac. 1992. MINTEQA2, Geochemical Assessment Model for Environmental Systems. Version 3, U.S. Environmental Protection Agency. Arndt, H.H. 1971. Geological Map of the Mount Carmel Quadrangle. Columbia, Northumberland and Schuylkill Counties, Pennsylvania. Map GQ-919. Washington, D.C.: U.S. Geological Survey. Ash, S.H. and W.L. Eaton. 1947. Barrier pillars in the anthracite region of Pennsylvania. Am. Inst. Min. and Met. Eng. Tech. Pub. 2289. 20pp. Ash, S.H. 1950a. Buried valley of the Susquehanna River. U.S. Bureau of Mines Bull. 494, 27 pp. Ash, S.H. 1950b. Data on pumping at the Anthracite mines of Pennsylvania. U.S. Bureau of Mines R.I. 4700, 264 pp. Ash, S.H., E.W. Felegy, D.O. Kennedy and P.S. Miller. 1951. Acid-Mine-Drainage Problems. Anthracite Region of Pennsylvania. U.S. Bureau of Mines, Bull. 508, 72 pp. Ash, S.H., B.S. Davies, H.E.
    [Show full text]
  • Spontaneous Combustion of South American Coal
    Graduate Theses, Dissertations, and Problem Reports 2016 Spontaneous Combustion of South American Coal Brunno C. C. Vieira Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Vieira, Brunno C. C., "Spontaneous Combustion of South American Coal" (2016). Graduate Theses, Dissertations, and Problem Reports. 6875. https://researchrepository.wvu.edu/etd/6875 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Spontaneous Combustion of South American Coal Brunno C. C. Vieira Thesis submitted to the Statler College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Mining Engineering Yi Luo, Ph.D., Chair Felicia Peng, Ph.D. Brijes Mishra, Ph.D. Department of Mining Engineering Morgantown, West Virginia 2016 Keywords: Spontaneous Combustion, Coal, South American, Safety, Mine fires, Self- heating temperature Copyright 2016 Brunno C. C. Vieira Abstract Many causes can lead to mine fires and explosions in coal mines but one of the most relevant cause is the spontaneous combustion of coal.
    [Show full text]
  • Characteristics of Early Cretaceous Wildfires in Peat-Forming Environment, NE China Shuai Wang, Long-Yi Shao*, Zhi-Ming Yan, Ming-Jian Shi and Yun-He Zhang
    Wang et al. Journal of Palaeogeography (2019) 8:17 https://doi.org/10.1186/s42501-019-0035-5 Journal of Palaeogeography ORIGINAL ARTICLE Open Access Characteristics of Early Cretaceous wildfires in peat-forming environment, NE China Shuai Wang, Long-Yi Shao*, Zhi-Ming Yan, Ming-Jian Shi and Yun-He Zhang Abstract Inertinite maceral compositions in coals from the Early Cretaceous Erlian, Hailar, and Sanjiang Basins in NE China are analyzed in order to reveal palaeowildfire events and palaeoclimate variations. Although huminite is the dominant maceral group in the studied basins, the inertinite group, as a byproduct of palaeowildfires, makes up a considerable proportion. Occurrence of inertinite macerals indicates that wildfires were widespread and frequent, and supports the opinion that the Early Cretaceous was a “high-fire” interval. Inertinite contents vary from 0.2% to 85.0%, mostly within the range of 10%–45%, and a model-based calculation suggests that the atmospheric oxygen levels during the Aptian and Albian (Early Cretaceous) were around 24.7% and 25.3% respectively. Frequent fire activity during Early Cretaceous has been previously related to higher atmospheric oxygen concentrations. The inertinite reflectance, ranging from 0.58%Ro to 2.00%Ro, indicates that the palaeowildfire in the Early Cretaceous was dominated by ground fires, partially reaching-surface fires. These results further support that the Cretaceous earliest angiosperms from NE China were growing in elevated O2 conditions compared to the present day. Keywords: Inertinite, Coal, Wildfire, Palaeo-atmospheric oxygen level, Angiosperm, Early Cretaceous, NE China 1 Introduction 2004;Bowmanetal.2009). The minimum oxygen content As a byproduct of peatland evolution under the common that can support combustion in nature is 15% (Belcher influence of geological conditions including palaeoclimate, and McElwain 2008).
    [Show full text]
  • Proposal for Development of Dry Coking/Coal
    Development of Coking/Coal Gasification Concept to Use Indiana Coal for the Production of Metallurgical Coke, Liquid Transportation Fuels, Fertilizer, and Bulk Electric Power Phase II Final Report September 30, 2007 Submitted by Robert Kramer, Ph.D. Director, Energy Efficiency and Reliability Center Purdue University Calumet Table of Contents Page Executive Summary ………………………………………………..…………… 3 List of Figures …………………………………………………………………… 5 List of Tables ……………………………………………………………………. 6 Introduction ……………………………………………………………………… 7 Process Description ……………………………………………………………. 11 Importance to Indiana Coal Use ……………………………………………… 36 Relevance to Previous Studies ………………………………………………. 40 Policy, Scientific and Technical Barriers …………………………………….. 49 Conclusion ………………………………………………………………………. 50 Appendix ………………………………………………………………………… 52 2 Executive Summary Coke is a solid carbon fuel and carbon source produced from coal that is used to melt and reduce iron ore. Although coke is an absolutely essential part of iron making and foundry processes, currently there is a shortfall of 5.5 million tons of coke per year in the United States. The shortfall has resulted in increased imports and drastic increases in coke prices and market volatility. For example, coke delivered FOB to a Chinese port in January 2004 was priced at $60/ton, but rose to $420/ton in March 2004 and in September 2004 was $220/ton. This makes clear the likelihood that prices will remain high. This effort that is the subject of this report has considered the suitability of and potential processes for using Indiana coal for the production of coke in a mine mouth or local coking/gasification-liquefaction process. Such processes involve multiple value streams that reduce technical and economic risk. Initial results indicate that it is possible to use blended coal with up to 40% Indiana coal in a non recovery coke oven to produce pyrolysis gas that can be selectively extracted and used for various purposes including the production of electricity and liquid transportation fuels and possibly fertilizer and hydrogen.
    [Show full text]
  • On the Fundamental Difference Between Coal Rank and Coal Type
    International Journal of Coal Geology 118 (2013) 58–87 Contents lists available at ScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo Review article On the fundamental difference between coal rank and coal type Jennifer M.K. O'Keefe a,⁎, Achim Bechtel b,KimonChristanisc, Shifeng Dai d, William A. DiMichele e, Cortland F. Eble f,JoanS.Esterleg, Maria Mastalerz h,AnneL.Raymondi, Bruno V. Valentim j,NicolaJ.Wagnerk, Colin R. Ward l, James C. Hower m a Department of Earth and Space Sciences, Morehead State University, Morehead, KY 40351, USA b Department of Applied Geosciences and Geophysics, Montan Universität, Leoben, Austria c Department of Geology, University of Patras, 265.04 Rio-Patras, Greece d State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China e Department of Paleobiology, Smithsonian Institution, Washington, DC 20013-7012, USA f Kentucky Geological Survey, University of Kentucky, Lexington, KY 40506, USA g School of Earth Sciences, The University of Queensland, QLD 4072, Australia h Indiana Geological Survey, Indiana University, 611 North Walnut Grove, Bloomington, IN 47405-2208, USA i Department of Geology and Geophysics, College Station, TX 77843, USA j Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences, University of Porto and Geology Centre of the University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal k School Chemical & Metallurgical Engineering, University of Witwatersrand, 2050, WITS, South Africa l School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia m University of Kentucky, Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511, USA article info abstract Article history: This article addresses the fundamental difference between coal rank and coal type.
    [Show full text]
  • L'uranium Des Charbons : Quelle Perspective De Réserve ?
    URANIUM FROM COAL ASH: RESOURCE ASSESSMENT AND OUTLOOK ON PRODUCTION CAPACITIES Antoine Monnet, PhD candidate [email protected] CEA, DEN/DANS/I-tésé IAEA URAM, Vienna | 23-27 June 2014 | PAGE 1 CONTEXTUAL BACKGROUND Issues and challenges Milling process flow Key parameters COAL ASH: URANIUM RESOURCE ASSESSMENT RESOURCES AND From coal resources From coal-ash piles PRODUCTION CAPACITIES OUTLOOK ON RESERVES AND PRODUCTION Technical constraints Coal ash compared with other U productions Potential reserves Limits to production capacities CONTEXTUAL BACKGROUND Issues and challenges Milling process flow Key parameters COAL ASH: URANIUM RESOURCE ASSESSMENT RESOURCES AND From coal resources From coal-ash piles PRODUCTION CAPACITIES OUTLOOK ON RESERVES AND PRODUCTION Technical constraints Coal ash compared with other U productions Potential reserves Limits to production capacities MAIN ISSUES AND CHALLENGES Strategic challenges Long-term supply Small production when demand was high (Cold War) Significant supply source in case of new tensions on global supply? China Coal: world 1st producer (~50% of world production) Uranium: increasing imports and demand 2010: needs of 3900 tU vs. 1350tU in domestic production 2030: Demand 12300 to 16200 tU ! Typical mine lead time ~ 10 years Impacts on environmental and health hazards ? IAEA URAM Internation Symposium | 23-27 June 2014 | PAGE 4 KNOWN URANIUM+COAL DEPOSITS UDEPO Uranium Database (IAEA): well documented! Identified “lignite-coal” uranium deposits ~400 ktU (>400ppm) Lignite-coal category: only the most promising deposits UDEPO provides a good tool to follow rising projects in which uranium could be produced from coal either as a primary product or a co-product Prospective approach (long-term): also needs to assess the whole resource (even uranium as a potential by-product and potentially lower grades) UDEPO: not all the reported quantities are in the coal itself.
    [Show full text]
  • Maceral Types and Quality of Coal in the Tuli Coalfield: a Case
    applied sciences Article Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of Coal in the Madzaringwe Formation in the Vele Colliery, Limpopo Province, South Africa Elelwani Denge * and Christopher Baiyegunhi Department of Geology and Mining, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa; [email protected] * Correspondence: [email protected] Featured Application: Authors are encouraged to provide a concise description of the specific application or a potential application of the work. This section is not mandatory. Abstract: The Madzaringwe Formation in the Vele colliery is one of the coal-bearing Late Palaeozoic units of the Karoo Supergroup, consisting of shale with thin coal seams and sandstones. Maceral group analysis was conducted on seven representative coal samples collected from three existing boreholes—OV125149, OV125156, and OV125160—in the Vele colliery to determine the coal rank and other intrinsic characteristics of the coal. The petrographic characterization revealed that vitrinite is the dominant maceral group in the coals, representing up to 81–92 vol.% (mmf) of the total sample. Collotellinite is the dominant vitrinite maceral, with a total count varying between 52.4 vol.% (mmf) and 74.9 vol.% (mmf), followed by corpogelinite, collodetrinite, tellinite, and pseudovitrinite with a Citation: Denge, E.; Baiyegunhi, C. count ranging between 0.8 and 19.4 vol.% (mmf), 1.5 and 17.5 vol.% (mmf), 0.8 and 6.5 vol.% (mmf) Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of and 0.3 and 5.9 vol.% (mmf), respectively. The dominance of collotellinite gives a clear indication Coal in the Madzaringwe Formation that the coals are derived from the parenchymatous and woody tissues of roots, stems, and leaves.
    [Show full text]