Geochemistry, Petrology, and Palynology of the Princess No. 3 Coal, Greenup County, Kentucky

Total Page:16

File Type:pdf, Size:1020Kb

Geochemistry, Petrology, and Palynology of the Princess No. 3 Coal, Greenup County, Kentucky University of Kentucky UKnowledge Center for Applied Energy Research Faculty Publications Center for Applied Energy Research 12-2020 Geochemistry, Petrology, and Palynology of the Princess No. 3 Coal, Greenup County, Kentucky Madison M. Hood University of Kentucky, [email protected] Cortland F. Eble University of Kentucky, [email protected] James C. Hower University of Kentucky, [email protected] Shifeng Dai China University of Mining and Technology, China Follow this and additional works at: https://uknowledge.uky.edu/caer_facpub Part of the Geology Commons, and the Mining Engineering Commons Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Repository Citation Hood, Madison M.; Eble, Cortland F.; Hower, James C.; and Dai, Shifeng, "Geochemistry, Petrology, and Palynology of the Princess No. 3 Coal, Greenup County, Kentucky" (2020). Center for Applied Energy Research Faculty Publications. 34. https://uknowledge.uky.edu/caer_facpub/34 This Article is brought to you for free and open access by the Center for Applied Energy Research at UKnowledge. It has been accepted for inclusion in Center for Applied Energy Research Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Geochemistry, Petrology, and Palynology of the Princess No. 3 Coal, Greenup County, Kentucky Digital Object Identifier (DOI) https://doi.org/10.1007/s40789-020-00298-0 Notes/Citation Information Published in International Journal of Coal Science & Technology, v. 7, issue 4. © The Author(s) 2020 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/. This article is available at UKnowledge: https://uknowledge.uky.edu/caer_facpub/34 Int J Coal Sci Technol https://doi.org/10.1007/s40789-020-00298-0 Geochemistry, petrology, and palynology of the Princess No. 3 coal, Greenup County, Kentucky 1,2,6 3 1,2 4,5 Madison M. Hood • Cortland F. Eble • James C. Hower • Shifeng Dai Received: 21 November 2019 / Revised: 3 January 2020 / Accepted: 7 January 2020 Ó The Author(s) 2020 Abstract The high volatile C bituminous-rank, Bolsovian-age Princess No. 3 coal, a correlative of the heavily-mined Hazard No. 7 coal and the Peach Orchard and Coalburg Lower Split coals, was investigated three sites at a mine in Greenup County, Kentucky. The coal exhibits a ‘‘dulling upwards’’ trend, with decreasing vitrinite and a greater tendency towards dull clarain and bone lithotypes towards the top of the coal. The relatively vitrinite-rich basal lithotype is marked by a dominance of lycopod tree spores. The palynology transitions upwards to a middle parting co-dominated by tree fern and small lycopod spores and an upper bench dominated by tree ferns with contributions from small ferns, cordaites, and calamites. The lithotypes generally have a moderate- to high-S content with a variable ash yield. Sulfur, Fe2O3, and certain siderophile elements are highest near the top of the coal. As observed in other coals, uranium and Ge are enriched at the top and bottom margins of the coal. The rare earth chemistry at the top of the coal has a significantly lighter distribution (higher LREE/HREE) than at the base of the coal. Keywords Maceral Á Rare earth elements Á Lanthanides Á Coal lithology 1 Introduction & James C. Hower [email protected] The Bolsovian age (Westphalian C, Middle Pennsylvanian) Princess No. 3 coalbed in the Argillite 7.50 quadrangle in Madison M. Hood [email protected] Greenup County, Kentucky (Fig. 1), is approximately correlative to the lower split of the Peach Orchard or Cortland F. Eble [email protected] Coalburg and the Hazard No. 7 coals (among other names), which have been mined extensively elsewhere in the Shifeng Dai [email protected] eastern Kentucky and southern West Virginia coalfields (based on compilations of coal names by the Kentucky 1 Center for Applied Energy Research, University of Kentucky, Geological Survey and the Center for Applied Energy 2540 Research Park Drive, Lexington, KY 40511, USA Research in the 1980s). In northeastern Kentucky, the 2 Department of Earth and Environmental Sciences, University Princess No. 3 coal, with an estimated original resource of Kentucky, Lexington, KY 40506, USA estimate of approximately 200 Mt, occurs about 60-m 3 Kentucky Geological Survey, Lexington, KY 40506, USA below the Princess No. 7 coal bed. 4 State Key Laboratory of Coal Resources and Safe Mining, The original investigation of the coal was part of a study China University of Mining and Technology, Beijing, China of methods for the enhanced recovery of coal from aban- 5 School of Resources and Geosciences, China University of doned surface mine highwalls. Highwall mining is a hybrid Mining and Technology, Xuzhou 221116, China of surface and underground mining, mining coal from a 6 Present Address: Department of Geosciences, Baylor surface exposure, such as a contour mining operation, University, Waco, TX 76798, USA 123 M. M. Hood et al. County, the correlative of the Princess No. 3 coal (Esterle et al. 1992), few detailed studies of northeastern Kentucky coals have been undertaken. As such, this investigation is an opportunity to further examine coals in a part of eastern Kentucky that is geologically more akin to the settings found in Ohio, northern West Virginia, and southwestern Pennsylvania than it is to the remainder of eastern Kentucky. 2 Methods The coal was collected in lithotype intervals from two cores and one mine face site at a single mine site (Figs. 2, 3a). The underlying Princess No. 3 leader coalbed was sampled a short distance from the mine face, at a point overlying a drainage pond (Fig. 3b). Petrology was conducted at the University of Kentucky Center for Applied Energy Research (CAER) on epoxy- bound particulate pellets prepared to final 0.05-lm alumina polish. Optical microscopy was conducted on a Leitz Orthoplan microscope with polarized reflected-light, oil- immersion optics at a final magnification of 500 9. Vitri- nite reflectance was done with the incoming light polarized at 45° and the reflected light passing through a 546-nm bandwidth filter on the path to the photomultiplier. The photomultiplier was standardized using glass standards of known reflectance. Maceral identification was based on nomenclature from the International Committee for Coal and Organic Petrology (1998, 2001) and Pickel et al. (2017). For the basic coal analyses performed at the CAER, proximate analysis followed ASTM Standards D3173/ Fig. 1 Stratigraphic section after Sheppard and Ferm (1962). The D3173M-17a (2017), D3175-18 (2018b), and D3174-12 interval thickness is approximately 55 m (2018a); total sulfur and forms of sulfur analyses followed ASTM Standards D4239-18e1 (2018c) and D2492-02 utilizing a continuous miner cutting head. No mining per- (2012), respectively; and the ultimate analysis and heating sonnel are required to go underground. In the case of the value determinations were performed based on ASTM study, the remaining coal was to be mined using a highwall Standards D3176-15 (2015) and D5865/D5865M-19 miner (ADDCAR 2019), with a circulating fluidized bed (2019), respectively. Ash chemistry at the CAER was fly ash grout pumped into the horizontal mine slots, sta- analyzed by X-ray fluorescence on a Phillips PW2404 bilizing the roof so that the pillars could be mined on a X-ray spectrometer following procedures outlined by second pass. Because of logistics, including unsafe mining Hower and Bland (1989). Inductively coupled plasma mass conditions due to the highwall lithology, the experiment spectrometry (X series II ICP-MS), in pulse counting mode was not conducted at this site and the test was conducted (three points per peak), was used to determine trace ele- elsewhere in eastern Kentucky (Robl et al. 1998). ments in the coal samples (samples from 1155 to 117) at In this study, the geochemistry, with an emphasis on the China University of Mining and Technology, Beijing Ge and Rare Earth Element concentrations; organic and (CUMTB). For ICP-MS analysis, samples were digested inorganic petrology; and the palynology of the Princess No. using an UltraClave Microwave High Pressure Reactor 3 coal in a small area of Greenup County, Kentucky, are (Milestone) (after Dai et al. 2011). Arsenic and Se were investigated. With the exceptions of a regional investiga- determined by ICP-MS using collision cell technology tion of whole-channel samples from cores (Hower and (CCT) in order to avoid disturbance of polyatomic ions (Li Wild 1981) and the study of the Mudseam coal in Elliot et al. 2014). Multi-element standards (Inorganic Ventures: 123 Geochemistry, petrology, and palynology of the Princess No. 3 coal, Greenup County, Kentucky Fig. 2 Location of Greenup County (arrow), Kentucky, with inset of sampling locations. Simplified lithologic profiles of the three sampling sites are shown on the local-area map CCS-1, CCS-4, CCS-5, and CCS-6; NIST 2685b and potassium hydroxide, repeatedly washed with distilled Chinese standard reference GBW 07114) were used for water, and concentrated with zinc chloride (specific gravity calibration of trace element concentrations.
Recommended publications
  • Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela
    Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela Open-File Report 2008-1230 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Dirk A. Kempthorne, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Hackley, P.C., Kolak, J.J., 2008, Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela: U.S. Geological Survey Open-File Report 2008-1230, 36 p., http://pubs.usgs.gov/of/2008/1230. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Introduction ........................................................................................................................................................................1 Methods ..............................................................................................................................................................................1
    [Show full text]
  • Update on Lignite Firing
    Update on lignite firing Qian Zhu CCC/201 ISBN 978-92-9029-521-1 June 2012 copyright © IEA Clean Coal Centre Abstract Low rank coals have gained increasing importance in recent years and the long-term future of coal -derived energy supplies will have to include the greater use of low rank coal. However, the relatively low economic value due to the high moisture content and low calorific value, and other undesirable properties of lignite coals limited their use mainly to power generation at, or, close to, the mining site. Another important issue regarding the use of lignite is its environmental impact. A range of advanced combustion technologies has been developed to improve the efficiency of lignite-fired power generation. With modern technologies it is now possible to produce electricity economically from lignite while addressing environmental concerns. This report reviews the advanced technologies used in modern lignite-fired power plants with a focus on pulverised lignite combustion technologies. CFBC combustion processes are also reviewed in brief and they are compared with pulverised lignite combustion technologies. Acronyms and abbreviations CFB circulating fluidised bed CFBC circulating fluidised bed combustion CFD computational fluid dynamics CV calorific value EHE external heat exchanger GRE Great River Energy GWe gigawatts electric kJ/kg kilojoules per kilogram kWh kilowatts hour Gt billion tonnes FBC fluidised bed combustion FBHE fluidised bed heat exchanger FEGT furnace exit gas temperature FGD flue gas desulphurisation GJ
    [Show full text]
  • Seasonal Assessment of Groundwater Contamination in Coal Mining Areas of Balochistan
    sustainability Article Seasonal Assessment of Groundwater Contamination in Coal Mining Areas of Balochistan Ayesha Ayub and Sheikh Saeed Ahmad * Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi 46000, Pakistan; [email protected] * Correspondence: [email protected]; Tel.: +923215167726 Received: 11 July 2020; Accepted: 18 August 2020; Published: 25 August 2020 Abstract: Balochistan is a semi-arid region. The assessment of water quality is very important, as the majority of people depend on groundwater for drinking purposes. The present study involves the quality assessment and mapping of drinking water in the five selected major coal mining sites in the four districts of Balochistan. A total of 50 samples were collected from these five coal mining sites in two seasons: i.e., summer and winter. A physicochemical analysis was carried out for groundwater - - 2+ samples: i.e., pH, electrical conductivity (EC), total dissolved solid (TDS), CO3, HCO3 , Cl , Ca , Mg2+, Na+,K+, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Ni, and Zn. Thematic maps were used to depict the spatial distribution of significant variables and were compared with WHO standards (2011) during both seasons. The majority of parameters crossed the safe permissible limit of WHO standards. The water quality index (WQI) was calculated for the whole monitoring data obtained from both seasons from the perspective of drinking water in each of the selected sites. Moreover, a principle component analysis (PCA) and correlation matrix was carried out for the data analysis in order to identify the source of pollution and correlation among the variables. The results suggested that the overall quality of water from the selected coal mining sites deteriorated due to the overexploitation of coal mines and mining activity.
    [Show full text]
  • And Pb-Enriched Coals from Jungar Coalfield, Northwestern China
    minerals Article The Petrography, Mineralogy and Geochemistry of Some Cu- and Pb-Enriched Coals from Jungar Coalfield, Northwestern China Dongna Liu 1,3 ID , Anchao Zhou 1, Fangui Zeng 1,3, Fenghua Zhao 2,3,* and Yu Zou 2 1 College of Minging Engineering, Taiyuan University of Technology, Taiyuan 030024, China; [email protected] (D.L.); [email protected] (A.Z.); [email protected] (F.Z.) 2 College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China; [email protected] 3 Key Laboratory of Coal and Coal Gas Geology of Shanxi Province, Taiyuan 030024, China * Correspondence: [email protected]; Tel.: +86-010-62331878 Received: 24 September 2017; Accepted: 21 December 2017; Published: 27 December 2017 Abstract: The petrological, geochemical, and mineralogical composition of the Carboniferous-Permian coal deposit in the Jungar coalfield of inner Mongolia, Northwestern China, were investigated using optical microscopy and field emission scanning electron microscopy in conjunction with an energy-dispersive X-ray spectrometer (SEM-EDX), as well as X-ray powder diffraction, X-ray fluorescence, and inductively coupled plasma mass spectrometry. The Jungar coal is of high volatile C/B bituminous quality with 0.58% vitrinite reflectance and has a low sulfur content of 0.70% on average. Inertinite (mineral-free basis) generally dominates in coal from the lower part of the Shanxi formation, and vitrinite is the major maceral assemblage in the coal from the Taiyuan formation, which exhibits forms suggesting variation in the sedimentary environment. The Jungar coal is characterized by higher concentrations of copper (Cu) in No.
    [Show full text]
  • Development and Evaluation of Performance of a Bench Scale Gasifier for Sub-Bituminous Coal Stellamaris Nduku Nzove Master of Sc
    DEVELOPMENT AND EVALUATION OF PERFORMANCE OF A BENCH SCALE GASIFIER FOR SUB-BITUMINOUS COAL STELLAMARIS NDUKU NZOVE MASTER OF SCIENCE (Mechanical Engineering) JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY 2021 Development and Evaluation of Performance of a Bench Scale Gasifier for Sub-Bituminous Coal Stellamaris Nduku Nzove A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in Mechanical Engineering in the Jomo Kenyatta University of Agriculture and Technology 2021 DECLARATION This thesis is my original work and has not been presented for a degree in any other university. Signature: ........................................ Date .............................................. Stellamaris Nduku Nzove This thesis has been submitted for examination with our approval as the Univer- sity Supervisors: Signature: ...................................... Date ............................................. Dr. Eng. Hiram M. Ndiritu (Phd.) JKUAT, Kenya Signature: ......................................... Date ........................................... Dr. Benson Gathitu (Phd.) JKUAT, Kenya ii DEDICATION I dedicate this work to my loving family. A special feeling of gratitude to my dear husband Victor, our children Adrian and Talia. They have been a great source of inspiration throughout my entire research period. iii ACKNOWLEDGEMENTS The author wishes to sincerely appreciate a number of individuals for their vital roles in the realization of this thesis. First and foremost is the Almighty God, the giver and sustainer of life, for giving me the opportunity to do this research. Special appreciation is due to Dr. Eng. Hiram Ndiritu and Dr. Benson Gath- itu, my two very able and highly knowledgeable project supervisors for guiding and supporting me throughout this research. My sincere gratitude also goes to Bernard Owiti, Obadiah Maswai and John Ng'ethe, for their positive criticism which helped to keep me going.
    [Show full text]
  • CSA), Session Law 2002-4 (Aka Senate Bill 1078), Was Passed and Signed Into Law in June 2002
    CO2 Emission Reduction Options For Coal-fired Electrical Utility Boilers and Other Stationary Sources September 1, 2004 Second Interim Report Pursuant to Clean Smokestacks Act Source: CCSP/Meehl North Carolina Department of Environment and Natural Resources Division of Air Quality The Requirement: Excerpted from the Act [Title: An Act to Improve Air Quality in the State by Imposing Limits on the Emission of Certain Pollutants from Certain Facilities that Burn Coal to Generate Electricity and to Provide for Recovery by Electric Utilities of the Costs of Achieving Compliance with Those Limits] SECTION 13. The Division of Air Quality of the Department of Environment and Natural Resources shall study issues related to the development and implementation of standards and plans to implement programs to control emissions of carbon dioxide (CO2) from coal-fired generating units and other stationary sources of air pollution. The Division shall evaluate available control technologies and shall estimate the benefits and costs of alternative strategies to reduce emissions of carbon dioxide (CO2). The Division shall annually report its interim findings and recommendations to the Environmental Management Commission and the Environmental Review Commission beginning 1 September 2003. The Division shall report its final findings and recommendations to the Environmental Management Commission and the Environmental Review Commission no later than 1 September 2005. The costs of implementing any air quality standards and plans to reduce the emission of carbon dioxide (CO2) from coal-fired generating units below the standards in effect on the date this act becomes effective, except to the extent that the emission of carbon dioxide (CO2) is reduced as a result of the reductions in the emissions of oxides of nitrogen (NOx) and sulfur dioxide (SO2) required to achieve the emissions limitations set out in G.S.
    [Show full text]
  • Characteristics of Early Cretaceous Wildfires in Peat-Forming Environment, NE China Shuai Wang, Long-Yi Shao*, Zhi-Ming Yan, Ming-Jian Shi and Yun-He Zhang
    Wang et al. Journal of Palaeogeography (2019) 8:17 https://doi.org/10.1186/s42501-019-0035-5 Journal of Palaeogeography ORIGINAL ARTICLE Open Access Characteristics of Early Cretaceous wildfires in peat-forming environment, NE China Shuai Wang, Long-Yi Shao*, Zhi-Ming Yan, Ming-Jian Shi and Yun-He Zhang Abstract Inertinite maceral compositions in coals from the Early Cretaceous Erlian, Hailar, and Sanjiang Basins in NE China are analyzed in order to reveal palaeowildfire events and palaeoclimate variations. Although huminite is the dominant maceral group in the studied basins, the inertinite group, as a byproduct of palaeowildfires, makes up a considerable proportion. Occurrence of inertinite macerals indicates that wildfires were widespread and frequent, and supports the opinion that the Early Cretaceous was a “high-fire” interval. Inertinite contents vary from 0.2% to 85.0%, mostly within the range of 10%–45%, and a model-based calculation suggests that the atmospheric oxygen levels during the Aptian and Albian (Early Cretaceous) were around 24.7% and 25.3% respectively. Frequent fire activity during Early Cretaceous has been previously related to higher atmospheric oxygen concentrations. The inertinite reflectance, ranging from 0.58%Ro to 2.00%Ro, indicates that the palaeowildfire in the Early Cretaceous was dominated by ground fires, partially reaching-surface fires. These results further support that the Cretaceous earliest angiosperms from NE China were growing in elevated O2 conditions compared to the present day. Keywords: Inertinite, Coal, Wildfire, Palaeo-atmospheric oxygen level, Angiosperm, Early Cretaceous, NE China 1 Introduction 2004;Bowmanetal.2009). The minimum oxygen content As a byproduct of peatland evolution under the common that can support combustion in nature is 15% (Belcher influence of geological conditions including palaeoclimate, and McElwain 2008).
    [Show full text]
  • CARBONIZATION STUDY of NON COKING COALS and CHARACTERISATION of THEIR PROPERTIES for APPLICATION in SPONGE IRON MAKING a Thesis Submitted By
    CARBONIZATION STUDY OF NON COKING COALS AND CHARACTERISATION OF THEIR PROPERTIES FOR APPLICATION IN SPONGE IRON MAKING A Thesis Submitted by RAKESH KUMAR A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS For the award of master of technology In Steel technology Roll No.-212MM2339 M. Tech. Department of Metallurgical and Materials Engineering National Institute of Technology, Rourkela – 769008 i CARBONIZATION STUDY OF NON COKING COALS AND CHARACTERISATION OF THEIR PROPERTIES FOR APPLICATION IN SPONGE IRON MAKING A Thesis Submitted by RAKESH KUMAR A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS For the award of master of technology In Mechanical Engineering {Steel technology} Roll No.-212MM2339 M. Tech. Under Supervision of Prof. Dr. M. Kumar Department of Metallurgical and Materials Engineering National Institute of Technology, Rourkela – 769008 ii Department of Metallurgical and Materials Engineering National Institute of Technology, Rourkela CERTIFICATE The research titled “carbonization study of non-coking coals and characterization of their properties for application in sponge iron making”, submitted by Rakesh Kumar for the award of degree of Master of Technology in steel technology, has been carried out under my supervision at the department of Metallurgy and material science of National Institute of Technology, Rourkela. The work is comprehensive, complete and fit for evaluation. Prof. M. Kumar Metallurgical & Materials Engineering National Institute of technology Rourkela – 769008 iii ACKNOWLEDGEMENT I would like to wish my heartiest gratitude for inspirable and valuable guidance to prof. M. Kumar, Department of metallurgy and material engineering NIT Rourkela for the study of project work. With his valuable suggestion and supervision, I would able to present my project work.
    [Show full text]
  • On the Fundamental Difference Between Coal Rank and Coal Type
    International Journal of Coal Geology 118 (2013) 58–87 Contents lists available at ScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo Review article On the fundamental difference between coal rank and coal type Jennifer M.K. O'Keefe a,⁎, Achim Bechtel b,KimonChristanisc, Shifeng Dai d, William A. DiMichele e, Cortland F. Eble f,JoanS.Esterleg, Maria Mastalerz h,AnneL.Raymondi, Bruno V. Valentim j,NicolaJ.Wagnerk, Colin R. Ward l, James C. Hower m a Department of Earth and Space Sciences, Morehead State University, Morehead, KY 40351, USA b Department of Applied Geosciences and Geophysics, Montan Universität, Leoben, Austria c Department of Geology, University of Patras, 265.04 Rio-Patras, Greece d State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China e Department of Paleobiology, Smithsonian Institution, Washington, DC 20013-7012, USA f Kentucky Geological Survey, University of Kentucky, Lexington, KY 40506, USA g School of Earth Sciences, The University of Queensland, QLD 4072, Australia h Indiana Geological Survey, Indiana University, 611 North Walnut Grove, Bloomington, IN 47405-2208, USA i Department of Geology and Geophysics, College Station, TX 77843, USA j Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences, University of Porto and Geology Centre of the University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal k School Chemical & Metallurgical Engineering, University of Witwatersrand, 2050, WITS, South Africa l School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia m University of Kentucky, Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511, USA article info abstract Article history: This article addresses the fundamental difference between coal rank and coal type.
    [Show full text]
  • Subclase Equisetidae ¿Tienes Alguna Duda, Sugerencia O Corrección Acerca De Este Taxón? Envíanosla Y Con Gusto La Atenderemos
    subclase Equisetidae ¿Tienes alguna duda, sugerencia o corrección acerca de este taxón? Envíanosla y con gusto la atenderemos. Ver todas las fotos etiquetadas con Equisetidae en Banco de Imagénes » Descripción de WIKIPEDIAES Ver en Wikipedia (español) → Ver Pteridophyta para una introducción a las plantas Equisetos vasculares sin semilla Rango temporal: Devónico-Holoceno PreЄ Є O S D C P T J K Pg N Los equisetos , llamados Equisetidae en la moderna clasificación de Christenhusz et al. 2011,[1] [2] [3] o también Equisetopsida o Equisetophyta, y en paleobotánica es más común Sphenopsida, son plantas vasculares afines a los helechos que aparecieron en el Devónico, pero que actualmente sobrevive únicamente el género Equisetum, si bien hay representantes de órdenes extintos que se verán en este artículo. Este grupo es monofilético, aun con sus representantes extintos, debido a su morfología distintiva. Son plantas pequeñas, aunque en el pasado una variedad de calamitácea alcanzó los 15 metros durante el pérmico.[4] Índice 1 Filogenia 1.1 Ecología y evolución 2 Taxonomía 2.1 Sinonimia Variedades de Equisetum 2.2 Sistema de Christenhusz et al. 2011 Taxonomía 2.3 Clasificación sensu Smith et al. 2006 2.4 Otras clasificaciones Reino: Plantae 3 Caracteres Viridiplantae 4 Véase también Streptophyta 5 Referencias Streptophytina 6 Bibliografía Embryophyta (sin rango) 7 Enlaces externos Tracheophyta Euphyllophyta Monilophyta Filogenia[editar] Equisetopsida o Sphenopsida Introducción teórica en Filogenia Clase: C.Agardh 1825 / Engler 1924 Equisetidae Los análisis moleculares y genéticos de filogenia solo Subclase: se pueden hacer sobre representantes vivientes, Warm. 1883 como circunscripto según Smith et al. (2006) (ver la Órdenes ficha), al menos Equisetales es monofilético (Pryer et Equisetales (DC.
    [Show full text]
  • Maceral Types and Quality of Coal in the Tuli Coalfield: a Case
    applied sciences Article Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of Coal in the Madzaringwe Formation in the Vele Colliery, Limpopo Province, South Africa Elelwani Denge * and Christopher Baiyegunhi Department of Geology and Mining, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa; [email protected] * Correspondence: [email protected] Featured Application: Authors are encouraged to provide a concise description of the specific application or a potential application of the work. This section is not mandatory. Abstract: The Madzaringwe Formation in the Vele colliery is one of the coal-bearing Late Palaeozoic units of the Karoo Supergroup, consisting of shale with thin coal seams and sandstones. Maceral group analysis was conducted on seven representative coal samples collected from three existing boreholes—OV125149, OV125156, and OV125160—in the Vele colliery to determine the coal rank and other intrinsic characteristics of the coal. The petrographic characterization revealed that vitrinite is the dominant maceral group in the coals, representing up to 81–92 vol.% (mmf) of the total sample. Collotellinite is the dominant vitrinite maceral, with a total count varying between 52.4 vol.% (mmf) and 74.9 vol.% (mmf), followed by corpogelinite, collodetrinite, tellinite, and pseudovitrinite with a Citation: Denge, E.; Baiyegunhi, C. count ranging between 0.8 and 19.4 vol.% (mmf), 1.5 and 17.5 vol.% (mmf), 0.8 and 6.5 vol.% (mmf) Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of and 0.3 and 5.9 vol.% (mmf), respectively. The dominance of collotellinite gives a clear indication Coal in the Madzaringwe Formation that the coals are derived from the parenchymatous and woody tissues of roots, stems, and leaves.
    [Show full text]
  • Early Paleogene Wildfires in Peat-Forming Environments at Schöningen, Germany
    Robson, B. E., Collinson, M. E., Riegel, W., Wilde, V., Scott, A. C., & Pancost, R. D. (2015). Early Paleogene wildfires in peat-forming environments at Schöningen, Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 437, 53-62. https://doi.org/10.1016/j.palaeo.2015.07.016 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1016/j.palaeo.2015.07.016 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Elsevier at http://www.sciencedirect.com/science/article/pii/S0031018215003764. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Palaeogeography, Palaeoclimatology, Palaeoecology 437 (2015) 53–62 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Early Paleogene wildfires in peat-forming environments at Schöningen, Germany Brittany E. Robson a,⁎, Margaret E. Collinson a, Walter Riegel b,VolkerWildec, Andrew C. Scott a, Richard D. Pancost d a Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK b Geowissenschaftliches
    [Show full text]