About Mobile Technology and IMT-2000 Page 1

Total Page:16

File Type:pdf, Size:1020Kb

About Mobile Technology and IMT-2000 Page 1 About mobile technology and IMT-2000 Page 1 文 | Français | Русский | Español 9 | ﻋﺮﰊ Print Version Home : Office of the Secretary General : SPU Search About mobile technology and IMT-2000 CONTENTS Introduction - Evolution of the Mobile Market The Basics of Cellular Technology and the Use of the Radio Spectrum Access Technologies (FDMA, TDMA, CDMA) Cellular Standards for 1G and 2G Cellular Standards for 3G : ITU's IMT-2000 Family Industry Acronyms and Terms Bibliography: Hot Links Introduction - Evolution of the Mobile Market The first radiotelephone service was introduced in the US at the end of the 1940s, and was meant to connect mobile users in cars to the public fixed network. In the 1960s, a new system launched by Bell Systems, called Improved Mobile Telephone Service” (IMTS), brought many improvements like direct dialing and higher bandwidth. The first analog cellular systems were based on IMTS and developed in the late 1960s and early 1970s. The systems were “cellular” because coverage areas were split into smaller areas or “cells”, each of which is served by a low power transmitter and receiver. This first generation (1G) analog system for mobile communications saw two key improvements during the 1970s: the invention of the microprocessor and the digitization of the control link between the mobilephone and the cell site. Second generation (2G) digital cellular systems were first developed at the end of the 1980s. These systems digitized not only the control link but also the voice signal. The new system provided better quality and higher capacity at lower cost to consumers. Third generation (3G) systems promise faster communications services, including voice, fax and Internet, anytime and anywhere with seamless global roaming. ITU’s IMT-2000 global standard for 3G has opened the way to enabling innovative applications and services (e.g. multimedia entertainment, infotainment and location-based services, among others). The first 3G networks were deployed in Korea and Japan in 2000 and 2001. 2.5G networks, such as GPRS (Global Packet Radio Service) are already available in some parts of Europe. It is to be noted that analog and digital systems, 1G and 2G, still co-exist in many areas. Similarly, 2G and 3G systems will co-exist for some time. The Basics of Cellular Technology and the Use of the Radio Spectrum Mobile operators use radio spectrum to provide their services. Spectrum is generally considered a scarce resource, and has been allocated as such. It has traditionally been shared by a number of industries, including broadcasting, mobile communications and the military. At the World Radio Conference (WRC) in 1993, spectrum allocations for 2G mobile were agreed based on expected demand growth at the time. At WRC 2000, the resolutions of the WRC expanded significantly the spectrum capacity to be used for 3G, by allowing the use of current 2G spectrum blocks for 3G technology and allocating 3G spectrum to an upper limit of 3GHz. Before the advent of cellular technology, capacity was enhanced through a division of frequencies, and the resulting addition of available channels. However, this reduced the total bandwidth available to each user, affecting the quality of service. Cellular technology allowed for the division of geographical areas, rather than frequencies, leading to a more efficient use of the radio spectrum. This geographical re-use of radio channels is knows as “frequency reuse”. In a cellular network, cells are generally organized in groups of seven to form a cluster. There is a “cell site” or “ base station” at the centre of each cell, which houses the transmitter/receiver antennae and switching equipment. The size of a cell depends on the density of subscribers in an area: for instance, in a densely populated area, the capacity of the network can be improved by reducing the size of a cell or by adding more overlapping cells. This increases the number of channels available without increasing the actual number of frequencies being used. All base stations of each cell are connected to a central point, called the Mobile Switching Office (MSO), either by fixed lines or microwave. The MSO is generally connected to the PSTN (Public Switched Telephone Network): http://www.itu.int/osg/spu/imt-2000/technology.html 8/25/2010 4:22:48 PM About mobile technology and IMT-2000 Page 2 Cellular technology allows the “ hand-off” of subscribers from one cell to another as they travel around. This is the key feature which allows the mobility of users. A computer constantly tracks mobile subscribers of units within a cell, and when a user reaches the border of a call, the computer automatically hands- off the call and the call is assigned a new channel in a different cell. International roaming arrangements govern the subscriber’s ability to make and receive calls the home network’s coverage area. Access Technologies (FDMA, TDMA, CDMA) FDMA: Frequency Division Multiple Access (FDMA) is the most common analog system. It is a technique whereby spectrum is divided up into frequencies and then assigned to users. With FDMA, only one subscriber at any given time is assigned to a channel. The channel therefore is closed to other conversations until the initial call is finished, or until it is handed-off to a different channel. A “full-duplex” FDMA transmission requires two channels, one for transmitting and the other for receiving. FDMA has been used for first generation analog systems. TDMA: Time Division Multiple Access (TDMA) improves spectrum capacity by splitting each frequency into time slots. TDMA allows each user to access the entire radio frequency channel for the short period of a call. Other users share this same frequency channel at different time slots. The base station continually switches from user to user on the channel. TDMA is the dominant technology for the second generation mobile cellular networks. CDMA: Code Division Multiple Access is based on “spread” spectrum technology. Since it is suitable for encrypted transmissions, it has long been used for military purposes. CDMA increases spectrum capacity by allowing all users to occupy all channels at the same time. Transmissions are spread over the whole radio band, and each voice or data call are assigned a unique code to differentiate from the other calls carried over the same spectrum. CDMA allows for a “ soft hand-off” , which means that terminals can communicate with several base stations at the same time. The dominant radio interface for third-generation mobile, or IMT-2000, will be a wideband version of CDMA with three modes (IMT-DS, IMT-MC and IMT-TC). 9 Cellular Standards for 1G and 2G Each generation of mobile communications has been based on a dominant technology, which has significantly improved spectrum capacity. Until the advent of IMT-2000, cellular networks had been developed under a number of proprietary, regional and national standards, creating a fragmented market. First Generation: 1) Advanced Mobile Phone System (AMPS) was first launched in the US. It is an analog system based on FDMA (Frequency Division Multiple Access) technology. Today, it is the most used analog system and the second largest worldwide. 2) Nordic Mobile Telephone (NMT) was mainly developed in the Nordic countries. (4.5 million in 1998 in some 40 countries including Nordic countries, Asia, Russia, and other Eastern European Countries) 3) Total Access Communications System (TACS) was first used in the UK in 1985. It was based on the AMPS technology. There were also a number of other proprietary systems, rarely sold outside the home country. Second Generation: 1) Global System for Mobile Communications (GSM) was the first commercially operated digital cellular system. It was first developed in the 1980s through a pan-European initiative, involving the Eureopean Commission, telecommunications operators and equipment manufacturers. The European Telecommunications Standards Institute was responsible for GSM standardization. GSM uses TDMA (Time Division Multiple Access) technology. Itis being used by all European countries, and has been adopeted in other continents. It is the dominant cellular standard today, with over (45%) of the world’s subscribers at April 1999. 2) TDMA IS-136 is the digital enhancement of the analog AMPS technology. It was called D-AMPS when it was fist introduced in late 1991 and its main objective was to protect the substantial investment that service providers had bmade in AMPS technology. Digital AMPS sevices have been launched in some 70 countries worldwide (by March 1999, there were almost 22 million TDMA handsets in circulation, the dominant markets being the Americas, and parts of Asia) 3) CDMA IS-95 increases capacity by using the entire radio band with each using a unique code (CDMA or Code Division Multiple Access) . It is a family of digital communication techniques and South Korea is the largest single CDMA IS-95 market in the world. http://www.itu.int/osg/spu/imt-2000/technology.html 8/25/2010 4:22:48 PM About mobile technology and IMT-2000 Page 3 4) Personal Digital Cellular (PDC) is the second largest digital mobile standard although it is exclusively used in Japan where it was introduced in 1994. Like GSM, it is based on the TDMA access technology. In November 2001, there were some 66.39 million PDC users in Japan. 5) Personal Handyphone System (PHS) is a digital system used in Japan, first launched in 1995 as a cheaper alternative to cellular systems. It is somewhere in between a cellular and a cordless technology. It has inferior coverage area and limited usage in moving vehicles. In November 2001, Japan had 5.68 million PHS subscribers. Cellular Standards for the Third Generation: The ITU's IMT-2000 family It is in the mid-1980s that the concept for IMT-2000, “International Mobile Telecommunications”, was born at the ITU as the third generation system for mobile communications.
Recommended publications
  • Introduction to 5G Communications
    Introduction to 5G Communications 5G 01 intro YJS 1 Logistics According to faculty policy regarding postgrad courses this course will be held in English ! We will start at precisely 18:10 There will be no homework assignments The course web-site is www.dspcsp.com/tau All presentation slides will be available on the course web site 5G is still developing, so • the lecture plan might suddenly change • some things I say today might not be true tomorrow 5G 01 intro YJS 2 Importance of mobile communications Mobile communications is consistently ranked as one of mankind’s breakthrough technologies Annual worldwide mobile service provider revenue exceeds 1 trillion USD and mobile services generate about 5% of global GDP 5 billion people (2/3 of the world) own at least 1 mobile phone (> 8B devices) with over ½ of these smartphones and over ½ of all Internet usage from smartphones 5G 01 intro YJS 3 Generations of cellular technologies 1G 2G 3G 4G 5G standards AMPS IS-136, GSM UMTS LTE 3GPP 15, 16 Groupe Spécial Mobile 3GPP R4 - R7 R8-R9, R10-R14 era 1980s 1990s 2000s 2010s 2020s services analog voice digital voice WB voice voice, video everything messages packet data Internet, apps devices data rate 0 100 kbps 10 Mbps 100+ Mbps 10 Gbps (GPRS) (HSPA) (LTE/LTE-A) (NR) delay 500 ms 100 ms 10s ms 5 ms 5G 01 intro YJS 4 Example - the 5G refrigerator 5G 01 intro YJS 5 5G is coming really fast! Source: Ericsson Mobility Report, Nov 2019 5G 01 intro YJS 6 5G is already here! >7000 deployments >100 operators WorldTimeZone Dec 12, 2019 5G 01 intro YJS 7
    [Show full text]
  • Digital Radiocommunication Tester CMD80 Precise High-Speed Measurements on CDMA, TDMA and Analog Mobiles
    cmd80_de.fm Seite -1 Freitag, 28. Mai 1999 10:49 10 Digital Radiocommunication Tester CMD80 Precise high-speed measurements on CDMA, TDMA and analog mobiles For use in • production • quality assurance • service • development cmd80_de.fm Seite 0 Freitag, 28. Mai 1999 10:49 10 CMD80 – the multitalent ((Beschnittkante)) Additional capability continues to be CMD80 with option B84 provides added to the proven CMD80 plat- unsurpassed test coverage for the form. In addition to CDMA, AMPS IS-136 standard, offering many capa- (N-AMPS) and TACS (J/N/E-TACS), bilities that are not available on some digital AMPS (IS-136) measurements dedicated IS-136 test sets. Among on mobile stations are now posible these are half-rate channel support, with option B84. CMD80 is thus able peak and statistical adjacent-channel ne) to support all multiple access methods power measurements, carrier switch- (vor presently used in mobile communica- ing time measurements, etc. This 1 tions (FDMA, CDMA, TDMA) on a broad IS-136 test coverage will seite p single hardware platform. enhance the CMD80´s use in manu- p facturing tests as well as in engineer- uskla ing applications. A All standards at a glance Frequency band Type designation Airlink standard US Cellular (800 MHz) CMDA IS-95 TDMA IS-136 AMPS/N-AMPS TIA-553, IS-91 Japan Cellular CDMA T53, IS-95 N-TACS/J-TACS China Cellular CDMA IS-95 E-TACS/TACS US PCS (1900 MHz) CDMA J-STD008, UB-IS-95 TDMA IS-136 Korea PCS (1800 MHz) CDMA J-STD008, UB-IS-95 Korea2 PCS CDMA J-STD008, UB-IS-95 cmd80_de.fm Seite 1 Freitag, 28.
    [Show full text]
  • Evolutionary Steps from 1G to 4.5G
    ISSN (Online) : 2278-1021 ISSN (Print) : 2319-5940 International Journal of Advanced Research in Computer and Communication Engineering Vol. 3, Issue 4, April 2014 Evolutionary steps from 1G to 4.5G Tondare S M1, Panchal S D2, Kushnure D T3 Assistant Professor, Electronics and Telecom Dept., Sandipani Technical Campus Faculty of Engg, Latur(MS), India 1,2 Assistant Professor, Electronics and Telecom Department, VPCOE, Baramati(MS), India 3 Abstract: The journey from analog based first generation service (1G) to today’s truly broadband-ready LTE advanced networks (now accepted as 4.5G), the wireless industry is on a path that promises some great innovation in our future. Technology from manufacturers is advancing at a stunning rate and the wireless networking is tying our gadgets together with the services we demand. Manufacturers are advancing technologies at a stunning rate and also evolution in wireless technology all impossible things possible as market requirement. Keywords: Mobile Wireless Communication Networks, 1G, 2G, 3G, 4G,4.5G I. INTRODUCTION With rapid development of information and was replaced by Digital Access techniques such as TDMA communication technologies (ICT), particularly the (Time division multiple access), CDMA (code division wireless communication technology it is becoming very multiple access) having enhanced Spectrum efficiency, necessary to analyse the performance of different better data services and special feature as Roaming was generations of wireless technologies. In just the past 10 introduced. years, we have seen a great evolution of wireless services which we use every day. With the exponential evolution, B.Technology there has been equally exponential growth in use of the 2G cellular systems includes GSM, digital AMPS, code services, taking advantage of the recently available division multiple access(CDMA),personal digital bandwidth around the world.
    [Show full text]
  • Cellular Wireless Communication: Past Present and the Future Past
    Iqra University IU Cellular Wireless Communication: Past, Present and the Future Presentedbd by: SSye d Isma ilShhil Shah E-mail: [email protected] ismail@@g3gca.or g 1 Iqra University IU Outline 1) Introduction to Mobile Communication and First Generation Systems 2) Digital Communication and the 2G Systems 3) The 2.5G systems 4) Third Generation Systems 5) Wireless Local Loop 6) OhOther Wire less S ystems 7) IMT-Advanced (4G) 8) Wirel ess O perat ors i n P aki st an 9) Some Recommendations 2 Iqra University IU Why Mobile Communication? Question: Why do we need a new technology when we hhdldblilhkhave such a developed public telephone network. Answer: Mobility. Confinement Versus Freedom 3 Iqra University IU Challenges of Mobility Challenges of using a radio channel: ¾ The use of radio channels necessitates methods of sharing them – channel access. (FDMA, TDMA, CDMA) ¾ The wireless channel – poses a more challenging problem than with wires. ¾Bandwidth: it is possible to add wires but not bandwidth. So it is important to develop technologies that provide for spectrum reuse. ¾Privacy and security - a more difficult issue than with wired phone. ¾Others: low energy (battery), hand off, roaming, etc. 4 Iqra University IU First Generation Systems ¾ Cellular concept emerges in early 1970s. ¾ Cellular technology allows freqqyuency-reuse. With this we need to have Handoff (handover) ¾ In 1G we had analog voice but Control Link was digital 5 Iqra University IU Examples of First Generation Cellular Systems (FDMA based) 1) Advanced Mobile Phone
    [Show full text]
  • Cell Phones Can Operate in Either an AMPS Or a DAMPS Format
    9 Wireless Telephone Service Introduction Wireless cellular mobile telephone service is a high-capacity system for providing direct-dial telephone service to automobiles, and other forms of portable telephones, by using two-way radio transmission. Cellular mobile telephone service was first made available in the top markets in the United States in 1984, and in a very short time has achieved considerable growth and success. During its first four years in the United States, from 1984 to 1988, it experienced a compound annual growth of more than 100 percent. By 1990, its subscribers in the United States numbered 5.3 million; by 1996, its subscribers numbered over 44 mil- lion. Cellular mobile telephone service is also a great success in Europe and Scandinavia, where growth rates rival, and in some cases surpass, those in the United States. Cellular telephone service was initially targeted at the automobile market, but small portable units have extended the market to nearly 215 216 Introduction to Telephones and Telephone Systems everyone on the move with a need to telecommunicate and now includes small personal units that can be carried in a pocket. One wonders whether a wrist radio telephone is only a matter of a few more years. The cellular principle has been suggested on a very low power basis to create community systems that could bypass the copper wires of the local loop—so-called wireless local loop (WLL). The basic principles of wireless cellular telecommunication are described in this chapter along with a discussion of the various technologi- cal aspects of a wireless system that must be specified.
    [Show full text]
  • (GSM, IS-136 NA-TDMA and PDC) Based on Radio Aspect
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 4, No. 6, 2013 A Comparative Study of Three TDMA Digital Cellular Mobile Systems (GSM, IS-136 NA-TDMA and PDC) Based On Radio Aspect Laishram Prabhakar Manipur Institute of Management Studies Manipur University Canchipur, Manipur, India Abstract—As mobile and personal communication services perform anywhere, using a computing device, in the public, and networks involve providing seamless global roaming and corporate and personal information spaces. While on the move, improve quality of service to its users, the role of such network the preferred device could be a mobile device, and back home for numbering and identification and quality of service will or in the office, a desktop computer could be preferred. become increasingly important, and well defined. All these will Nevertheless computing should be through wired and wireless enhance performance for the present as well as future mobile and media -- be it for the mobile workforce, holidaymakers, personal communication network, provide national management enterprises or rural population. The access to information and function in mobile communication network and provide national virtual objects through mobile computing are absolutely and international roaming. Moreover, these require standardized necessary for optimal use of resource and increased subscriber and identities. To meet these demands, mobile productivity. Thus, mobile computing is used in different computing would use standard networks. Thus, in this study the researcher attempts to highlight a comparative picture of the contexts such as virtual home environment and nomadic three standard digital cellular mobile communication systems: (i) computing. Global System for Mobile (GSM) -- The European Time Division II.
    [Show full text]
  • Decision No. 423
    ISSN NO. 0114-2720 J 4485 Decision No. 423 Determination pursuant to the Commerce Act 1986 in the matter of an application for clearance of a business acquisition involving: TELECOM NEW ZEALAND LIMITED and 2 GHZ SPECTRUM The Commission: M J Belgrave (Chair) M N Berry P J M Taylor Summary of Application: The acquisition by Telecom New Zealand Limited of Radio Frequency Spectrum management rights and licences in the 2 GHz band auctioned by the New Zealand Government. Determination: Pursuant to section 66(3)(a) of the Commerce Act 1986, the Commission determines to give clearance for the proposed acquisition. Date of Determination: 15 March 2001 THIS REPORT CONTAINS NO CONFIDENTIAL MATERIAL CONTENTS THE PROPOSED ACQUISITION................................................................................................................1 THE PROCEDURES.....................................................................................................................................1 THE PARTIES...............................................................................................................................................2 TELECOM NEW ZEALAND LIMITED (“TELECOM”)..........................................................................................2 2 GHZ AUCTION...........................................................................................................................................2 INDUSTRY BACKGROUND........................................................................................................................2
    [Show full text]
  • A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 9-2006 A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals Marcus L. Roberts Follow this and additional works at: https://scholar.afit.edu/etd Part of the Systems and Communications Commons Recommended Citation Roberts, Marcus L., "A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals" (2006). Theses and Dissertations. 3336. https://scholar.afit.edu/etd/3336 This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals DISSERTATION Marcus L. Roberts, Major, USAF AFIT/DS/ENG/06-06 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this dissertation are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. AFIT/DS/ENG/06-06 A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Marcus L.
    [Show full text]
  • Mobile Radio Evolution
    Advances in Networks 2015; 3(3-1): 1-6 Published online September 16, 2015 (http://www.sciencepublishinggroup.com/j/net) doi: 10.11648/j.net.s.2015030301.11 ISSN: 2326-9766 (Print); ISSN: 2326-9782 (Online) Mobile Radio Evolution M. Prasad, R. Manoharan Dept. of Computer Science and Engineering, Pondicherry Engineering College, Puducherry, India Email address: [email protected] (M. Prasad), [email protected] (D. R. Manoharan) To cite this article: M. Prasad, Dr. R. Manoharan. Mobile Radio Evolution. Advances in Networks . Special Issue: Secure Networks and Communications. Vol. 3, No. 3-1, 2015, pp. 1-6. doi: 10.11648/j.net.s.2015030301.11 Abstract: All over the world, wireless communication services have enjoyed dramatic growth over the past 25 years. Mobile communication is the booming field in the telecommunications industry. The cellular network is the most successful mobile communication system, used to transmit both voice and data. This paper provides a depth view about the technologies in mobile communication from the evolution of the mobile system. First from the evolution, second generation (2G), third generation (3G), fourth generation (4G) to fifth generation (5G) in terms of performance requirements and characteristic. Keywords: 2G, 3G, 4G, 5G, AMPS, GPRS, UMTS, HSDPA mobile radio became standard all over the country. Federal 1. Introduction Communications Commission (FCC) allocates 40 MHz of The Detroit Police Department radio bureau began spectrum in range between 30 and 500 MHz for private experimentation in 1921 with a band near 2 MHz for vehicular individuals, companies, and public agencies for mobile mobile service. On April 7, 1928 the Department started services.
    [Show full text]
  • Wireless Wans: from 1G to 4G Module W.Wan.2
    W.wan.2-2 Wireless WAN: 1G Æ 4G 1G Wireless WANs: From 1G to 4G AMPS 2G Module W.wan.2 GSM Case Study: GSM & cdmaOne (W.wan.3) 2.5G 3G Dr.M.Y.Wu@CSE Dr.W.Shu@ECE Case Study: UMTS/W-CDMA (W.wan.4) Shanghai Jiaotong University University of New Mexico Shanghai, China Albuquerque, NM, USA 4G End of module W.wan.2 © by Dr.Wu@SJTU & Dr.Shu@UNM 1 W.wan.2-3 W.wan.2-4 Cellular network, 1G Cellular network, 1G Analog-based Analog-based, USA: European: NMT (Nordic Mobile Telephony) AMPS (Advanced Mobile Phone Service) USA: AMPS (Advanced Mobile Phone Service), AT&T 1980s Initial setup operations ¾ two 25-MHz bands allocated to AMPS ¾ MT power on, scan for the most powerful control channel, broadcast ¾ Frequency reuse N=7, R = 2-20 km, K = 30KHz its NAM; BS hears MT’s NAM, registers with MSC (Mobile ¾ Each band split into two service providers A & B to encourage competition Switching Center) ¾ MT updates its location every 15 minutes 824-849 MHz 869-894 MHz Making a call A: 12.5 MHz, B: 12.5 MHz A: 12.5 MHz B: 12.5 MHz ¾ # to be called via access channel: MTÆBSÆMSC uplink, uplink downlink downlink ¾ MSC schedule/assign up/down links’ channels 12.5 M / 30 K = 416 channels Answering a call ¾ 395 voice channels, FM/FDD ¾ MT is alerted to incoming call via a paging channel ¾ 21 control data channels, FSK, 10 kbps Power saving An AMPS cell phone includes a NAM (Numeric Assignment Module) ¾ Periodically sleep for 46.3 ms, then scan for paging channel = telephone number + 32-bit serial number from manufacture Designed for GoS (Grade of service)
    [Show full text]
  • Analog and Digital Cellular Radio Systems
    ANALOG AND DIGITAL CELLULAR RADIO SYSTEMS BY DR MAHAMOD ISMAIL 22-23 APRIL 1996 (KUCHING) âMBI96 COURSE CONTENTS ü Introduction ü Cellular Overview ü Analog Cellular Radio ü Digital Cellular Radio âMBI96 INTRODUCTION What is RadioTelephone? · A radiotelephone can be defined as a telephone without wires, the connection to the local exchange being through the medium of radio · A radiotelephone differs from fixed telephone networks in many ways: A radiotelephone requires a portable source of power, i.e. source of power The local exchange has been replaced by a (local) base station (BS) Both the radiotelephone now called the mobile station (MS) BS need a radio antenna which must be suitable for the radio frequencies allocated within the radio spectrum Two radio channels in general must be allocated to each mobile phone for a forward and a return path radio (duplex operation) · âMBI96 A radiotelephone or mobile radio services can be classified as: Cellular telephone Cordless telephone Personal Communication Private mobile radio (PMR)/Short Range radio (SSR)/Trunked Radiopaging Radio and citizen band radio · Frquency band allocated to private and public mobile radio âMBI96 What is Cellular Mobile Radio The term cellular is derived from the fact that the system is configured with a group of radio transceivers serving a particular cell (honeycomb shape) where people can use the service Why Cellular Mobile Radio System? · Limited service capability · Poor service performance · Inefficient frequency spectrum utilization âMBI96 · Cellular Radio
    [Show full text]
  • Gsm to Imt-2000 - a Comparative Analysis
    3G MOBILE LICENSING POLICY: FROM GSM TO IMT-2000 - A COMPARATIVE ANALYSIS GSM Case Study This case has been prepared by Audrey Selian <[email protected]>, ITU. 3G Mobile Licensing Policy: GSM Case Study is part of a series of Telecommunication Case Studies produced under the New Initiatives program of the Office of the Secretary General of the International Telecommunication Union (ITU). The author wishes to acknowledge the valuable guidance and direction of Tim Kelly and Fabio Leite of the ITU in the development of this study. The 3G case studies program is managed by Lara Srivastava <[email protected]> and under the direction of Ben Petrazzini <[email protected]>. Country case studies on 3G, including Sweden, Japan, China & Hong Kong SAR, Chile, Venezuela, and Ghana can be found at <http://www.itu.int/3g>. The opinions expressed in this study are those of the author and do not necessarily reflect the views of the International Telecommunication Union, its membership or the GSM Association. 2 GSM Case Study TABLE OF CONTENTS: 1 Introduction................................................................................................................................................ 6 1.1 The Generations of Mobile Networks................................................................................................ 7 2 A Look Back at GSM .............................................................................................................................. 10 2.1 GSM Technology............................................................................................................................
    [Show full text]