Primer > UMTS Protocols and Protocol Testing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to 5G Communications
Introduction to 5G Communications 5G 01 intro YJS 1 Logistics According to faculty policy regarding postgrad courses this course will be held in English ! We will start at precisely 18:10 There will be no homework assignments The course web-site is www.dspcsp.com/tau All presentation slides will be available on the course web site 5G is still developing, so • the lecture plan might suddenly change • some things I say today might not be true tomorrow 5G 01 intro YJS 2 Importance of mobile communications Mobile communications is consistently ranked as one of mankind’s breakthrough technologies Annual worldwide mobile service provider revenue exceeds 1 trillion USD and mobile services generate about 5% of global GDP 5 billion people (2/3 of the world) own at least 1 mobile phone (> 8B devices) with over ½ of these smartphones and over ½ of all Internet usage from smartphones 5G 01 intro YJS 3 Generations of cellular technologies 1G 2G 3G 4G 5G standards AMPS IS-136, GSM UMTS LTE 3GPP 15, 16 Groupe Spécial Mobile 3GPP R4 - R7 R8-R9, R10-R14 era 1980s 1990s 2000s 2010s 2020s services analog voice digital voice WB voice voice, video everything messages packet data Internet, apps devices data rate 0 100 kbps 10 Mbps 100+ Mbps 10 Gbps (GPRS) (HSPA) (LTE/LTE-A) (NR) delay 500 ms 100 ms 10s ms 5 ms 5G 01 intro YJS 4 Example - the 5G refrigerator 5G 01 intro YJS 5 5G is coming really fast! Source: Ericsson Mobility Report, Nov 2019 5G 01 intro YJS 6 5G is already here! >7000 deployments >100 operators WorldTimeZone Dec 12, 2019 5G 01 intro YJS 7 -
Logical Link Control and Channel Scheduling for Multichannel Underwater Sensor Networks
ICST Transactions on Mobile Communications and Applications Research Article Logical Link Control and Channel Scheduling for Multichannel Underwater Sensor Networks Jun Li ∗, Mylene` Toulgoat, Yifeng Zhou, and Louise Lamont Communications Research Centre Canada, 3701 Carling Avenue, Ottawa, ON. K2H 8S2 Canada Abstract With recent developments in terrestrial wireless networks and advances in acoustic communications, multichannel technologies have been proposed to be used in underwater networks to increase data transmission rate over bandwidth-limited underwater channels. Due to high bit error rates in underwater networks, an efficient error control technique is critical in the logical link control (LLC) sublayer to establish reliable data communications over intrinsically unreliable underwater channels. In this paper, we propose a novel protocol stack architecture featuring cross-layer design of LLC sublayer and more efficient packet- to-channel scheduling for multichannel underwater sensor networks. In the proposed stack architecture, a selective-repeat automatic repeat request (SR-ARQ) based error control protocol is combined with a dynamic channel scheduling policy at the LLC sublayer. The dynamic channel scheduling policy uses the channel state information provided via cross-layer design. It is demonstrated that the proposed protocol stack architecture leads to more efficient transmission of multiple packets over parallel channels. Simulation studies are conducted to evaluate the packet delay performance of the proposed cross-layer protocol stack architecture with two different scheduling policies: the proposed dynamic channel scheduling and a static channel scheduling. Simulation results show that the dynamic channel scheduling used in the cross-layer protocol stack outperforms the static channel scheduling. It is observed that, when the dynamic channel scheduling is used, the number of parallel channels has only an insignificant impact on the average packet delay. -
Digital Radiocommunication Tester CMD80 Precise High-Speed Measurements on CDMA, TDMA and Analog Mobiles
cmd80_de.fm Seite -1 Freitag, 28. Mai 1999 10:49 10 Digital Radiocommunication Tester CMD80 Precise high-speed measurements on CDMA, TDMA and analog mobiles For use in • production • quality assurance • service • development cmd80_de.fm Seite 0 Freitag, 28. Mai 1999 10:49 10 CMD80 – the multitalent ((Beschnittkante)) Additional capability continues to be CMD80 with option B84 provides added to the proven CMD80 plat- unsurpassed test coverage for the form. In addition to CDMA, AMPS IS-136 standard, offering many capa- (N-AMPS) and TACS (J/N/E-TACS), bilities that are not available on some digital AMPS (IS-136) measurements dedicated IS-136 test sets. Among on mobile stations are now posible these are half-rate channel support, with option B84. CMD80 is thus able peak and statistical adjacent-channel ne) to support all multiple access methods power measurements, carrier switch- (vor presently used in mobile communica- ing time measurements, etc. This 1 tions (FDMA, CDMA, TDMA) on a broad IS-136 test coverage will seite p single hardware platform. enhance the CMD80´s use in manu- p facturing tests as well as in engineer- uskla ing applications. A All standards at a glance Frequency band Type designation Airlink standard US Cellular (800 MHz) CMDA IS-95 TDMA IS-136 AMPS/N-AMPS TIA-553, IS-91 Japan Cellular CDMA T53, IS-95 N-TACS/J-TACS China Cellular CDMA IS-95 E-TACS/TACS US PCS (1900 MHz) CDMA J-STD008, UB-IS-95 TDMA IS-136 Korea PCS (1800 MHz) CDMA J-STD008, UB-IS-95 Korea2 PCS CDMA J-STD008, UB-IS-95 cmd80_de.fm Seite 1 Freitag, 28. -
Analysis of Radio Access Network Buffer Filling Based on Real Network Data
Master Thesis Electrical Engineering December 2012 Analysis of Radio Access Network Buffer Filling Based on Real Network Data Logabharathi Aruchamy School of Computing Blekinge Institute of Technology 37179 Karlskrona Sweden This thesis is submitted to the School of Computing at Blekinge Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering. The thesis is equivalent to 20 weeks of full time studies. Contact Information Author: Logabharathi Aruchamy E-mail: [email protected] External Advisor(s) Tomas Lundborg, Mathias Sintorn, Systems Manager, Senior Specialist R&D, Ericsson AB, Ericsson AB, Development Unit Radio-System and Development Unit Radio-System and Technology, Technology, Torshamnsgatan 33, Torshamnsgatan 33, 164 80 Stockholm, Sweden. 164 80 Stockholm, Sweden. University advisor: Prof. Markus Fiedler, School of Computing (COM) School of Computing Internet: www.bth.se/com Blekinge Institute of Technology Phone: +46 455 385000 371 79 KARLSKRONA SWEDEN SWEDEN Abstract The 3G and 4G networks have drastically improved availability and quality in data transmission for bandwidth hungry services such as video streaming and location-based services. As 3G networks are very widely deployed, there exists increased capacity requirement and transport channel allocation to simultaneous users under a particular cell. Due to this reason, adequate resources are not available, which in turn degrades both service quality and user experienced quality. This research aims at understanding the characteristics of buffer filling during dedicated channel (DCH) transmission under fixed bit-rate assumptions on a per-user level taking different services into consideration. Furthermore, the resource utilisation in terms of empty buffer durations and user throughput achieved during dedicated channel transmission are also analysed for different data services existing in the mobile networks. -
A Novel View on Universal Mobile Telecommunication System (UMTS) in the Wireless and Mobile Communication Environment
Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2010|No.1(24) A Novel View on Universal Mobile Telecommunication System (UMTS) in the Wireless and Mobile Communication Environment Dr.S.S.Riaz Ahamed Principal, Sathak Institute of Technology, Ramanathapuram,TamilNadu, India-623501. Email:[email protected] Abstract The Universal Mobile Telecommunication System (UMTS) is a third generation (3G) mobile communications system that provides a range of broadband services to the world of wireless and mobile communications. The UMTS delivers low-cost, mobile communications at data rates of up to 2 Mbps. It preserves the global roaming capability of second generation GSM/GPRS networks and provides new enhanced capabilities. The UMTS is designed to deliver pictures, graphics, video communications, and other multimedia information, as well as voice and data, to mobile wireless subscribers. UMTS also addresses the growing demand of mobile and Internet applications for new capacity in the overcrowded mobile communications sky. The new network increases transmission speed to 2 Mbps per mobile user and establishes a global roaming standard. UMTS allows many more applications to be introduced to a worldwide base of users and provides a vital link between today’s multiple GSM systems and the ultimate single worldwide standard for all mobile telecommunications, International Mobile Telecommunications–2000 (IMT–2000). Keywords: Code Division Multiple Access (CDMA), Radio Access Network (RAN), Base Station Subsystem (BSS),Network and Switching Subsystem (NSS), Operations Support System (OSS),Base Station Controller (BSC), Base Transceiver Station (BTS), Transcoder and Rate Adapter Unit (TRAU), Operation and Maintenance Centers (OMCS), Packet Data Networks (PDNS), Virtual Home Environment (VHE), Radio Network Systems (RNSS), Transmission Power Control (TPC), Subscriber Identity Module (SIM) 1. -
Medium Access Control Layer
Telematics Chapter 5: Medium Access Control Sublayer User Server watching with video Beispielbildvideo clip clips Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller Data Link Layer Data Link Layer Data Link Layer Computer Systems and Telematics (CST) Physical Layer Physical Layer Physical Layer Institute of Computer Science Freie Universität Berlin http://cst.mi.fu-berlin.de Contents ● Design Issues ● Metropolitan Area Networks ● Network Topologies (MAN) ● The Channel Allocation Problem ● Wide Area Networks (WAN) ● Multiple Access Protocols ● Frame Relay (historical) ● Ethernet ● ATM ● IEEE 802.2 – Logical Link Control ● SDH ● Token Bus (historical) ● Network Infrastructure ● Token Ring (historical) ● Virtual LANs ● Fiber Distributed Data Interface ● Structured Cabling Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.2 Design Issues Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.3 Design Issues ● Two kinds of connections in networks ● Point-to-point connections OSI Reference Model ● Broadcast (Multi-access channel, Application Layer Random access channel) Presentation Layer ● In a network with broadcast Session Layer connections ● Who gets the channel? Transport Layer Network Layer ● Protocols used to determine who gets next access to the channel Data Link Layer ● Medium Access Control (MAC) sublayer Physical Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.4 Network Types for the Local Range ● LLC layer: uniform interface and same frame format to upper layers ● MAC layer: defines medium access .. -
CDMA2000—A World View
CDMA2000—A world view Johan Langer and Gwenn Larsson The world’s first CDMA2000 networks were launched in Korea in October while maintaining the 1.25 MHz band- 2000, providing 144 kbit/s data rates to subscribing customers and deliv- width. Operators and manufactures soon re- ering nearly twice the voice capacity that operators experienced with their alized that there were inherent cost, back- cdmaOne (IS-95) systems. The success of the CDMA2000 1X system in ward compatibility and timing advantages Korea has encouraged many operators in the Americas and Asia to follow in keeping with the 1.25 MHz bandwidth for evolution. Thus, CDMA2000 3X has through with their plans to launch CDMA2000 this year. now been put on the wayside until market The authors outline some of the products and describe product advan- demands make it necessary to migrate to a tages that Ericsson CDMA customers will gain when rolling out Ericsson’s widerband carrier (3.75 MHz). CMS 11 R3 to provide third-generation services early next year. The authors also describe some of the key enablers in CMS 11 R3. 1xEV-DO The two phases of 1xEV are labeled 1xEV-DO and 1xEV-DV. DO stands for data only; DV stands for data and voice. Updates in the evolution CDMA2000 1xEV-DO was standardized by the Telecommunications Industry Associa- of CDMA2000 tion (TIA) in October 2000. 1xEV-DO was Since the spring of 2000, the evolution of recently recognized by the ITU-R WP8F as third-generation CDMA systems has an IMT-2000 standard. Formal approval is changed dramatically. -
Evolutionary Steps from 1G to 4.5G
ISSN (Online) : 2278-1021 ISSN (Print) : 2319-5940 International Journal of Advanced Research in Computer and Communication Engineering Vol. 3, Issue 4, April 2014 Evolutionary steps from 1G to 4.5G Tondare S M1, Panchal S D2, Kushnure D T3 Assistant Professor, Electronics and Telecom Dept., Sandipani Technical Campus Faculty of Engg, Latur(MS), India 1,2 Assistant Professor, Electronics and Telecom Department, VPCOE, Baramati(MS), India 3 Abstract: The journey from analog based first generation service (1G) to today’s truly broadband-ready LTE advanced networks (now accepted as 4.5G), the wireless industry is on a path that promises some great innovation in our future. Technology from manufacturers is advancing at a stunning rate and the wireless networking is tying our gadgets together with the services we demand. Manufacturers are advancing technologies at a stunning rate and also evolution in wireless technology all impossible things possible as market requirement. Keywords: Mobile Wireless Communication Networks, 1G, 2G, 3G, 4G,4.5G I. INTRODUCTION With rapid development of information and was replaced by Digital Access techniques such as TDMA communication technologies (ICT), particularly the (Time division multiple access), CDMA (code division wireless communication technology it is becoming very multiple access) having enhanced Spectrum efficiency, necessary to analyse the performance of different better data services and special feature as Roaming was generations of wireless technologies. In just the past 10 introduced. years, we have seen a great evolution of wireless services which we use every day. With the exponential evolution, B.Technology there has been equally exponential growth in use of the 2G cellular systems includes GSM, digital AMPS, code services, taking advantage of the recently available division multiple access(CDMA),personal digital bandwidth around the world. -
Wireless Network Testing
Leader in Converged IP Testing Wireless Network Testing 915-2623-01 Rev A January, 2010 2 Contents The Progression of Wireless Technologies ...................................................4 Wireless Testing Requirements ...................................................................7 LTE Testing ...............................................................................................8 Evolved Packet Core (EPC) Testing ..............................................................9 UMTS Testing ..........................................................................................10 IMS Testing .............................................................................................11 Ixia Test Solutions ...................................................................................12 Conclusion .............................................................................................14 The Progression of Wireless Technologies Cellular data speeds, beginning with GPRS in 1999, have increased over the last decade by a factor of 10 every 3-5 years. This growth has been driven by increased consumer demand for wireless data bandwidth. Reporterlink1 has estimated that wireless data traffic will increase ten-fold between 2009 and 2017 – a 59% CAGR. Data traffic is expected to hit 1.8 exabytes/month2, fueled by a rapid increase in interactive data and multiplay applications. Video is the largest bandwidth consumer today, a fact that will continue for Long Term Evolution the foreseeable future. (LTE), as defined by Figure -
GS970M Datasheet
Switches | Product Information CentreCOM® GS970M Series Managed Gigabit Ethernet Switches The Allied Telesis CentreCOM GS970M Series of Layer 3 Gigabit switches offer an impressive set of features in a compact design, making them ideal for applications at the network edge. STP root guard ۼۼ Overview Management (UniDirectional Link Detection (UDLD ۼۼ Allied Telesis Autonomous Management ۼۼ Allied Telesis CentreCOM GS970M Series switches provide an excellent Framework™ (AMF) enables powerful centralized management and zerotouch device installation and Security Features access solution for today’s networks, recovery Access Control Lists (ACLs) based on Layer 2, 3 ۼۼ supporting Gigabit to the desktop for Console management port on the front panel for and 4 headers ۼۼ maximum performance. The Power ease of access Configurable auth-fail and guest VLANs ۼۼ Eco-friendly mode allows ports and LEDs to be ۼۼ over Ethernet Plus (PoE+) models Authentication, Authorization, and Accounting ۼۼ provide an ideal solution for connecting disabled to save power (AAA) Industry-standard CLI with context-sensitive help ۼ and remotely powering wireless access ۼ ۼ Bootloader can be password protected for device ۼ ,points, IP video surveillance cameras Powerful CLI scripting engine security ۼۼ ۼ and IP phones. The GS970M models BPDU protection ۼۼ -Comprehensive SNMP MIB support for standards ۼ feature 8, 16 or 24 Gigabit ports, based device management ۼ DHCP snooping, IP source guard and Dynamic ARP ۼ and 2 or 4 SFP uplinks, for secure (Built-in text editor Inspection -
Communications Programming Concepts
AIX Version 7.1 Communications Programming Concepts IBM Note Before using this information and the product it supports, read the information in “Notices” on page 323 . This edition applies to AIX Version 7.1 and to all subsequent releases and modifications until otherwise indicated in new editions. © Copyright International Business Machines Corporation 2010, 2014. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents About this document............................................................................................vii How to use this document..........................................................................................................................vii Highlighting.................................................................................................................................................vii Case-sensitivity in AIX................................................................................................................................vii ISO 9000.....................................................................................................................................................vii Communication Programming Concepts................................................................. 1 Data Link Control..........................................................................................................................................1 Generic Data Link Control Environment Overview............................................................................... -
Testing Radio Network Controller (RNC) Userplane Using Wireshark Tool
ISSN (Print) : 2320 – 3765 ISSN (Online): 2278 – 8875 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (An ISO 3297: 2007 Certified Organization) Vol. 4, Issue 5, May 2015 Testing Radio Network Controller (RNC) Userplane Using Wireshark Tool Ranjith .s1, Sisil John2, Prakash Geol3, M.B. Kamakshi4 M.Tech Student, Dept. of T.E, R.V. College of Engineering, Bangalore, Karnataka, India1 Expert Engineer, Nokia, Bangalore, Karnataka, India2 Line manager, Nokia, Bangalore, Karnataka, India3 Professor, Dept. of T.E, R.V. College of Engineering, Bangalore, Karnataka, India4 ABSTRACT: The telecommunication domain is developing very rapidly to meet the demand of day to day increase in data rate need. For example initially UMTS data rate was up-to 2 Mbps now it increased to 48 Mbps. This directly implies that the features that are developed are also increasing very rapidly. This increase in data can again degrade the network performance. These new features have to be tested accurately before releasing them on to the real world. In this paper we propose a simple and easy method to test RNC UserPlane functionality using wireshark tool. Functionalities imply that the RNC is working as per the standards. In other words user data which RNC receives should not be dropped due to RNC (or within some tolerance). This project is carried out at Nokia. KEYWORDS: Userplane, wireshark, RNC I. INTRODUCTION Universal Mobile Telecommunication system (UMTS), widely known as 3G network is standardized by 3GPP (Third Generation Partnership Project). The UMTS can be divided into three parts as shown in figure 1, this contains User equipment (U.E.), Radio access Network and core network (C.N.).