Master Thesis Electrical Engineering December 2012 Analysis of Radio Access Network Buffer Filling Based on Real Network Data Logabharathi Aruchamy School of Computing Blekinge Institute of Technology 37179 Karlskrona Sweden This thesis is submitted to the School of Computing at Blekinge Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering. The thesis is equivalent to 20 weeks of full time studies. Contact Information Author: Logabharathi Aruchamy E-mail:
[email protected] External Advisor(s) Tomas Lundborg, Mathias Sintorn, Systems Manager, Senior Specialist R&D, Ericsson AB, Ericsson AB, Development Unit Radio-System and Development Unit Radio-System and Technology, Technology, Torshamnsgatan 33, Torshamnsgatan 33, 164 80 Stockholm, Sweden. 164 80 Stockholm, Sweden. University advisor: Prof. Markus Fiedler, School of Computing (COM) School of Computing Internet: www.bth.se/com Blekinge Institute of Technology Phone: +46 455 385000 371 79 KARLSKRONA SWEDEN SWEDEN Abstract The 3G and 4G networks have drastically improved availability and quality in data transmission for bandwidth hungry services such as video streaming and location-based services. As 3G networks are very widely deployed, there exists increased capacity requirement and transport channel allocation to simultaneous users under a particular cell. Due to this reason, adequate resources are not available, which in turn degrades both service quality and user experienced quality. This research aims at understanding the characteristics of buffer filling during dedicated channel (DCH) transmission under fixed bit-rate assumptions on a per-user level taking different services into consideration. Furthermore, the resource utilisation in terms of empty buffer durations and user throughput achieved during dedicated channel transmission are also analysed for different data services existing in the mobile networks.