Hippocampal–Caudate Nucleus Interactions Support Exceptional Memory Performance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Integrated Nature of Metamemory and Memory
The Integrated Nature of Metamemory and Memory John Dunlosky and Robert A. Bjork Introduction Memory has been of interest to scholars and laypeople alike for over 2,000 years. In a rather gruesome example from antiquity, Cicero tells the story of Simonides (557– 468 BC), who discovered the method of loci, which is a powerful mental mnemonic for enhancing one’s memory. Simonides was at a banquet of a nobleman, Scopas. To honor him, Simonides sang a poem, but to Scopas’s chagrin, the poem also honored two young men, Castor and Pollux. Being upset, Scopas told Simonides that he was to receive only half his wage. Simonides was later called from the banquet, and legend has it that the banquet room collapsed, and all those inside were crushed. To help bereaved families identify the victims, Simonides reportedly was able to name every- one according to the place where they sat at the table, which gave him the idea that order brings strength to our memories and that to employ this ability people “should choose localities, then form mental images of things they wanted to store in their memory, and place these in the localities” (Cicero, 2001). Tis example highlights an early discovery that has had important applied impli- cations for improving the functioning of memory (see, e.g., Yates, 1997). Memory theory was soon to follow. Aristotle (385–322 BC) claimed that memory arises from three processes: Events are associated (1) through their relative similarity or (2) rela- tive dissimilarity and (3) when they co-occur together in space and time. -
Mnemonics in a Mnutshell: 32 Aids to Psychiatric Diagnosis
Mnemonics in a mnutshell: 32 aids to psychiatric diagnosis Clever, irreverent, or amusing, a mnemonic you remember is a lifelong learning tool ® Dowden Health Media rom SIG: E CAPS to CAGE and WWHHHHIMPS, mnemonics help practitioners and trainees recall Fimportant lists (suchCopyright as criteriaFor for depression,personal use only screening questions for alcoholism, or life-threatening causes of delirium, respectively). Mnemonics’ effi cacy rests on the principle that grouped information is easi- er to remember than individual points of data. Not everyone loves mnemonics, but recollecting diagnostic criteria is useful in clinical practice and research, on board examinations, and for insurance reimbursement. Thus, tools that assist in recalling di- agnostic criteria have a role in psychiatric practice and IMAGES teaching. JUPITER In this article, we present 32 mnemonics to help cli- © nicians diagnose: • affective disorders (Box 1, page 28)1,2 Jason P. Caplan, MD Assistant clinical professor of psychiatry • anxiety disorders (Box 2, page 29)3-6 Creighton University School of Medicine 7,8 • medication adverse effects (Box 3, page 29) Omaha, NE • personality disorders (Box 4, page 30)9-11 Chief of psychiatry • addiction disorders (Box 5, page 32)12,13 St. Joseph’s Hospital and Medical Center Phoenix, AZ • causes of delirium (Box 6, page 32).14 We also discuss how mnemonics improve one’s Theodore A. Stern, MD Professor of psychiatry memory, based on the principles of learning theory. Harvard Medical School Chief, psychiatric consultation service Massachusetts General Hospital How mnemonics work Boston, MA A mnemonic—from the Greek word “mnemonikos” (“of memory”)—links new data with previously learned information. -
How We Learn: Memory & the Brain
How We Learn: Memory & the Brain or Where did I put those keys? CHARLES J. VELLA, PHD 2018 Proust & his Madeleine: Olfaction and Memory "I raised to my lips a spoonful of the tea in which I had soaked a morsel of the cake. No sooner had the warm liquid mixed with the crumbs touch my palate than a shudder ran trough me and I sopped, intent upon the extraordinary thing that was happening to me. An exquisite pleasure invaded my senses..... And suddenly the memory revealed itself. “ Marcel Proust À la recherche du temps perdu (known in English as: In Search of Lost Time or Remembrance of Things Past): 7 Volumes, 4000 pp. Proustian Effect: fragrances elicit more emotional and evocative memories than other memory cues Study: Proustian Products are Preferred: The Relationship Between Odor-Evoked Memory and Product Evaluation: Lotions preferred if they evoke personal emotional memories Memory Determines your sense of self Determines your ability to plan for future Enables you to remember your past Learning: Ability to learn new things Learning is a restless, piecemeal, subconscious, sneaky process that occurs all the time, when we are awake and when we are asleep. Older Explanation of Memory ATTENTION PROCESSING ENCODING STORAGE RETRIEVAL William James: "My experience is what I agree to attend to.“ Tip #1: There is no memory without first paying attention. Multiple Historical Metaphors for Memory based on then current technology •In Plato’s Theaetetus, metaphor of a stamp on wax • 1904 the German scholar Richard Semon: the engram. • Photograph • Tape recorder • Mirror • Hard drive • Neural network False Assumption: perfect image or recording, lasts forever Purpose of Memory We think of memory as a record of our past experience. -
The Art of Loci: Immerse to Memorize
The Art of Loci: Immerse to Memorize Anne Vetter, Daniel Gotz,¨ Sebastian von Mammen Games Engineering, University of Wurzburg,¨ Germany fanne.vetter,[email protected], [email protected] Abstract—There are uncountable things to be remembered, but assistance during comprehension (R6) of the information, e.g. most people were never shown how to memorize effectively. With by means of verbalization, should follow suit. Due to the this paper, the application The Art of Loci (TAoL) is presented, heterogeneity of learners, the applied process and methods to provide the means for efficient and fun learning. In a virtual reality (VR) environment users can express their study material should be individualized (R7) and strike a productive balance visually, either creating dimensional mind maps or experimenting between user’s choices and imposed learning activities (locus with mnemonic strategies, such as mind palaces. We also present of control) (R8). For example, users should be able to control common memorization techniques in light of their underlying the pace of learning. Learning environments should arouse the pedagogical foundations and discuss the respective features of intrinsic motivation of the user (R9). Fostering an awareness TAoL in comparison with similar software applications. of the learner’s cognition and thus reflection on their learning I. INTRODUCTION process and strategies is also beneficial (metacognition) (R10). Further, a constructivist learning approach can be realized by Before writing was common, information could only be the means to create artefacts such as representations, symbols preserved by memorization. Major ancient literature like The or cues (R11). Finally, cooperative and collaborative learning Iliad and The Odyssey were memorized, passed on through environments can benefit the learning process (R12). -
CHAPTER 6: MEMORY STRATEGIES: MNEMONIC DEVICES in Order to Remember Information, You First Have to Find It Somewhere in Your Memory
CHAPTER 6: MEMORY STRATEGIES: MNEMONIC DEVICES In order to remember information, you first have to find it somewhere in your memory. To be successful in college you need to use active learning strategies that help you store information and retrieve it. Mnemonic devices can help you do that. Mnemonics are techniques for remembering information that is otherwise difficult to recall. The idea behind using mnemonics is to encode complex information in a way that is much easier to remember. Two common types of mnemonic devices are acronyms and acrostics. Acronyms Acronyms are words made up of the first letters of other words. As a mnemonic device, acronyms help you remember the first letters of items in a list, which in turn helps you remember the list itself. Instructor OLC to accompany 100% Online Student Success 1 Examples The following are examples of popular mnemonic acronyms: HOMES Huron, Ontario, Michigan, Erie, Superior Names of the Great Lakes FACE The letters of the treble clef notes in the spaces from bottom to top spells “FACE”. ROY G. BIV Red, Orange, Yellow, Green, Blue, Indigo, Colors of the spectrum Violet MRS GREN Movement, Respiration, Sensitivity, Growth, Common attributes of living Reproduction, Excretion, Nutrition things Create Your Own Acronym Now think of a few words you need to remember. This could be related to your studies, your work, or just a subject of interest. Five steps to creating acronyms are*: 1. List the information you need to learn in meaningful phrases. 2. Circle or underline a keyword in each phrase. 3. Write down the first letter of each keyword. -
Chapter 16 Improving Your Memory + 2 Tips for Selecting Passwords
+ Chapter 16 Improving Your Memory + 2 Tips for Selecting Passwords Use a transformation of some memorable cue involving a mix of letters and symbols Keep a record of all passwords in a place to which only you have access (e.g. a safe deposit box) It is easier to recall the location of a hidden object when the location is likely than when it is unexpected + 3 Popular Mnemonic Aids Harris (1980) surveyed housewives and students on their mnemonic use: Both groups used largely similar techniques; however, Students were more likely to write on their hands Housewives were more likely to write on calendars External aids (e.g. diaries, calendars, lists, and timers) were especially popular …Today we have laptops, PDAs, and mobile telephones Very few internal mnemonics were reported These are especially useful in situations that ban external aids + 4 Memory Experts Shereshevskii The Mind of a Mnemonist by Luria A Russian with an amazing memory A former journalist who never took notes but could repeat back quotes verbatim Had seemingly limitless memory for: Digits (100+) Nonsense syllables Foreign-language poetry Complex figures Complex scientific formulae His memory relied heavily on imagery and synesthesia: The tendency for one sense modality to evoke another His apparent inability to forget, and his synesthesia, caused great complications and struggle for him + Wilding and Valentine (1994) 5 Naturals vs. Strategists Naturals Strategists Innately gifted Highly practiced in certain mnemonic techniques Possess a close relative who exhibits a comparable level of memory ability Tested both kinds of mnemonists at the World Memory Championships on two types of tasks: Strategic Tasks e.g. -
The Roles of the Caudate Nucleus in Human Classification Learning
The Journal of Neuroscience, March 16, 2005 • 25(11):2941–2951 • 2941 Behavioral/Systems/Cognitive The Roles of the Caudate Nucleus in Human Classification Learning Carol A. Seger and Corinna M. Cincotta Department of Psychology, Colorado State University, Fort Collins, Colorado 80523 The caudate nucleus is commonly active when learning relationships between stimuli and responses or categories. Previous research has not differentiated between the contributions to learning in the caudate and its contributions to executive functions such as feedback processing. We used event-related functional magnetic resonance imaging while participants learned to categorize visual stimuli as predicting “rain” or “sun.” In each trial, participants viewed a stimulus, indicated their prediction via a button press, and then received feedback. Conditions were defined on the bases of stimulus–outcome contingency (deterministic, probabilistic, and random) and feedback (negative and positive). A region of interest analysis was used to examine activity in the head of the caudate, body/tail of the caudate, and putamen. Activity associated with successful learning was localized in the body and tail of the caudate and putamen; this activity increased as the stimulus–outcome contingencies were learned. In contrast, activity in the head of the caudate and ventral striatum was associated most strongly with processing feedback and decreased across trials. The left superior frontal gyrus was more active for deterministic than probabilistic stimuli; conversely, extrastriate visual areas were more active for probabilistic than determin- istic stimuli. Overall, hippocampal activity was associated with receiving positive feedback but not with correct classification. Successful learning correlated positively with activity in the body and tail of the caudate nucleus and negatively with activity in the hippocampus. -
Effectiveness of Method of Loci on Short-Term and Long-Term Memory
CALIFORNIA SCIENCE & ENGINEERING FAIR 2018 PROJECT SUMMARY Name(s) Project Number Jasmine E. Elasaad J0709 Project Title Effectiveness of Method of Loci on Short-Term and Long-Term Memory Abstract Objectives/Goals The objective of this study was to determine if the method of loci, a visual-spatial oriented mnemonic device, has an impact on long-term memory. The hypothesis was that the group using the method of loci would recall more words than the rote memorization control group. Methods/Materials A total of 134 students in grades fifth, sixth, seventh and eighth were recruited and then divided into two groups: the method of loci experimental group; and the control group. Prior to testing, the method of loci group received training on how to use the method of loci technique to memorize a list of words, while the control group received no training. Both groups were given identical lists of 20 simple nouns and four minutes to study the lists. After the word lists were collected, the groups were subjected to a 1.5 minute period of silence before being tested on their short-term recall ability. Subjects were given two minutes to write down all the words they could remember. All participants were then re-tested one week later for long-term recall of the word list. Results For the short-term recall results, the control group recalled a mean of 15.5 words (median 16; mode, 20; range 6-20.) The experimental group using the method of loci recalled 16% more words than the control group, with a mean of 18 words (median 19; mode, 20; range, 11-20). -
The Method of Loci in Virtual Reality: Explicit Binding of Objects to Spatial Contexts Enhances Subsequent Memory Recall
Journal of Cognitive Enhancement https://doi.org/10.1007/s41465-019-00141-8 ORIGINAL RESEARCH The Method of Loci in Virtual Reality: Explicit Binding of Objects to Spatial Contexts Enhances Subsequent Memory Recall Nicco Reggente1 & Joey K. Y. Essoe1 & Hera Younji Baek1 & Jesse Rissman1,2 Received: 7 January 2019 /Accepted: 7 June 2019 # Springer Nature Switzerland AG 2019 Abstract The method of loci (MoL) is a well-known mnemonic technique in which visuospatial spatial environments are used to scaffold the memorization of non-spatial information. We developed a novel virtual reality-based implementation of the MoL in which participants used three unique virtual environments to serve as their “memory palaces.” In each world, participants were presented with a sequence of 15 3D objects that appeared in front of their avatar for 20 s each. The experimental group (N = 30) was given the ability to click on each object to lock it in place, whereas the control group (N = 30) was not afforded this functionality. We found that despite matched engagement, exposure duration, and instructions emphasizing the efficacy of the mnemonic across groups, participants in the experimental group recalled 28% more objects. We also observed a strong relation- ship between spatial memory for objects and landmarks in the environment and verbal recall strength. These results provide evidence for spatially mediated processes underlying the effectiveness of the MoL and contribute to theoretical models of memory that emphasize spatial encoding as the primary currency of mnemonic function. Keywords Memory enhancement . Method of loci . Virtual reality Introduction the MoL is a complicated, time-consuming mnemonic to imple- ment, but in fact, it is rather straightforward. -
The Three Amnesias
The Three Amnesias Russell M. Bauer, Ph.D. Department of Clinical and Health Psychology College of Public Health and Health Professions Evelyn F. and William L. McKnight Brain Institute University of Florida PO Box 100165 HSC Gainesville, FL 32610-0165 USA Bauer, R.M. (in press). The Three Amnesias. In J. Morgan and J.E. Ricker (Eds.), Textbook of Clinical Neuropsychology. Philadelphia: Taylor & Francis/Psychology Press. The Three Amnesias - 2 During the past five decades, our understanding of memory and its disorders has increased dramatically. In 1950, very little was known about the localization of brain lesions causing amnesia. Despite a few clues in earlier literature, it came as a complete surprise in the early 1950’s that bilateral medial temporal resection caused amnesia. The importance of the thalamus in memory was hardly suspected until the 1970’s and the basal forebrain was an area virtually unknown to clinicians before the 1980’s. An animal model of the amnesic syndrome was not developed until the 1970’s. The famous case of Henry M. (H.M.), published by Scoville and Milner (1957), marked the beginning of what has been called the “golden age of memory”. Since that time, experimental analyses of amnesic patients, coupled with meticulous clinical description, pathological analysis, and, more recently, structural and functional imaging, has led to a clearer understanding of the nature and characteristics of the human amnesic syndrome. The amnesic syndrome does not affect all kinds of memory, and, conversely, memory disordered patients without full-blown amnesia (e.g., patients with frontal lesions) may have impairment in those cognitive processes that normally support remembering. -
The Claustrum: Three-Dimensional Reconstruction, Photorealistic Imaging, and Stereotactic Approach
Folia Morphol. Vol. 70, No. 4, pp. 228–234 Copyright © 2011 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl The claustrum: three-dimensional reconstruction, photorealistic imaging, and stereotactic approach S. Kapakin Department of Anatomy, Faculty of Medicine, Atatürk University, Erzurum, Turkey [Received 7 July 2011; Accepted 25 September 2011] The purpose of this study was to reveal the computer-aided three-dimensional (3D) appearance, the dimensions, and neighbourly relations of the claustrum and make a stereotactic approach to it by using serial sections taken from the brain of a human cadaver. The Snake technique was used to carry out 3D reconstructions of the claustra and surrounding structures. The photorealistic imaging and stereo- tactic approach were rendered by using the Advanced Render Module in Cinema 4D software. The claustrum takes the form of the concavity of the insular cortex and the convexity of the putamen. The inferior border of the claustrum is at about the same level as the bottom edge of the insular cortex and the putamen, but the superior border of the claustrum is at a lower level than the upper edge of the insular cortex and the putamen. The volume of the right claustrum, in the dimen- sions of 35.5710 mm ¥ 1.0912 mm ¥ 16.0000 mm, was 828.8346 mm3, and the volume of the left claustrum, in the dimensions of 32.9558 mm ¥ 0.8321 mm ¥ ¥ 19.0000 mm, was 705.8160 mm3. The surface areas of the right and left claustra were calculated to be 1551.149697 mm2 and 1439.156450 mm2 by using Surf- driver software. -
Motor Systems Basal Ganglia
Motor systems 409 Basal Ganglia You have just read about the different motor-related cortical areas. Premotor areas are involved in planning, while MI is involved in execution. What you don’t know is that the cortical areas involved in movement control need “help” from other brain circuits in order to smoothly orchestrate motor behaviors. One of these circuits involves a group of structures deep in the brain called the basal ganglia. While their exact motor function is still debated, the basal ganglia clearly regulate movement. Without information from the basal ganglia, the cortex is unable to properly direct motor control, and the deficits seen in Parkinson’s and Huntington’s disease and related movement disorders become apparent. Let’s start with the anatomy of the basal ganglia. The important “players” are identified in the adjacent figure. The caudate and putamen have similar functions, and we will consider them as one in this discussion. Together the caudate and putamen are called the neostriatum or simply striatum. All input to the basal ganglia circuit comes via the striatum. This input comes mainly from motor cortical areas. Notice that the caudate (L. tail) appears twice in many frontal brain sections. This is because the caudate curves around with the lateral ventricle. The head of the caudate is most anterior. It gives rise to a body whose “tail” extends with the ventricle into the temporal lobe (the “ball” at the end of the tail is the amygdala, whose limbic functions you will learn about later). Medial to the putamen is the globus pallidus (GP).