Insect Morphometry Is Reproducible Under Average Investigation Standards
Insect Morphometry is Reproducible Under Average Investigation Standards Sandor Csosz1, Bernhard Seifert2, Istvan Mik´o3, Brendon Boudinot4, Marek Borowiec5, Brian Fisher6, Matthew Prebus5, Jayanthi Puniamoorthy7, Jean Claude Rakotonirina8, Nicole Rasoamanana8, Roland Schultz2, Carolyn Trietsch9, Jonah Ulmer10, and Zolt´an Elek11 1MTA 2Senckenberg Museum of Natural History G¨orlitz 3University of New Hampshire Department of Biological Sciences 4University of California Davis Department of Entomology and Nematology 5University of Idaho 6California Academy of Sciences 7National University of Singapore 8Madagascar Biodiversity Center 9Pennsylvania State University University Park 10Staatliches Museum f¨urNaturkunde Stuttgart 11MTA-ELTE-MTM, Ecology Research Group August 28, 2020 Abstract Morphometric research is being applied to a growing number and variety of organisms. Discoveries achieved via morphometric approaches are often considered highly transferable, in contrast to the tacit and idiosyncratic interpretation of discrete character states. The reliability of morphometric workflows in insect systematics has never been a subject of focused research, but such studies are sorely needed. In this paper, we assess the reproducibility of morphometric studies of ants where the mode of data collection is a shared routine. We compared datasets generated by eleven independent gaugers, i.e. collaborators, who measured 21 continuous morphometric traits on the same pool of individuals according to the same protocol. The gaugers possessed a wide range of morphometric skills, had varying expertise among insect groups, and differed in their facility with measuring equipment. We used Intraclass correlation coefficients (ICC) to calculate repeatability and reproducibility values (i.e., intra-, and inter-gauger agreements), and we performed a multivariate Permutational Multivariate Analysis of Variance (PERMANOVA) using the Morosita index of dissimilarity with 9999 iterations.
[Show full text]