<<

Freescale Semiconductor Document Number: MRFE6S9200H Technical Data Rev. 1, 12/2008 RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed for broadband commercial and industrial applications with MRFE6S9200HR3 frequencies up to 1000 MHz. The high gain and broadband performance of MRFE6S9200HSR3 these devices make them ideal for large-signal, common-source amplifier applications in 28 volt base station equipment. • Typical Single-Carrier W-CDMA Performance: VDD = 28 Volts, IDQ = 1400 mA, Pout = 58 Watts Avg., f = 880 MHz, 3GPP Test Model 1, 64 DPCH with 45.2% Clipping, Channel Bandwidth = 3.84 MHz, Input 880 MHz, 58 W AVG., 28 V Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. SINGLE W-CDMA Power Gain — 21 dB LATERAL N-CHANNEL Drain Efficiency — 35% RF POWER MOSFETs Device Output Signal PAR — 6.36 dB @ 0.01% Probability on CCDF ACPR @ 5 MHz Offset — -40 dBc in 3.84 MHz Channel Bandwidth • Capable of Handling 10:1 VSWR, @ 32 Vdc, 880 MHz, Pout = 300 W CW (3 dB Input Overdrive from Rated Pout), Designed for Enhanced Ruggedness. Features • 100% PAR Tested for Guaranteed Output Power Capability • Characterized with Series Equivalent Large-Signal Impedance Parameters CASE 465B-03, STYLE 1 • Internally Matched for Ease of Use NI-880 • MRFE6S9200HR3 Qualified Up to a Maximum of 32 VDD Operation • Integrated ESD Protection • RoHS Compliant • In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel.

CASE 465C-02, STYLE 1 NI-880S MRFE6S9200HSR3

Table 1. Maximum Ratings Rating Symbol Value Unit

Drain-Source Voltage VDSS -0.5, +66 Vdc

Gate-Source Voltage VGS -0.5, +12 Vdc ° Storage Temperature Range Tstg - 65 to +150 C ° Case Operating Temperature TC 150 C (1,2) ° Operating Junction Temperature TJ 225 C Table 2. Thermal Characteristics Characteristic Symbol Value (2,3) Unit ° Thermal Resistance, Junction to Case RθJC C/W Case Temperature 80°C, 200 W CW 0.29 Case Temperature 79°C, 58 W CW 0.33 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955.

© Freescale Semiconductor, Inc., 2007-2008. All rights reserved. MRFE6S9200HR3 MRFE6S9200HSR3 RF Device Data Freescale Semiconductor 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22-A114) 1C (Minimum) Machine Model (per EIA/JESD22-A115) A (Minimum) Charge Device Model (per JESD22-C101) IV (Minimum) ° Table 4. Electrical Characteristics (TC = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Off Characteristics μ Zero Gate Voltage Drain Leakage Current IDSS — — 10 Adc (VDS = 66 Vdc, VGS = 0 Vdc) μ Zero Gate Voltage Drain Leakage Current IDSS — — 1 Adc (VDS = 28 Vdc, VGS = 0 Vdc) μ Gate-Source Leakage Current IGSS — — 10 Adc (VGS = 5 Vdc, VDS = 0 Vdc) On Characteristics

Gate Threshold Voltage VGS(th) 1.2 2 2.7 Vdc μ (VDS = 10 Vdc, ID = 600 Adc)

Gate Quiescent Voltage VGS(Q) 2 2.7 3.8 Vdc (VDD = 28 Vdc, ID = 1400 mAdc, Measured in Functional Test)

Drain-Source On-Voltage VDS(on) 0.1 0.2 0.3 Vdc (VGS = 10 Vdc, ID = 4.1 Adc) Dynamic Characteristics (1)

Reverse Transfer Capacitance Crss — 2.41 — pF ± (VDS = 28 Vdc 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)

Output Capacitance Coss — 74.61 — pF ± (VDS = 28 Vdc 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)

Input Capacitance Ciss — 557.27 — pF ± (VDS = 28 Vdc, VGS = 0 Vdc 30 mV(rms)ac @ 1 MHz)

Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1400 mA, Pout = 58 W Avg. W-CDMA, f = 880 MHz, Single-Carrier W-CDMA, 3.84 MHz Channel Bandwidth Carrier. ACPR measured in 3.84 MHz Channel Bandwidth @ 5 MHz Offset. PAR = 7.5 dB @ 0.01% Probability on CCDF.

Power Gain Gps 20 21 23 dB η Drain Efficiency D 33 35 — % Output Peak-to-Average Ratio @ 0.01% Probability on CCDF PAR 6 6.36 — dB Adjacent Channel Power Ratio ACPR — -40 -36.5 dBc Input Return Loss IRL — -15 -9 dB ο Typical Performances (In Freescale Test Fixture, 50 hm system) VDD = 28 Vdc, IDQ = 1400 mA, 865-900 MHz Bandwidth

Video Bandwidth @ 200 W PEP Pout where IM3 = -30 dBc VBW MHz (Tone Spacing from 100 kHz to VBW) — 10 — ΔIMD3 = IMD3 @ VBW frequency - IMD3 @ 100 kHz <1 dBc (both sidebands)

Gain Flatness in 35 MHz Bandwidth @ Pout = 58 W Avg. GF — 0.5 — dB Average Deviation from Linear Phase in 35 MHz Bandwidth Φ — 0.28 — ° @ Pout = 200 W CW

Average Group Delay @ Pout = 200 W CW, f = 880 MHz Delay — 3.72 — ns ΔΦ ° Part-to-Part Insertion Phase Variation @ Pout = 200 W CW, — 15.9 — f = 880 MHz, Six Sigma Window Gain Variation over Temperature (-30°C to +85°C) ΔG — 0.016 — dB/°C Output Power Variation over Temperature (-30°C to +85°C) ΔP1dB — 0.008 — dBm/°C 1. Part is internally matched on input.

MRFE6S9200HR3 MRFE6S9200HSR3 RF Device Data 2 Freescale Semiconductor VSUPPLY + + B1 Z11 C4 C22 C23 C32 C28 C34 VBIAS + Z13 C30 C26 R3 C2 RF R2 C11 C12 C14 C16 C18 OUTPUT Z15 Z16 Z17 Z18 Z19 Z20 Z21 Z22 Z23 Z24 Z25 RF C9 INPUT Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 C6 C10 C13 C15 C17 C19 C21 C1 C20 C7 C8 DUT Z14 R1 B2 Z12 + + C5 C25 C24 C33 C29 C31 C27 R4 C3

Z1 0.351″ x 0.080″ Microstrip Z9 0.119″ x 0.118″ Microstrip Z19 0.074″ x 0.669″ x 0.707″ Taper Z2 0.538″ x 0.080″ Microstrip Z10 0.305″ x 0.980″ Microstrip Z20 0.074″ x 0.524″ x 0.595″ Taper Z3 0.424″ x 0.080″ Microstrip Z11, Z12 2.134″ x 0.070″ Microstrip Z21 0.058″ x 0.474″ x 0.488″ Taper Z4 0.052″ x 0.220″ Microstrip Z13, Z14 1.885″ x 0.100″ Microstrip Z22 0.326″ x 0.491″ Microstrip Z5 0.414″ x 0.220″ Microstrip Z15 0.100″ x 1.090″ Microstrip Z23 0.708″ x 0.220″ Microstrip Z6 0.052″ x 0.491″ Microstrip Z16 0.212″ x 1.090″ Microstrip Z24 0.555″ x 0.080″ Microstrip Z7 0.140″ x 0.491″ Microstrip Z17 0.083″ x 0.962″ x 1.036″ Taper Z25 0.356″ x 0.080″ Microstrip Z8 0.244″ x 0.736″ x 0.980″ Taper Z18 0.074″ x 0.816″ x 0.888″ Taper PCB Arlon CuClad 250GX-0300-55-22, ″ ε 0.030 , r = 2.55

Figure 1. MRFE6S9200HR3(SR3) Test Circuit Schematic

Table 5. MRFE6S9200HR3(SR3) Test Circuit Component Designations and Values Part Description Part Number Manufacturer B1, B2 Small Ferrite Beads, Surface Mount 2743019447 Fair Rite C1, C2, C3, C4, C5, C6 47 pF Chip Capacitors ATC100B470JT500XT ATC C7 2.7 pF Chip Capacitor ATC100B2R7JT500XT ATC C8, C9, C18, C19 1.3 pF Chip Capacitors ATC100B1R3JT500XT ATC C10, C11 12 pF Chip Capacitors ATC100B120JT500XT ATC C12, C13 4.3 pF Chip Capacitors ATC100B4R3JT500XT ATC C14, C15, C16, C17 3.3 pF Chip Capacitors ATC100B3R3JT500XT ATC C20 0.6-4.5 pF Variable Capacitor, Gigatrim 27271SL Johanson C21 0.8-8.0 pF Variable Capacitor, Gigatrim 27291SL Johanson C22, C23, C24, C25 10 μF, 50 V Chip Capacitors GRM55DR61H106KA88B Murata C26, C27 10 μF, 35 V Tantalum Chip Capacitors T491C106K035AT Kemet C28, C29 22 μF, 35 V Tantalum Chip Capacitors T491C226K035AT Kemet C30, C31, C32, C33 0.1 μF Chip Capacitors CDR33Bx104AKYS Kemet C34 330 μF, 63 V Electrolytic Capacitor EKMG630ELL331MJ205 United Chemi-Con R1, R2, R3, R4 10 Ω, 1/4 W Chip Resistors CRCW120610R0FKEA Vishay

MRFE6S9200HR3 MRFE6S9200HSR3 RF Device Data Freescale Semiconductor 3 C2 C4

C26 900 MHz NI−880 C22 B1 Rev. 3 R3 C30 C23 C28

C32 C34

R2 C11 C6 C16 C18 C9 C12 C14 C13 C21 C8 C15 C17 C19 C1 C7 C20 R1 C10

C33 CUT OUT AREA OUT CUT

B2 C31 C24 C29

C25 C27

C3 C5

Figure 2. MRFE6S9200HR3(SR3) Test Circuit Component Layout

MRFE6S9200HR3 MRFE6S9200HSR3 RF Device Data 4 Freescale Semiconductor TYPICAL CHARACTERISTICS

23 38

22 34 η D Gps

21 30 , DRAIN D η

20 26 EFFICIENCY (%) VDD = 28 Vdc, Pout = 58 W (Avg.) IDQ = 1400 mA, Single−Carrier W−CDMA 19 3.84 MHz Channel Bandwidth −0.3 0 PAR = 7.5 dB @ 0.01% Probability (CCDF) 18 −0.6 −4 , POWER GAIN (dB)

ps 17 −0.9

G −9

16 IRL −1.2 (dBc) PARC −12 PARC 15 −1.5 −16

800 820 840 860 880 900 920 940 960 IRL, INPUT RETURN LOSS (dB) f, FREQUENCY (MHz) Figure 3. Single-Carrier W-CDMA Broadband Performance @ Pout = 58 Watts Avg.

22 51

21 45 η D

20 39 , DRAIN D VDD = 28 Vdc, Pout = 99 W (Avg.) η 19 Gps IDQ = 1400 mA, Single−Carrier W−CDMA 33 EFFICIENCY (%) 3.84 MHz Channel Bandwidth 18 PAR = 7.5 dB @ 0.01% Probability (CCDF) −2.2 −3

17 −2.4 −6 , POWER GAIN (dB)

ps 16 −2.6

G −9 IRL 15 −2.8 (dBc) PARC −12 PARC 14 −3 −15

800 820 840 860 880 900 920 940 960 IRL, INPUT RETURN LOSS (dB) f, FREQUENCY (MHz) Figure 4. Single-Carrier W-CDMA Broadband Performance @ Pout = 99 Watts Avg.

23 0 VDD = 28 Vdc I = 2100 mA 22 DQ −10 f1 = 875 MHz, f2 = 885 MHz Two−Tone Measurements

1750 mA −20 21 I = 700 mA 1400 mA DQ 1050 mA 20 1400 mA −30

, POWER GAIN (dB) 19 1050 mA −40 ps IMD, THIRD ORDER G 2100 mA VDD = 28 Vdc 1750 mA 18 700 mA f1 = 875 MHz, f2 = 885 MHz −50

Two−Tone Measurements (dBc) INTERMODULATION DISTORTION 17 −60 1 10100 600 1 10 100 600

Pout, OUTPUT POWER (WATTS) PEP Pout, OUTPUT POWER (WATTS) PEP Figure 5. Two-Tone Power Gain versus Figure 6. Third Order Intermodulation Distortion Output Power versus Output Power

MRFE6S9200HR3 MRFE6S9200HSR3 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS

−10 −10

VDD = 28 Vdc, IDQ = 1400 mA −20 f1 = 875 MHz, f2 = 885 MHz −20 Two−Tone Measurements IM3−U IM3−L −30 −30

3rd Order IM5−U −40 −40 IM5−L 5th Order IM7−U −50 −50

7th Order IM7−L V = 28 Vdc, P = 240 W (PEP), I = 1400 mA −60 −60 DD out DQ Two−Tone Measurements (f1 + f2)/2 = Center Frequency of 880 MHz IMD, INTERMODULATION DISTORTION (dBc) DISTORTION IMD, INTERMODULATION IMD, INTERMODULATION DISTORTION (dBc) DISTORTION IMD, INTERMODULATION −70 −70 110 100 600 110 100 TWO−TONE SPACING (MHz) Pout, OUTPUT POWER (WATTS) PEP Figure 7. Intermodulation Distortion Products Figure 8. Intermodulation Distortion Products versus Output Power versus Tone Spacing

1 60

Ideal 0 55

−1 50

−1 dB = 59.7 W −2 45 −2 dB = 82.5 W

−3 40 DRAIN EFFICIENCY (%) ,

−3 dB = 115 W D

Actual η −4 35 PROBABILITY ON THE CCDF (dB) VDD = 28 Vdc, IDQ = 1400 mA

OUTPUT COMPRESSION AT THE 0.01% THE OUTPUT COMPRESSION AT f = 880 MHz, Input PAR = 7.5 dB −5 30 50 60 70 80 90100 110 120

Pout, OUTPUT POWER (WATTS) Figure 9. Output Peak-to-Average Ratio Compression (PARC) versus Output Power

−30 24 80 V = 28 Vdc, I = 1400 mA, f = 880 MHz DD DQ −30_C Single−Carrier W−CDMA, PAR = 7.5 dB, ACPR @ 23 70 5 MHz Offset in 3.84 MHz Integrated Bandwidth 25_C −40 22 _ 60 Gps TC = −30 C Uncorrected, Upper and Lower 85_C 21 25_C 50 −50 20 40 _

, POWER GAIN (dB) 85 C 19 30 DPD Corrected ps

DPD Corrected, with G

No Memory Correction DRAIN EFFICIENCY (%)

−60 Memory Correction 18 20 , D

VDD = 28 Vdc η 17 10 η IDQ = 1400 mA D

ACPR, UPPER AND LOWER RESULTS (dBc) ACPR, UPPER AND LOWER RESULTS f = 880 MHz −70 16 0 3839 40 41 42 43 44 45 46 47 48 49 0.1 1 10 100 600

Pout, OUTPUT POWER (dBm) Pout, OUTPUT POWER (WATTS) CW Figure 10. Digital Predistortion Correction versus Figure 11. Power Gain and Drain Efficiency ACPR and Output Power versus CW Output Power

MRFE6S9200HR3 MRFE6S9200HSR3 RF Device Data 6 Freescale Semiconductor TYPICAL CHARACTERISTICS

22 109 IDQ = 1400 mA f = 880 MHz 21 108

20 107 19 MTTF (HOURS) , POWER GAIN (dB)

ps 6 G 10 18 28 V

VDD = 24 V 32 V 17 105 0 100 200 300 400 90 110 130 150 170 190 210 230 250

Pout, OUTPUT POWER (WATTS) CW TJ, JUNCTION TEMPERATURE (°C) Figure 12. Power Gain versus Output Power This above graph displays calculated MTTF in hours when the device is operated at VDD = 28 Vdc, Pout = 58 W Avg., and ηD = 35%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 13. MTTF versus Junction Temperature

W-CDMA TEST SIGNAL

100 −10 3.84 MHz −20 Channel BW 10 −30

1 −40 Input Signal −50 0.1 −60 (dB) 0.01 PROBABILITY (%) −70 W−CDMA. ACPR Measured in 3.84 MHz Channel Bandwidth @ "5 MHz Offset. 0.001 −80 PAR = 7.5 dB @ 0.01% Probability on CCDF −90 −ACPR in 3.84 MHz −ACPR in 3.84 MHz 0.0001 Integrated BW Integrated BW 0 246810 −100 PEAK−TO−AVERAGE (dB) −110 Figure 14. CCDF W-CDMA 3GPP, Test Model 1, −9 −7.2 −5.4 −3.6 −1.8 0 1.83.6 5.4 7.2 9 64 DPCH, 50% Clipping, Single-Carrier Test Signal f, FREQUENCY (MHz) Figure 15. Single-Carrier W-CDMA Spectrum

MRFE6S9200HR3 MRFE6S9200HSR3 RF Device Data Freescale Semiconductor 7 f = 960 MHz

Zload Zo = 5 Ω f = 800 MHz

Zsource

f = 960 MHz f = 800 MHz

VDD = 28 Vdc, IDQ = 1400 mA, Pout = 58 W Avg.

f Zsource Zload MHz W W 800 4.23 - j4.85 0.70 - j0.33 820 4.46 - j4.69 0.76 - j0.13 840 4.39 - j4.75 0.78 - j0.02 860 4.06 - j4.68 0.79 + j0.09 880 3.70 - j4.45 0.81 + j0.16 900 3.55 - j4.04 0.86 + j0.21 920 3.57 - j3.71 0.89 + j0.27 940 3.67 - j3.47 0.89 + j0.31 960 3.67 - j3.45 0.82 + j0.33

Zsource = Test circuit impedance as measured from gate to ground.

Zload = Test circuit impedance as measured from drain to ground.

Input Device Output Matching Under Matching Network Test Network

Z Z source load

Figure 16. Series Equivalent Source and Load Impedance

MRFE6S9200HR3 MRFE6S9200HSR3 RF Device Data 8 Freescale Semiconductor PACKAGE DIMENSIONS

B G NOTES: 1 2X Q 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M−1994. M M M bbbT A B 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION H IS MEASURED 0.030 (0.762) AWAY B FROM PACKAGE BODY. (FLANGE) 4. DELETED 3 INCHES MILLIMETERS DIM MIN MAX MIN MAX K 2 A 1.335 1.345 33.91 34.16 B 0.535 0.545 13.6 13.8 D C 0.147 0.200 3.73 5.08 D bbbM T A M B M 0.495 0.505 12.57 12.83 E 0.035 0.045 0.89 1.14 F 0.003 0.006 0.08 0.15 G 1.100 BSC 27.94 BSC M (INSULATOR) (LID) R H 0.057 0.067 1.45 1.70 K 0.170 0.210 4.32 5.33 M M M M M M bbbT A B cccT A B M 0.872 0.888 22.15 22.55 N 0.871 0.889 19.30 22.60 N (LID) S (INSULATOR) Q .118 .138 3.00 3.51 R 0.515 0.525 13.10 13.30 cccM T A M B M M M M aaaT A B S 0.515 0.525 13.10 13.30 H aaa 0.007 REF 0.178 REF bbb 0.010 REF 0.254 REF ccc C 0.015 REF 0.381 REF STYLE 1: F PIN 1. DRAIN E SEATING 2. GATE T PLANE 3. SOURCE AA CASE 465B-03 (FLANGE) ISSUE D NI-880 MRFE6S9200HR3

B NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI 1 Y14.5M−1994. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. B (FLANGE) INCHES MILLIMETERS DIM MIN MAX MIN MAX A 0.905 0.915 22.99 23.24 K 2 B 0.535 0.545 13.60 13.80 C 0.147 0.200 3.73 5.08 D 0.495 0.505 12.57 12.83 D E 0.035 0.045 0.89 1.14 bbbM T A M B M F 0.003 0.006 0.08 0.15 H 0.057 0.067 1.45 1.70 K 0.170 0.210 4.32 5.33 M 0.872 0.888 22.15 22.55 (INSULATOR) R (LID) M N 0.871 0.889 19.30 22.60 R bbbM T A M B M cccM T A M B M 0.515 0.525 13.10 13.30 S 0.515 0.525 13.10 13.30 N (LID) S (INSULATOR) aaa 0.007 REF 0.178 REF bbb 0.010 REF 0.254 REF cccM T A M B M aaaM T A M B M ccc 0.015 REF 0.381 REF H STYLE 1: PIN 1. DRAIN 2. GATE C 3. SOURCE F E SEATING T PLANE AA CASE 465C-02 (FLANGE) ISSUE D NI-880S MRFE6S9200HSR3

MRFE6S9200HR3 MRFE6S9200HSR3 RF Device Data Freescale Semiconductor 9 PRODUCT DOCUMENTATION

Refer to the following documents to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices

REVISION HISTORY

The following table summarizes revisions to this document.

Revision Date Description

0 Mar. 2007 • Initial Release of Data Sheet

1 Dec. 2008 • Updated Full Frequency Band in Typical Performance bullet to f = 880 MHz to match actual production test, p. 1 • Clarified 3 dB overdrive test condition for HV6E enhanced ruggedness parts, p. 1 • Corrected Ciss test condition to indicate AC stimulus on the VGS connection versus the VDS connection, Dynamic Characteristics table, p. 2 • Changed maximum adjacent channel power ratio specification from -38.5 dBc to -36.5 dBc to match actual production test limits, p. 2 • Updated PCB information to show more specific material details, Fig. 1, Test Circuit Schematic, p. 3 • Updated Part Numbers in Table 5, Component Designations and Values, to latest RoHS compliant part numbers, p. 3 • Deleted output signal data from Fig. 14, CCDF W-CDMA 3GPP, Test Model 1, 64 DPCH, 50% Clipping, Single-Carrier Test Signal, p. 7

MRFE6S9200HR3 MRFE6S9200HSR3 RF Device Data 10 Freescale Semiconductor How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 Information in this document is provided solely to enable system and software 81829 Muenchen, implementers to use Freescale Semiconductor products. There are no express or +44 1296 380 456 (English) implied copyright licenses granted hereunder to design or fabricate any integrated +46 8 52200080 (English) +49 89 92103 559 (German) circuits or integrated circuits based on the information in this document. +33 1 69 35 48 48 (French) www.freescale.com/support Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or : guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor Japan Ltd. Freescale Semiconductor assume any liability arising out of the application or use of Headquarters any product or circuit, and specifically disclaims any and all liability, including without ARCO Tower 15F limitation consequential or incidental damages. “Typical” parameters that may be 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 provided in Freescale Semiconductor data sheets and/or specifications can and do Japan vary in different applications and actual performance may vary over time. All operating 0120 191014 or +81 3 5437 9125 parameters, including “Typicals”, must be validated for each customer application by [email protected] customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are Asia/Pacific: not designed, intended, or authorized for use as components in systems intended for Freescale Semiconductor China Ltd. surgical implant into the body, or other applications intended to support or sustain life, Exchange Building 23F or for any other application in which the failure of the Freescale Semiconductor product No. 118 Jianguo Road Chaoyang District could create a situation where personal injury or death may occur. Should Buyer Beijing 100022 purchase or use Freescale Semiconductor products for any such unintended or China unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor +86 10 5879 8000 and its officers, employees, subsidiaries, affiliates, and distributors harmless against all [email protected] claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such For Literature Requests Only: unintended or unauthorized use, even if such claim alleges that Freescale Freescale Semiconductor Literature Distribution Center Semiconductor was negligent regarding the design or manufacture of the part. P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. Fax: +1-303-675-2150 All other product or service names are the property of their respective owners. [email protected] © Freescale Semiconductor, Inc. 2007-2008. All rights reserved.

MRFE6S9200HR3 MRFE6S9200HSR3 RFDocument Device Number: Data MRFE6S9200H FreescaleRev. 1, 12/2008 Semiconductor 11 Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP : MRFE6S9200HR5