HEALTH ASPECTS of DRY SANITATION with WASTE REUSE Anne Peasey
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sustainable Environmental Protection Using Modified Pit-Latrines
Sustainable Environmental Protection Using Modified Pit-Latrines Esnati James Chaggu Promotor: Prof. dr.ir. G. Lettinga Hoogleraar in de anaërobe zuiveringstechnologie en hergebruik van afvalstoffen Co-promotoren: Dr. W. T. M. Sanders Post-doc onderzoeker bij de sectie Milieutechnologie, Wageningen Universiteit, Nederland Prof. A. Mashauri Dar-es-Salaam Universiteit, Tanzania Samenstelling promotiecommissie: Prof. G. Spaargaren Wageningen Universiteit Prof. dr. H. J. Gijzen UNESCO-IHE, Delft, Nederland Dr. G. J. Medema KIWA Water Research, Nieuwegein, Nederland Prof. Dr. H. Folmer Wageningen Universiteit Dit onderzoek is uitgevoerd binnen de onderzoekschool Wimek Sustainable Environmental Protection Using Modified Pit-Latrines Esnati James Chaggu Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. Dr. Ir. L. Speelman, in het openbaar te verdedigen op dinsdag 23 maart 2003 des namiddags te half twee in de aula CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG. Chaggu, E. J. Sustainable Environmental Protection Using Modified Pit-Latrines ISBN: 90-5808-989-4 Subject headings: excreta disposal/blackwater/nightsoil/anaerobic digestion/improved pit latrines Abstract - Chaggu, E. J. (2004). Sustainable Environmental Protection Using Modified Pit-Latrines. Ph.D Thesis, Wageningen University, The Netherlands. Pit-latrines are on-site excreta disposal facilities widely used as anaerobic accumulation system for stabilizing human wastes like excreta, both in rural and urban settlements of developing countries. Flooding of pit-latrines is often a common phenomenon, especially in situations of high water table (HWT) conditions and during the rainy season, causing a health jeopardy to residents. The pits are not water-tight, the (ground)water can freely flow in and out of the pit, especially in HWT areas. -
UD & Composting Toilets (Ecosan)
UD Toilets and Composting Toilets in Emergency Settings This Technical Brief looks at the criteria for selecting Urine Diversion (UD) and Composting Toilets options in an emergency setting, including the construction, operation and maintenance of such units which is used to store and dry the faeces over a specified Ecological Sanitation or period. Normally, it is recommended to store faeces for a Sustainable Sanitation? minimum of 12-months in one vault before emptying. Adding a desiccating material such as ash or sawdust will The approach of Ecological Sanitation (Ecosan) in accelerate the faeces drying process. Typically, in a well- emergency settings breaks with conventional excreta managed ecosan unit, storage times of greater than 3- disposal options such as pit latrines or pour-flush toilets. months will reduce many pathogens to safe levels, in Traditionally, Ecosan systems re-use both faeces and particular those responsible for Ameobiasis, Giardiasis, urine, turning them into either a soil conditioner or a Hepatitis A, Hookworm, Whipworm, Threadworm, fertilizer. This not only benefits peoples’ health through Rotavirus, Cholera, Escherichia coli, and Typhoid safe excreta disposal and by reducing environmental amongst others. Ascaris is more persistent though, and contamination, but also implies re-using the by-products may require retention times of 12-months or more. for some form of agricultural activity. In an emergency setting, the choice of ecosan options is very often driven by factors other than the re-use of all or part of the by-products. Ecosan toilets are very often better suited to rocky ground or areas with high water tables, making them more resistant to cyclic flooding for instance. -
Together for Waterless Toilets
Together for waterless toilets This years biggest news, though the smallest toilet. You can read all about our tiny master on page 12 and 13. Separett 2021 Intro ”Our vision is to contribute to a higher quality of life for the many” This broschure has been created with accuracy. Products may differ slightly from image and reality. We reserve the right to make any product changes regarding appearance and content as well as errors in text and images 2 3 Intro Separett 2021 The journey towards hygenic toilet solutions Over 2,4 million people are at the moment not having www.separett.com access to a toilet. The result of this is the every year death of Look in to our blogg for thousands of adults and children. The contribution of interesting articles and Separett being able to provide toilet solutions that can give other fun reading people a higher quality of life all over the world is very important. We want to accelerate the development of hygenic toilet solutions for the population of the world. That is the mission of Separett. And we do it by developing sewage- and waterless toilets. It is a long journey I want to improve that is being guided by our Separett AB hearts more than our economical goals. It is only together that we can at Youtube. reach the goals being set by United nations regarding the security for Follow our Youtube channel for inspiration and advices safe water and sanitation around the world. As a part of the humanity and its progress towards sanitary toilet solutions are we at Separett together with a non-profit organisation sending toilets to areas in Peru where the need of toilet solutions are great. -
Technology Review of Urine-Diverting Dry Toilets (Uddts) Overview of Design, Operation, Management and Costs
Technology Review of Urine-diverting dry toilets (UDDTs) Overview of design, operation, management and costs As a federally owned enterprise, we support the German Government in achieving its objectives in the field of international cooperation for sustainable development. Published by: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Registered offices Bonn and Eschborn, Germany T +49 228 44 60-0 (Bonn) T +49 61 96 79-0 (Eschborn) Friedrich-Ebert-Allee 40 53113 Bonn, Germany T +49 228 44 60-0 F +49 228 44 60-17 66 Dag-Hammarskjöld-Weg 1-5 65760 Eschborn, Germany T +49 61 96 79-0 F +49 61 96 79-11 15 E [email protected] I www.giz.de Name of sector project: SV Nachhaltige Sanitärversorgung / Sustainable Sanitation Program Authors: Christian Rieck (GIZ), Dr. Elisabeth von Münch (Ostella), Dr. Heike Hoffmann (AKUT Peru) Editor: Christian Rieck (GIZ) Acknowledgements: We thank all reviewers who have provided substantial inputs namely Chris Buckley, Paul Calvert, Chris Canaday, Linus Dagerskog, Madeleine Fogde, Robert Gensch, Florian Klingel, Elke Müllegger, Charles Niwagaba, Lukas Ulrich, Claudia Wendland and Martina Winker, Trevor Surridge and Anthony Guadagni. We also received useful feedback from David Crosweller, Antoine Delepière, Abdoulaye Fall, Teddy Gounden, Richard Holden, Kamara Innocent, Peter Morgan, Andrea Pain, James Raude, Elmer Sayre, Dorothee Spuhler, Kim Andersson and Moses Wakala. The SuSanA discussion forum was also a source of inspiration: http://forum.susana.org/forum/categories/34-urine-diversion-systems- -
Sanitation Options
MIT OpenCourseWare http://ocw.mit.edu 11.479J / 1.851J Water and Sanitation Infrastructure in Developing Countries Spring 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. On-site Sanitation Brian Robinson and Susan Murcott Week 12 - MIT 11.479J / 1.851J Water and Sanitation Infrastructure in Developing Countries Mass. Institute of Technology May 8, 2007 On-site Sanitation • Sanitation ladder: options in sanitation • Ecological Sanitation • Case Study: Ecosan in Kenya Improved sanitation • connection to a public sewer • connection to septic system • pour-flush latrine • simple pit latrine • ventilated improved pit latrine The excreta disposal system is considered “adequate” if it is private or shared (but not public) and if it hygienically separates human excreta from human contact. "Not improved“ = service or bucket latrines (where excreta are manually removed), public latrines, latrines with an open pit. Sanitation “Ladder” Technology Hygiene 1. Open defecation, “flying toilet” 2. “Cathole” burial 3. Pit latrine 4. VIP 5. EcoSan 6. Pour-flush 7. Water-sealed toilets + neighborhood wastewater collection 8. Water-sealed toilets + neighborhood wastewater collection + treatment 1. No Poop sanitation *S. Murcott (T.P.) 2. “Cathole” burial Sanitation “Ladder” Technology Hygiene 1. Open defecation, “flying toilet” 2. “Cathole” burial 3. Pit latrine 4. VIP On-site sanitation 5. EcoSan 6. Pour-flush 7. Water-sealed toilets + neighborhood wastewater collection 8. Water-sealed toilets + neighborhood wastewater collection + treatment 3. Pit latrine – with pit Drainage? 3. Pit Latrine, No Pit 4. Ventilated Fly screen improved Air (ventilation) pit latrine (VIP) Vent pipe Seat cover A dry latrine system, with a screened vent pipe Pedestal to trap flies and often Pit collar Cover slab (May be extended to with double pits to base of pit in poor allow use on a ground conditions) permanent rotating basis. -
Sustainable Sanitation – a Case Study in Yasmine and Awda Informal Settlements (Lebanon)
Master's Thesis 2019 30 ECTS Faculty of Environmental Sciences and Natural Resource Management Sustainable sanitation – A case study in Yasmine and Awda informal settlements (Lebanon) Elisa Winger Eggen Master of Science in Water and Environmental Technology (M-VM) PREFACE This MSc thesis is my final work of the Master of Science in Water- and Environmental Technology at Norwegian University of Life Sciences (NMBU). The research is based on fieldwork undertaken from the 27th of January until the 3rd of March 2019 in Bekaa Valley, Bar Elias, Lebanon, aimed to find sustainable sanitation solutions in two refugee camps. The study has been carried out in close collaboration with Norwegian Church Aid (NCA), International Orthodox Christian Charities (IOCC) and Multiconsult. My motivation for this thesis was based on a desire to choose a research topic that could be meaningful for others, and my interest in water and sanitation in developing countries. I sincerely hope this will contribute to improvements and implementation of a holistic sanitation system which will benefit the people in the studied camps. Ås, May 14th, 2019 Elisa Winger Eggen I II ACKNOWLEDGEMENTS Working on this thesis has been exciting, challenging and educational. There is a lot of effort invested in the final version of the thesis, and the learning process to this point has been invaluable. Many have contributed to this work, whom I will like to thank; First and foremost, my deepest gratitude goes to my main supervisor, Professor Petter D. Jenssen, for his enormous inspiration, engagement, valuable feedback and support along the way. I would also like to thank Tor Valla (Multiconsult), Ioannis Georgiadis (NCA) and Manfred Arlt (NCA) for introducing me to this project in Lebanese refugee camps, where my education would be relevant and applied in practice. -
1.5 Design of Composting Toilet for Practical Application in Burkina Faso
Design of composting toilet for practical application in Burkina Faso Kenta Yabui*, Ken Ushijima, Ryusei Ito, Naoyuki Funamizu Department of Environmental Engineering, Graduate school of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628, Japan [email protected] 011-706-6272 Abstract Resource recycling sanitation system, which utilize composting toilet, is one of the promising concept to improve the sanitary conditions in developing countries. In this sanitation system, toilet has to have two functions; sanitary equipment and fertilizer generator. As sanitary equipment, toilet has to provide clean, safe, comfortable environment for daily defecation. As fertilizer generator, toilet has to convert urine and feces into safe and good quality of fertilizer. The composting toile should be designed in order to perform both two functions in high quality, with low cost. In this research, design requirements for toilet as sanitary equipment and fertilizer generator are abstracted basing on field survey to 6 families from 3 villages in rural area of Burkina Faso. According to abstracted requirements, one design of composting toilet was proposed for rural area of Burkina Faso. The feces degradation performance was same level as commercial composting toilet and required torque for mixing was smaller than commercial screw type composting toilet. Key words: user oriented design, resource recycling sanitation system, composting toilet 1. Introduction Currently, in Burkina Faso, people living in rural area can access to improved toilet are 6%. In Millennium developing Goals (MDGs), the target is the number of people do not have improved sanitary facilities reduces by half by 2015. In that area, the progress of installation of sanitary facilities to achieve MDGs is too low, while more than half of the people still have open defecation culture or unimproved toilets, especially poor people. -
Guide to Sanitation Resource Recovery Products & Technologies
Guide to Sanitation Resource Recovery Products & Technologies A supplement to the Compendium of Sanitation Systems and Technologies 1st Edition Guide to Sanitation Resource Recovery Products & Technologies A supplement to the Compendium of Sanitation Systems and Technologies Jennifer McConville, Charles Niwagaba, Annika Nordin, Marcus Ahlström, Vivian Namboozo and Mark Kiffe We would like to thank the following individuals and their organisations/ institutions for their invaluable contributions to this publication: Allan Komakech (Makerere University), Åke Nordberg (SLU), Amadou Gueye (Delvic Sanitation Initiatives), Arne Panesar (GIZ), Barbara Jeanne Ward (Eawag), Bastian Etter (VUNA), Björn Vinnerås (SLU), Christian Zurbrügg (Eawag/SLU), Christoph Lüthi (Eawag), Cecilia Lalander (SLU), Daniel Ddiba (SEI), Dorothee Sphuler (Eawag), Ebenezer Soh Kengne (University of Bamenda), Elhadji Mamadou Sonko (Cheikh Anta Diop University), Elisabeth Kvarnström (RISE), Ershad Ulla Khan (SLU), Eva Thorin (Mälardalen University), Grietje Zeeman (Wageningen University & Research), Håkan Jönsson (SLU), Jenna Senecal (SLU), Kim Andersson (SEI), Linda Strande (Eawag), Linus Dagerskog (SEI), Luis Perez Mercado (SLU), Lukas Ulrich (Eawag), Madeleine Fogde (SEI), Melissa A. Barton, Naomi Korir (Sanivation), Peter Morgan, Priscila de Morais Lima (SLU), Prithvi Simha (SLU), Robert Gensch (German Toilet Organisation), and Sahar Dalahmeh (Uppsala University). We would like to acknowledge support from: The Swedish Research Council (grant number: 2016-06297) and -
Investigation Into Methods of Pit Latrine Emptying April 2009
WRC PROJECT 1745 Management of sludge accumulation in VIP latrines Investigation into Methods of Pit Latrine Emptying April 2009 by Mark O’Riordan Mark O’Riordan Investigation of Methods of Pit Latrine Emptying Page - i Executive Summary Improving sanitation is now increasingly being recognized as a key factor in ending poverty; providing basic sanitation has been included in the Millennium Development Goals (MDGs) under target 10 of halving the proportion of people without access to adequate basic sanitation by 2015. In an attempt to reach this MDG target many developing countries have embarked on the construction of pit latrines and improved sanitation in people’s homes. An emerging challenge that is resulting from this work is what to do when the latrines are full. If they are to be emptied how should the waste be extracted, where should the waste go and what should be done to it and with it? The approaches to meeting this question are the focus of this report. The report aims to summarise all information currently available to PID resulting from; • General research • Durban’s pit latrine emptying programme • Work with the Vacutug on loan from UN Habitat • A visit to UN Habitat in Nairobi • Site visit to Vacutug facilitating charity Maji na Ufanisi working in Kibera, Nairobi • Design and development work on the ‘Gobbler’ The main part this report is a fairly high level introduction to the issue of faecal sludge management. Where details and information have been readily available the report goes into further depth. A large section of this report focuses on assessment of the United Nations Vacutug project in an attempt to build guidance for the development of a successful latrine exhausting system. -
1. Urine Diversion
1. Urine diversion – hygienic risks and microbial guidelines for reuse © Caroline Schönning Department of Parasitology, Mycology and Environmental Microbiology Swedish Institute for Infectious Disease Control (SMI) SE-171 82 Solna Sweden [email protected] This chapter is based on the doctoral thesis published by the author in February 2001: Höglund, C. (2001). Evaluation of microbial health risks associated with the reuse of source separated human urine. PhD thesis, Department of Biotechnology, Royal Institute of Technology, Stockholm, Sweden. ISBN 91-7283-039-5. The full thesis (87 pages, without published papers) can be downloaded from: http://www.lib.kth.se/Sammanfattningar/hoglund010223.pdf Dr Håkan Jönsson, Swedish University for Agricultural Sciences is acknowledged for compiling Section 3, and Dr Jan-Olof Drangert, Linköping University is acknowledged for compiling Section 9. TABLE OF CONTENTS TABLE OF CONTENTS 1 1. INTRODUCTION 2 1.1 History 2 1.2 Nutrient content and volume of domestic wastewater 3 2. URINE DIVERSION 3 2.1 Urine diversion in Sweden 4 2.2 Source-separation of urine in other parts of the world 6 2.3 Ecological Sanitation 6 3. URINE AS A FERTILISER IN AGRICULTURE 7 3.1 Characteristics of diverted human urine 7 3.2 Collection and storage of the urine – developing countries 7 3.3 Urine as a fertiliser 8 3.4 Crops to fertilise 9 3.5 Dosage 9 3.6 Fertilising experiments 10 3.7 Acceptance 11 4. PATHOGENIC MICROORGANISMS IN URINE 11 5. FAECAL CONTAMINATION 13 5.1 Analysis of indicator bacteria to determine faecal contamination 14 5.2 Analysis of faecal sterols to determine faecal contamination 15 5.3 Discussion 16 6. -
Assessing the Costs of On-Site Sanitation Facilities Study Report
Eawag Überlandstrasse 133 P.O. Box 611 8600 Dübendorf Switzerland Phone +41 (0)44 823 55 11 Fax +41 (0)44 823 50 28 www.eawag.ch Assessing the Costs of on-Site Sanitation Facilities Study Report Lukas Ulrich, Prit Salian, Caroline Saul, Stefan Jüstrich & Christoph Lüthi March 2016 Eawag: Swiss Federal Institute of Aquatic Science and Technology Assessing the Costs of on-Site Sanitation Facilities Contents 1. Summary .......................................................................................................................................... 4 2. Introduction ....................................................................................................................................... 5 3. Methods ............................................................................................................................................ 6 3.1. Comparing the cost of on-site sanitation facilities across countries ............................................ 6 3.1.1. Ensuring comparability ............................................................................................................. 6 3.1.2. Selection of technologies ......................................................................................................... 6 3.2. Cost items included in the country comparison ........................................................................... 7 3.3. Data collection and analysis ......................................................................................................... 8 3.3.1. Development -
Doctor of Philosophy
KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY KUMASI, GHANA Optimizing Vermitechnology for the Treatment of Blackwater: A Case of the Biofil Toilet Technology By OWUSU, Peter Antwi (BSc. Civil Eng., MSc. Water supply and Environmental Sanitation) A Thesis Submitted to the Department of Civil Engineering, College of Engineering in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy October, 2017 DECLARATION I hereby declare that this submission is my own work towards the PhD and that, to the best of my knowledge, it contains no material previously published by another person nor material which has been accepted for the award of any other degree of any university, except where due acknowledgement has been made in the text. OWUSU Peter Antwi ………………….. ……………. (PG 8372212) Signature Date Certified by: Dr. Richard Buamah …………………. .................... (Supervisor) Signature Date Dr. Helen M. K. Essandoh (Mrs) …………………. .................... (Supervisor) Signature Date Prof. Esi Awuah (Mrs) …………………. .................... (Supervisor) Signature Date Prof. Samuel Odai …………………. .................... (Head of Department) Signature Date i ABSTRACT Human excreta management in urban settings is becoming a serious public health burden. This thesis used a vermi-based treatment system; “Biofil Toilet Technology (BTT)” for the treatment of faecal matter. The BTT has an average household size of 0.65 cum; a granite porous filter composite for solid-liquid separation; coconut fibre as a bulking material and worms “Eudrilus eugeniae”