1.5 Design of Composting Toilet for Practical Application in Burkina Faso
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Designing an Evaluation Protocol for Composting Toilet Systems ______
Designing an Evaluation Protocol for Composting Toilet Systems ______________________________________________________________ An Interactive Qualifying Project submitted to the Faculty of Worcester Polytechnic Institute in partial fulfilment of the requirements for the Degree of Bachelor of Science. By: Camryn Berry Zahava Preil Lena Sophia Thompson Date: February 26, 2020 Report Submitted to: Professor Seth Tuler and Professor Isa Bar-On This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects Abstract Two billion people worldwide lack access to adequate sanitation which ensures hygienic separation of human excreta from human contact. Composting toilets help address this health hazard by containing waste and reducing risk of disease. The goal of our project was to develop a cost-effective, user-friendly and minimally-disruptive protocol to evaluate the function, use and maintenance of composting toilets. This protocol was trialed at Kibbutz Lotan in Israel. We concluded that Lotan’s system was effective, though inefficient. The trial allowed us to identify potential improvements to the protocol that can be applied in the future. Our protocol is successful for evaluating the success of a system and how adequately it can address the unnecessary loss of life caused by inadequate sanitation. ii Acknowledgements We would like to thank the people who helped make our project possible. Firstly, we would like to thank our sponsor Alex Cicelsky of the Kibbutz Lotan Center for Creative Ecology. -
Sustainable Environmental Protection Using Modified Pit-Latrines
Sustainable Environmental Protection Using Modified Pit-Latrines Esnati James Chaggu Promotor: Prof. dr.ir. G. Lettinga Hoogleraar in de anaërobe zuiveringstechnologie en hergebruik van afvalstoffen Co-promotoren: Dr. W. T. M. Sanders Post-doc onderzoeker bij de sectie Milieutechnologie, Wageningen Universiteit, Nederland Prof. A. Mashauri Dar-es-Salaam Universiteit, Tanzania Samenstelling promotiecommissie: Prof. G. Spaargaren Wageningen Universiteit Prof. dr. H. J. Gijzen UNESCO-IHE, Delft, Nederland Dr. G. J. Medema KIWA Water Research, Nieuwegein, Nederland Prof. Dr. H. Folmer Wageningen Universiteit Dit onderzoek is uitgevoerd binnen de onderzoekschool Wimek Sustainable Environmental Protection Using Modified Pit-Latrines Esnati James Chaggu Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. Dr. Ir. L. Speelman, in het openbaar te verdedigen op dinsdag 23 maart 2003 des namiddags te half twee in de aula CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG. Chaggu, E. J. Sustainable Environmental Protection Using Modified Pit-Latrines ISBN: 90-5808-989-4 Subject headings: excreta disposal/blackwater/nightsoil/anaerobic digestion/improved pit latrines Abstract - Chaggu, E. J. (2004). Sustainable Environmental Protection Using Modified Pit-Latrines. Ph.D Thesis, Wageningen University, The Netherlands. Pit-latrines are on-site excreta disposal facilities widely used as anaerobic accumulation system for stabilizing human wastes like excreta, both in rural and urban settlements of developing countries. Flooding of pit-latrines is often a common phenomenon, especially in situations of high water table (HWT) conditions and during the rainy season, causing a health jeopardy to residents. The pits are not water-tight, the (ground)water can freely flow in and out of the pit, especially in HWT areas. -
HEALTH ASPECTS of DRY SANITATION with WASTE REUSE Anne Peasey
HEALTH ASPECTS OF DRY SANITATION WITH WASTE REUSE Anne Peasey Task No. 324 WELL STUDIES IN WATER AND ENVIRONMENTAL HEALTH Health Aspects of Dry Sanitation with Waste Reuse Anne Peasey WELL Water and Environmental Health at London and Loughborough Health Aspects of Dry Sanitation with Waste Reuse ii London School of Hygiene and Tropical Medicine Keppel Street London WC1E 7HT © LSHTM/WEDC Peasey, A. (2000) Health Aspects of Dry Sanitation with Waste Reuse WELL Designed and Produced at LSHTM Health Aspects of Dry Sanitation with Waste Reuse EXECUTIVE SUMMARY BACKGROUND Dry sanitation is defined in this report as the on-site disposal of human urine and faeces without the use of water as a carrier. This definition includes many of the most popular options for low- cost sanitation including pit latrines, Ventilated Improved Pits, SanPlats, etc. There has always been an interest in the reuse of human waste as a fertiliser, and there has been much recent work on the development of composting and other processes to permit human waste reuse. This report examines the practice of dry sanitation with reuse in Mexico, with a particular focus on health issues and the lessons to be learned from case studies and experience. DRY SANITATION WITH REUSE There are two distinct technical approaches to dry sanitation with reuse; · Dehydration. Urine and faeces are managed separately. The deposited faecal matter may be dried by the addition of lime, ash, or earth, and the contents are simply isolated from human contact for a specified period of time to reduce the presence of pathogens. · Decomposition (composting) In this process, bacteria, worms, or other organisms are used to break organic matter down to produce compost. -
UD & Composting Toilets (Ecosan)
UD Toilets and Composting Toilets in Emergency Settings This Technical Brief looks at the criteria for selecting Urine Diversion (UD) and Composting Toilets options in an emergency setting, including the construction, operation and maintenance of such units which is used to store and dry the faeces over a specified Ecological Sanitation or period. Normally, it is recommended to store faeces for a Sustainable Sanitation? minimum of 12-months in one vault before emptying. Adding a desiccating material such as ash or sawdust will The approach of Ecological Sanitation (Ecosan) in accelerate the faeces drying process. Typically, in a well- emergency settings breaks with conventional excreta managed ecosan unit, storage times of greater than 3- disposal options such as pit latrines or pour-flush toilets. months will reduce many pathogens to safe levels, in Traditionally, Ecosan systems re-use both faeces and particular those responsible for Ameobiasis, Giardiasis, urine, turning them into either a soil conditioner or a Hepatitis A, Hookworm, Whipworm, Threadworm, fertilizer. This not only benefits peoples’ health through Rotavirus, Cholera, Escherichia coli, and Typhoid safe excreta disposal and by reducing environmental amongst others. Ascaris is more persistent though, and contamination, but also implies re-using the by-products may require retention times of 12-months or more. for some form of agricultural activity. In an emergency setting, the choice of ecosan options is very often driven by factors other than the re-use of all or part of the by-products. Ecosan toilets are very often better suited to rocky ground or areas with high water tables, making them more resistant to cyclic flooding for instance. -
Technology Review of Urine-Diverting Dry Toilets (Uddts) Overview of Design, Operation, Management and Costs
Technology Review of Urine-diverting dry toilets (UDDTs) Overview of design, operation, management and costs As a federally owned enterprise, we support the German Government in achieving its objectives in the field of international cooperation for sustainable development. Published by: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Registered offices Bonn and Eschborn, Germany T +49 228 44 60-0 (Bonn) T +49 61 96 79-0 (Eschborn) Friedrich-Ebert-Allee 40 53113 Bonn, Germany T +49 228 44 60-0 F +49 228 44 60-17 66 Dag-Hammarskjöld-Weg 1-5 65760 Eschborn, Germany T +49 61 96 79-0 F +49 61 96 79-11 15 E [email protected] I www.giz.de Name of sector project: SV Nachhaltige Sanitärversorgung / Sustainable Sanitation Program Authors: Christian Rieck (GIZ), Dr. Elisabeth von Münch (Ostella), Dr. Heike Hoffmann (AKUT Peru) Editor: Christian Rieck (GIZ) Acknowledgements: We thank all reviewers who have provided substantial inputs namely Chris Buckley, Paul Calvert, Chris Canaday, Linus Dagerskog, Madeleine Fogde, Robert Gensch, Florian Klingel, Elke Müllegger, Charles Niwagaba, Lukas Ulrich, Claudia Wendland and Martina Winker, Trevor Surridge and Anthony Guadagni. We also received useful feedback from David Crosweller, Antoine Delepière, Abdoulaye Fall, Teddy Gounden, Richard Holden, Kamara Innocent, Peter Morgan, Andrea Pain, James Raude, Elmer Sayre, Dorothee Spuhler, Kim Andersson and Moses Wakala. The SuSanA discussion forum was also a source of inspiration: http://forum.susana.org/forum/categories/34-urine-diversion-systems- -
Composting Toilets
Advanced Methods and Materials AMM201 Composting Toilets This Advanced Method and Material was developed jointly by the City of Bellingham SCOPE Building Department and Sustainable Connections to enhance water conservation ef- All habitable build- forts by providing a means for the installation of composting toilets. ings. DEFINITIONS Composting toilet: A BENEFITS human waste disposal system that utilizes a Composting toilets can help achieve zero waterless or low-fl ush toilet in conjunction water consumption. When used in com- with a tank in which bination with wastewater re-utilization aerobic bacteria break in irrigation and other household water down the waste. reduction techniques, costs can be cut by up to 60%. Additional benefi ts of com- PERMIT posting toilets include: REQUIREMENTS In general, the person Lower electricity costs (to pump water installing the com- and sewage) posting toilet obtains any required permits. Elimination of infrastructure costs For specifi c informa- to provide fresh water or collect and tion applicants should treat sewage contact the COB End state is a valuable fertilizer Permit Center/Build- ing Services Division Contribute up to 3 LEED® points for for more information: your project (360) 778-8300 or [email protected]. The average household spends as much as $500 per year on its water and sewer bill. A four-person household using a traditional 3.5 gallon fl ush toilet will fl ush some 70 gallons per day down the toilet (that’s an annual volume of over 25,000 gallons per year). Compared to sewage systems, on-site composting and greywater treatment has less impact on the environment (large effl uent releases into watercourses and oceans are avoided, disruption to soils systems through pipeline installation is eliminated and leakage of raw sewage into groundwater through pipe deterioration and breakage is eliminated). -
Sanitation Options
MIT OpenCourseWare http://ocw.mit.edu 11.479J / 1.851J Water and Sanitation Infrastructure in Developing Countries Spring 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. On-site Sanitation Brian Robinson and Susan Murcott Week 12 - MIT 11.479J / 1.851J Water and Sanitation Infrastructure in Developing Countries Mass. Institute of Technology May 8, 2007 On-site Sanitation • Sanitation ladder: options in sanitation • Ecological Sanitation • Case Study: Ecosan in Kenya Improved sanitation • connection to a public sewer • connection to septic system • pour-flush latrine • simple pit latrine • ventilated improved pit latrine The excreta disposal system is considered “adequate” if it is private or shared (but not public) and if it hygienically separates human excreta from human contact. "Not improved“ = service or bucket latrines (where excreta are manually removed), public latrines, latrines with an open pit. Sanitation “Ladder” Technology Hygiene 1. Open defecation, “flying toilet” 2. “Cathole” burial 3. Pit latrine 4. VIP 5. EcoSan 6. Pour-flush 7. Water-sealed toilets + neighborhood wastewater collection 8. Water-sealed toilets + neighborhood wastewater collection + treatment 1. No Poop sanitation *S. Murcott (T.P.) 2. “Cathole” burial Sanitation “Ladder” Technology Hygiene 1. Open defecation, “flying toilet” 2. “Cathole” burial 3. Pit latrine 4. VIP On-site sanitation 5. EcoSan 6. Pour-flush 7. Water-sealed toilets + neighborhood wastewater collection 8. Water-sealed toilets + neighborhood wastewater collection + treatment 3. Pit latrine – with pit Drainage? 3. Pit Latrine, No Pit 4. Ventilated Fly screen improved Air (ventilation) pit latrine (VIP) Vent pipe Seat cover A dry latrine system, with a screened vent pipe Pedestal to trap flies and often Pit collar Cover slab (May be extended to with double pits to base of pit in poor allow use on a ground conditions) permanent rotating basis. -
Investigation Into Methods of Pit Latrine Emptying April 2009
WRC PROJECT 1745 Management of sludge accumulation in VIP latrines Investigation into Methods of Pit Latrine Emptying April 2009 by Mark O’Riordan Mark O’Riordan Investigation of Methods of Pit Latrine Emptying Page - i Executive Summary Improving sanitation is now increasingly being recognized as a key factor in ending poverty; providing basic sanitation has been included in the Millennium Development Goals (MDGs) under target 10 of halving the proportion of people without access to adequate basic sanitation by 2015. In an attempt to reach this MDG target many developing countries have embarked on the construction of pit latrines and improved sanitation in people’s homes. An emerging challenge that is resulting from this work is what to do when the latrines are full. If they are to be emptied how should the waste be extracted, where should the waste go and what should be done to it and with it? The approaches to meeting this question are the focus of this report. The report aims to summarise all information currently available to PID resulting from; • General research • Durban’s pit latrine emptying programme • Work with the Vacutug on loan from UN Habitat • A visit to UN Habitat in Nairobi • Site visit to Vacutug facilitating charity Maji na Ufanisi working in Kibera, Nairobi • Design and development work on the ‘Gobbler’ The main part this report is a fairly high level introduction to the issue of faecal sludge management. Where details and information have been readily available the report goes into further depth. A large section of this report focuses on assessment of the United Nations Vacutug project in an attempt to build guidance for the development of a successful latrine exhausting system. -
1. Urine Diversion
1. Urine diversion – hygienic risks and microbial guidelines for reuse © Caroline Schönning Department of Parasitology, Mycology and Environmental Microbiology Swedish Institute for Infectious Disease Control (SMI) SE-171 82 Solna Sweden [email protected] This chapter is based on the doctoral thesis published by the author in February 2001: Höglund, C. (2001). Evaluation of microbial health risks associated with the reuse of source separated human urine. PhD thesis, Department of Biotechnology, Royal Institute of Technology, Stockholm, Sweden. ISBN 91-7283-039-5. The full thesis (87 pages, without published papers) can be downloaded from: http://www.lib.kth.se/Sammanfattningar/hoglund010223.pdf Dr Håkan Jönsson, Swedish University for Agricultural Sciences is acknowledged for compiling Section 3, and Dr Jan-Olof Drangert, Linköping University is acknowledged for compiling Section 9. TABLE OF CONTENTS TABLE OF CONTENTS 1 1. INTRODUCTION 2 1.1 History 2 1.2 Nutrient content and volume of domestic wastewater 3 2. URINE DIVERSION 3 2.1 Urine diversion in Sweden 4 2.2 Source-separation of urine in other parts of the world 6 2.3 Ecological Sanitation 6 3. URINE AS A FERTILISER IN AGRICULTURE 7 3.1 Characteristics of diverted human urine 7 3.2 Collection and storage of the urine – developing countries 7 3.3 Urine as a fertiliser 8 3.4 Crops to fertilise 9 3.5 Dosage 9 3.6 Fertilising experiments 10 3.7 Acceptance 11 4. PATHOGENIC MICROORGANISMS IN URINE 11 5. FAECAL CONTAMINATION 13 5.1 Analysis of indicator bacteria to determine faecal contamination 14 5.2 Analysis of faecal sterols to determine faecal contamination 15 5.3 Discussion 16 6. -
Assessing the Costs of On-Site Sanitation Facilities Study Report
Eawag Überlandstrasse 133 P.O. Box 611 8600 Dübendorf Switzerland Phone +41 (0)44 823 55 11 Fax +41 (0)44 823 50 28 www.eawag.ch Assessing the Costs of on-Site Sanitation Facilities Study Report Lukas Ulrich, Prit Salian, Caroline Saul, Stefan Jüstrich & Christoph Lüthi March 2016 Eawag: Swiss Federal Institute of Aquatic Science and Technology Assessing the Costs of on-Site Sanitation Facilities Contents 1. Summary .......................................................................................................................................... 4 2. Introduction ....................................................................................................................................... 5 3. Methods ............................................................................................................................................ 6 3.1. Comparing the cost of on-site sanitation facilities across countries ............................................ 6 3.1.1. Ensuring comparability ............................................................................................................. 6 3.1.2. Selection of technologies ......................................................................................................... 6 3.2. Cost items included in the country comparison ........................................................................... 7 3.3. Data collection and analysis ......................................................................................................... 8 3.3.1. Development -
Doctor of Philosophy
KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY KUMASI, GHANA Optimizing Vermitechnology for the Treatment of Blackwater: A Case of the Biofil Toilet Technology By OWUSU, Peter Antwi (BSc. Civil Eng., MSc. Water supply and Environmental Sanitation) A Thesis Submitted to the Department of Civil Engineering, College of Engineering in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy October, 2017 DECLARATION I hereby declare that this submission is my own work towards the PhD and that, to the best of my knowledge, it contains no material previously published by another person nor material which has been accepted for the award of any other degree of any university, except where due acknowledgement has been made in the text. OWUSU Peter Antwi ………………….. ……………. (PG 8372212) Signature Date Certified by: Dr. Richard Buamah …………………. .................... (Supervisor) Signature Date Dr. Helen M. K. Essandoh (Mrs) …………………. .................... (Supervisor) Signature Date Prof. Esi Awuah (Mrs) …………………. .................... (Supervisor) Signature Date Prof. Samuel Odai …………………. .................... (Head of Department) Signature Date i ABSTRACT Human excreta management in urban settings is becoming a serious public health burden. This thesis used a vermi-based treatment system; “Biofil Toilet Technology (BTT)” for the treatment of faecal matter. The BTT has an average household size of 0.65 cum; a granite porous filter composite for solid-liquid separation; coconut fibre as a bulking material and worms “Eudrilus eugeniae” -
Accelerating the Reduction of Open Defecation in Rural India Begins by Admitting the Problem
Accelerating the reduction of open defecation in rural India begins by admitting the problem Diane Coffey, r.i.c.e.1 note prepared for Kolkata Group meetings, February 4-7, 2015 Summary Why does rural India have uniquely high rates of open defecation? In rural India, 70% of households do not own a toilet or latrine. Indian rates of open defecation are uniquely high, much higher than in many poorer countries. This note asks why rural India has uniquely high rates of open defecation. It first explains that the “usual suspects” – GDP, poverty, education, water access – are not to blame for widespread open defecation in rural India. Second, it discusses how the sanitation technology used in rural India differs from the rest of the developing world – in short, very few rural Indian households use latrines with inexpensive underground soak pits. Third, it presents qualitative and quantitative evidence that Hindu practices of purity and pollution, as well as India’s unique history and renegotiation of untouchability, complicate the adoption of the kinds of simple, inexpensive latrines that have been used to reduce open defecation and improve health in rich countries before they were rich and in other developing countries. Finally, it ends with a brief comment on implications for Indian government policy. Although the evidence is overwhelmingly clear that the reduction of open defecation in rural India will not be importantly accelerated by the large investments in government latrines proposed by the Swachh Bharat Mission, it is unclear what kinds of interventions will help. It is almost certainly the case that accelerating the reduction of open defecation in rural India will require frank and uncomfortable conversations about what purity, pollution and the continuing practice of untouchability have to do with rural India’s open defecation crisis.