Trade-Offs Between Transport Efficiency and Power Density in Cephalopod Evolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Zhang Et Al., 2015
Estuarine, Coastal and Shelf Science 153 (2015) 38e53 Contents lists available at ScienceDirect Estuarine, Coastal and Shelf Science journal homepage: www.elsevier.com/locate/ecss Modeling larval connectivity of the Atlantic surfclams within the Middle Atlantic Bight: Model development, larval dispersal and metapopulation connectivity * Xinzhong Zhang a, , Dale Haidvogel a, Daphne Munroe b, Eric N. Powell c, John Klinck d, Roger Mann e, Frederic S. Castruccio a, 1 a Institute of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08901, USA b Haskin Shellfish Research Laboratory, Rutgers University, Port Norris, NJ 08349, USA c Gulf Coast Research Laboratory, University of Southern Mississippi, Ocean Springs, MS 39564, USA d Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, VA 23529, USA e Virginia Institute of Marine Science, The College of William and Mary, Gloucester Point, VA 23062, USA article info abstract Article history: To study the primary larval transport pathways and inter-population connectivity patterns of the Atlantic Received 19 February 2014 surfclam, Spisula solidissima, a coupled modeling system combining a physical circulation model of the Accepted 30 November 2014 Middle Atlantic Bight (MAB), Georges Bank (GBK) and the Gulf of Maine (GoM), and an individual-based Available online 10 December 2014 surfclam larval model was implemented, validated and applied. Model validation shows that the model can reproduce the observed physical circulation patterns and surface and bottom water temperature, and Keywords: recreates the observed distributions of surfclam larvae during upwelling and downwelling events. The surfclam (Spisula solidissima) model results show a typical along-shore connectivity pattern from the northeast to the southwest individual-based model larval transport among the surfclam populations distributed from Georges Bank west and south along the MAB shelf. -
Sirenian Feeding Apparatus: Functional Morphology of Feeding Involving Perioral Bristles and Associated Structures
THE SIRENIAN FEEDING APPARATUS: FUNCTIONAL MORPHOLOGY OF FEEDING INVOLVING PERIORAL BRISTLES AND ASSOCIATED STRUCTURES By CHRISTOPHER DOUGLAS MARSHALL A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNrVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REOUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1997 DEDICATION to us simply as I dedicate this work to the memory of J. Rooker (known "Rooker") and to sirenian conservation. Rooker was a subject involved in the study during the 1993 sampling year at Lowry Park Zoological Gardens. Rooker died during the red tide event in May of 1996; approximately 140 other manatees also died. During his rehabilitation at Lowry Park Zoo, Rooker provided much information regarding the mechanism of manatee feeding and use of the perioral bristles. The "mortality incident" involving the red tide event in southwest Florida during the summer of 1996 should serve as a reminder that the Florida manatee population and the status of all sirenians is precarious. Although some estimates suggest that the Florida manatee population may be stable, annual mortality numbers as well as habitat degradation continue to increase. Sirenian conservation and research efforts must continue. ii ACKNOWLEDGMENTS Research involving Florida manatees required that I work with several different government agencies and private parks. The staff of the Sirenia Project, U.S. Geological Service, Biological Resources Division - Florida Caribbean Science Center has been most helpful in conducting the behavioral aspect of this research and allowed this work to occur under their permit (U.S. Fish and Wildlife Permit number PRT-791721). Numerous conversations regarding manatee biology with Dr. -
Physiological Effects and Biotransformation of Paralytic
PHYSIOLOGICAL EFFECTS AND BIOTRANSFORMATION OF PARALYTIC SHELLFISH TOXINS IN NEW ZEALAND MARINE BIVALVES ______________________________________________________________ A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Environmental Sciences in the University of Canterbury by Andrea M. Contreras 2010 Abstract Although there are no authenticated records of human illness due to PSP in New Zealand, nationwide phytoplankton and shellfish toxicity monitoring programmes have revealed that the incidence of PSP contamination and the occurrence of the toxic Alexandrium species are more common than previously realised (Mackenzie et al., 2004). A full understanding of the mechanism of uptake, accumulation and toxin dynamics of bivalves feeding on toxic algae is fundamental for improving future regulations in the shellfish toxicity monitoring program across the country. This thesis examines the effects of toxic dinoflagellates and PSP toxins on the physiology and behaviour of bivalve molluscs. This focus arose because these aspects have not been widely studied before in New Zealand. The basic hypothesis tested was that bivalve molluscs differ in their ability to metabolise PSP toxins produced by Alexandrium tamarense and are able to transform toxins and may have special mechanisms to avoid toxin uptake. To test this hypothesis, different physiological/behavioural experiments and quantification of PSP toxins in bivalves tissues were carried out on mussels ( Perna canaliculus ), clams ( Paphies donacina and Dosinia anus ), scallops ( Pecten novaezelandiae ) and oysters ( Ostrea chilensis ) from the South Island of New Zealand. Measurements of clearance rate were used to test the sensitivity of the bivalves to PSP toxins. Other studies that involved intoxication and detoxification periods were carried out on three species of bivalves ( P. -
Sclerochronological Records of Arctica Islandica from the Inner German Bight Vale´Rie M
The Holocene 16,5 (2006) pp. 763Á 769 Sclerochronological records of Arctica islandica from the inner German Bight Vale´rie M. Epple´,1* Thomas Brey,2 Rob Witbaard,3 Henning Kuhnert4 and Ju¨rgen Pa¨tzold1,4 (1Research Center for Ocean Margins (RCOM), P.O. Box 330440, 28334 Bremen, Germany; 2Alfred Wegener Institute for Polar- and Marine Research, Bremerhaven, Germany; 3Netherlands Institute for Sea Research, Texel, The Netherlands; 4Department of Geosciences, University of Bremen, Bremen, Germany) Received 12 July 2004; revised manuscript accepted 16 December 2005 Abstract: Sclerochronological records of interannual shell growth variability were established for eight modern shells (26 to 163 years of age) of the bivalve Arctica islandica, which were sampled at one site in the inner German Bight. The records indicate generally low synchrony between individuals. Spectral analysis of the whole 163-yr masterchronology indicated a cyclic pattern with a period of 5 and 7 years. The masterchronology correlated poorly to time series of environmental parameters over the last 90 years. High environmental variability in time and space of the dynamic and complex German Bight hydrographic system results in an extraordinarily high ‘noise’ level in the shell growth pattern of Arctica islandica. Key words: Arctica islandica, German Bight, sclerochronology, time series, environmental variability, spectral analysis, masterchronology. Introduction (Jones, 1983; Weidmann et al., 1994; Marchitto et al., 2000) and later in the Baltic (Brey et al., 1990; Zettler et al., 2001) Holocene palaeoclimatic reconstructions for the North Atlan- and North Sea (Witbaard et al., 1996; Scho¨ne et al., 2003). In tic have been predominantly carried out using annually banded the North Atlantic, as well as in the North Sea Arctica deposits terrestrial proxies, such as tree-rings or ice-cores (Cook and annual growth bands (Jones, 1983), which show similar growth Kariukstis, 1990; Luterbacher et al., 2002; Davies and Tipping, patterns within a population (Witbaard and Duineveld, 1990; 2004). -
A Comparison of Scallop (Placopecten Magellankus) Population and Community Characteristics Between Fished and Unfished Areas in Lunenburg County, N.S., Canada
A Comparison of Scallop (Placopecten magellankus) Population and Community Characteristics Between Fished and Unfished Areas in Lunenburg County, N.S., Canada F. Brocken and E. Kenchington Science Branch Maritimes Region Invertebrate Fisheries Division Department of Fisheries and Oceans Bedford Institute of Oceanography P.O. Box 1006 Dartmouth, Nova Scotia B2Y 4A2 Canadian Technical Report of Fisheries and Aquatic Sciences No. 2258 Canadian Technical Report of Fisheries and Aquatic Sciences 2258 A COMPARISON OF SCALLOP (PLACOPECTElV MAGELLANICUS) POPULATION AND COMMUT\JITY CHARACTERISTICS BETWEEN FISHED AND UNFISHED AREAS IN LmENBURG CObJTY, N.S., CANADA F. Brocken and E. Kenchinglon Science Branch Mariti~nesRegion Invertebrate Fisheries Division Department of Fisheries and Oceans Bedford Institute of Oceanography P.O. Box 1006 Dartmouth, Xova Scotia B2Y 4A2 O Minister of Public Works and Cove enr Services Canada 1998 Cat. ho. Fs. 97-61225% ISSN 0706-6457 Correct citation for this publication: Brocken. F. and E. Kenchingon. 1999. A comparison of scallop (Placopecten magellanicus) populatiol~ and community characteristics between fished and unfished areas in Lunenburg County. N.S., Canada. Can. Tech. Rep. Fish. Aquat. Sci. 2258: vi " 93 p. TABLE OF CONTENTS ABSTRACT ......................................................................................................................iv R&SUME ............................................................................................................................v DEDICATION ..................................................................................................................vi -
Primitive Soft-Bodied Cephalopods from the Cambrian
ACCEPTED DRAFT Please note that this is not the final manuscript version. Links to the published manuscript, figures, and supplementary information can be found at http://individual.utoronto.ca/martinsmith/nectocaris.html doi: 10.1038/nature09068 Smith & Caron 2010, Page 1 Primitive soft-bodied cephalopods from the Cambrian Martin R. Smith 1, 2* & Jean-Bernard Caron 2, 1 1Departent of Ecology and Evolutionary Biology, University of Toronto, 25 Harbord Street, Ontario, M5S 3G5, Canada 2Department of Palaeobiology, Royal Ontario Museum, 100 Queen ’s Park, Toronto, Ontario M5S 2C6, Canada *Author for correspondence The exquisite preservation of soft-bodied animals in Burgess Shale-type deposits provides important clues into the early evolution of body plans that emerged during the Cambrian explosion 1. Until now, such deposits have remained silent regarding the early evolution of extant molluscan lineages – in particular the cephalopods. Nautiloids, traditionally considered basal within the cephalopods, are generally depicted as evolving from a creeping Cambrian ancestor whose dorsal shell afforded protection and buoyancy 2. Whilst nautiloid-like shells occur from the Late Cambrian onwards, the fossil record provides little constraint on this model, or indeed on the early evolution of cephalopods. Here, we reinterpret the problematic Middle Cambrian animal Nectocaris pteryx 3, 4 as a primitive (i.e. stem-group), non-mineralized cephalopod, based on new material from the Burgess Shale. Together with Nectocaris, the problematic Lower Cambrian taxa Petalilium 5 and (probably) Vetustovermis 6, 7 form a distinctive clade, Nectocarididae, characterized by an open axial cavity with paired gills, wide lateral fins, a single pair of long, prehensile tentacles, a pair of non-faceted eyes on short stalks, and a large, flexible anterior funnel. -
Timing of Shell Ring Formation and Patterns of Shell Growth in the Sea Scallop Placopecten Magellanicus Based on Stable Oxygen Isotopes Author(S): Antonie S
Timing of Shell Ring Formation and Patterns of Shell Growth in the Sea Scallop Placopecten Magellanicus Based on Stable Oxygen Isotopes Author(s): Antonie S. Chute, Sam C. Wainright and Deborah R. Hart Source: Journal of Shellfish Research, 31(3):649-662. 2012. Published By: National Shellfisheries Association DOI: http://dx.doi.org/10.2983/035.031.0308 URL: http://www.bioone.org/doi/full/10.2983/035.031.0308 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Shellfish Research, Vol. 31, No. 3, 649–662, 2012. TIMING OF SHELL RING FORMATION AND PATTERNS OF SHELL GROWTH IN THE SEA SCALLOP PLACOPECTEN MAGELLANICUS BASED ON STABLE OXYGEN ISOTOPES ANTONIE S. CHUTE,1* SAM C. WAINRIGHT2 AND DEBORAH R. HART1 1Northeast Fisheries Science Center, 166 Water Street, Woods Hole, MA 02543; 2Department of Science, U.S. -
Spisula Solidissima) Using a Spatially Northeastern Continental Shelf of the United States
300 Abstract—The commercially valu- able Atlantic surfclam (Spisula so- Management strategy evaluation for the Atlantic lidissima) is harvested along the surfclam (Spisula solidissima) using a spatially northeastern continental shelf of the United States. Its range has con- explicit, vessel-based fisheries model tracted and shifted north, driven by warmer bottom water temperatures. 1 Declining landings per unit of effort Kelsey M. Kuykendall (contact author) (LPUE) in the Mid-Atlantic Bight Eric N. Powell1 (MAB) is one result. Declining stock John M. Klinck2 abundance and LPUE suggest that 1 overfishing may be occurring off Paula T. Moreno New Jersey. A management strategy Robert T. Leaf1 evaluation (MSE) for the Atlantic surfclam is implemented to evalu- Email address for contact author: [email protected] ate rotating closures to enhance At- lantic surfclam productivity and in- 1 Gulf Coast Research Laboratory crease fishery viability in the MAB. The University of Southern Mississippi Active agents of the MSE model 703 East Beach Drive are individual fishing vessels with Ocean Springs, Mississippi 39564 performance and quota constraints 2 Center for Coastal Physical Oceanography influenced by captains’ behavior Department of Ocean, Earth, and Atmospheric Sciences over a spatially varying population. 4111 Monarch Way, 3rd Floor Management alternatives include Old Dominion University 2 rules regarding closure locations Norfolk, Virginia 23529 and 3 rules regarding closure du- rations. Simulations showed that stock biomass increased, up to 17%, under most alternative strategies in relation to estimated stock biomass under present-day management, and The Atlantic surfclam (Spisula solid- ally not found where average bottom LPUE increased under most alterna- issima) is an economically valuable temperatures exceed 25°C (Cargnelli tive strategies, by up to 21%. -
Characterization of Arm Autotomy in the Octopus, Abdopus Aculeatus (D’Orbigny, 1834)
Characterization of Arm Autotomy in the Octopus, Abdopus aculeatus (d’Orbigny, 1834) By Jean Sagman Alupay A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Roy L. Caldwell, Chair Professor David Lindberg Professor Damian Elias Fall 2013 ABSTRACT Characterization of Arm Autotomy in the Octopus, Abdopus aculeatus (d’Orbigny, 1834) By Jean Sagman Alupay Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair Autotomy is the shedding of a body part as a means of secondary defense against a predator that has already made contact with the organism. This defense mechanism has been widely studied in a few model taxa, specifically lizards, a few groups of arthropods, and some echinoderms. All of these model organisms have a hard endo- or exo-skeleton surrounding the autotomized body part. There are several animals that are capable of autotomizing a limb but do not exhibit the same biological trends that these model organisms have in common. As a result, the mechanisms that underlie autotomy in the hard-bodied animals may not apply for soft bodied organisms. A behavioral ecology approach was used to study arm autotomy in the octopus, Abdopus aculeatus. Investigations concentrated on understanding the mechanistic underpinnings and adaptive value of autotomy in this soft-bodied animal. A. aculeatus was observed in the field on Mactan Island, Philippines in the dry and wet seasons, and compared with populations previously studied in Indonesia. -
Panopea Abrupta ) Ecology and Aquaculture Production
COMPREHENSIVE LITERATURE REVIEW AND SYNOPSIS OF ISSUES RELATING TO GEODUCK ( PANOPEA ABRUPTA ) ECOLOGY AND AQUACULTURE PRODUCTION Prepared for Washington State Department of Natural Resources by Kristine Feldman, Brent Vadopalas, David Armstrong, Carolyn Friedman, Ray Hilborn, Kerry Naish, Jose Orensanz, and Juan Valero (School of Aquatic and Fishery Sciences, University of Washington), Jennifer Ruesink (Department of Biology, University of Washington), Andrew Suhrbier, Aimee Christy, and Dan Cheney (Pacific Shellfish Institute), and Jonathan P. Davis (Baywater Inc.) February 6, 2004 TABLE OF CONTENTS LIST OF FIGURES ........................................................................................................... iv LIST OF TABLES...............................................................................................................v 1. EXECUTIVE SUMMARY ....................................................................................... 1 1.1 General life history ..................................................................................... 1 1.2 Predator-prey interactions........................................................................... 2 1.3 Community and ecosystem effects of geoducks......................................... 2 1.4 Spatial structure of geoduck populations.................................................... 3 1.5 Genetic-based differences at the population level ...................................... 3 1.6 Commercial geoduck hatchery practices ................................................... -
The Phylogeny of Coleoid Cephalopods Inferred from Molecular Evolutionary Analyses of the Cytochrome C Oxidase I, Muscle Actin, and Cytoplasmic Actin Genes
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1998 The phylogeny of coleoid cephalopods inferred from molecular evolutionary analyses of the cytochrome c oxidase I, muscle actin, and cytoplasmic actin genes David Bruno Carlini College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Genetics Commons, Molecular Biology Commons, and the Zoology Commons Recommended Citation Carlini, David Bruno, "The phylogeny of coleoid cephalopods inferred from molecular evolutionary analyses of the cytochrome c oxidase I, muscle actin, and cytoplasmic actin genes" (1998). Dissertations, Theses, and Masters Projects. Paper 1539616597. https://dx.doi.org/doi:10.25773/v5-3pyk-f023 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter free, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. -
This Article Was Originally Published in the Encyclopedia of Neuroscience
This article was originally published in the Encyclopedia of Neuroscience published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non- commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Yekutieli Y, Flash T and Hochner B (2009) Biomechanics: Hydroskeletal. In: Squire LR (ed.) Encyclopedia of Neuroscience, volume 2, pp. 189-200. Oxford: Academic Press. Author's personal copy Biomechanics: Hydroskeletal 189 Biomechanics: Hydroskeletal Y Yekutieli and T Flash, Weizmann Institute of elephant trunk. A hydrostatic skeleton may be used Science, Rehovot, Israel in combination with a rigid skeletal support (e.g., B Hochner , Hebrew University, Jerusalem, Israel the vertebrate tongue). In this article we describe the ã 2009 Elsevier Ltd. All rights reserved. biomechanics and movement control of hydrostatic skeletons, giving examples of the diversity and unique adaptations. Type of Skeletal Systems Basic Structure of Hydrostatic Skeletons The combination of muscles (force production mech- Fluid-Filled Cavity Skeletons anisms) and skeletons enable animals to move in a variety of ways. There are basically three types Animals with FFC hydrostatic skeletons usually com- of skeletons: endoskeletons, the rigid internal skele- prise both circular and longitudinal muscle fibers, ton of vertebrates; exoskeletons, the rigid external and their shapes are typically cylindrical.