Characteristics of High‐Precipitation Events in Dronning Maud Land, Antarctica E

Total Page:16

File Type:pdf, Size:1020Kb

Characteristics of High‐Precipitation Events in Dronning Maud Land, Antarctica E JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, D14107, doi:10.1029/2009JD013410, 2010 Click Here for Full Article Characteristics of high‐precipitation events in Dronning Maud Land, Antarctica E. Schlosser,1 K. W. Manning,2 J. G. Powers,2 M. G. Duda,2 G. Birnbaum,3 and K. Fujita4 Received 19 October 2009; revised 28 January 2010; accepted 26 February 2010; published 21 July 2010. [1] High‐resolution Antarctic Mesoscale Prediction System archive data were used to investigate high‐precipitation events at the deep ice core drilling site Kohnen Station, Dronning Maud Land, Antarctica, during the period 2001–2006. The precipitation is found to be highly episodic, with, on average, approximately eight high‐precipitation events per year that can bring more than half of the total annual accumulation. The duration of the events varies between 1 day and about 1 week. On most days in the remaining time of the year, however, daily precipitation sums are about one order of magnitude smaller than that for the high‐precipitation events. Synoptic weather patterns causing these events were directly connected to frontal systems of cyclones in only 20% of the 51 investigated cases. The majority of the events occurred in connection with (blocking) anticyclones and correspondingly amplified Rossby waves, which lead to advection of warm, moist air from relatively low latitudes. Possible changes in the seasonality and frequency of these events in a different climate can lead to a bias in ice core properties and might also strongly influence the mass balance of the Antarctic continent and thus global sea level change. Citation: Schlosser, E., K. W. Manning, J. G. Powers, M. G. Duda, G. Birnbaum, and K. Fujita (2010), Characteristics of high‐ precipitation events in Dronning Maud Land, Antarctica, J. Geophys. Res., 115, D14107, doi:10.1029/2009JD013410. 1. Introduction Antarctica (EPICA), at Kohnen Station [75.00°S, 0.50°E, 2892 m above sea level (asl)] [Oerter et al., 2004], and one [2] Even with modern techniques, measuring Antarctic at Dome Fuji (77.32°S, 39.7°E, 3810 m asl) [Horiuchi et al., precipitation is a challenging task because of the remoteness 2008]. Both cores reached bedrock and, together with the and cold of the continent combined with the aridity of the second core drilled within EPICA, Dome C, yielded infor- interior and the prevailing strong winds in coastal areas that mation about the climate of the past 800 kyr [European make it difficult to distinguish between real precipitation and Project for Ice Coring in Antarctica (EPICA) Community blowing or drifting snow. However, a thorough knowledge Members, 2004]. Of special interest for ice core interpreta- of the Antarctic precipitation regime is important for the tion is the investigation of the occurrence of high precipi- following two reasons: (1) snowfall is the largest positive tation compared to diamond dust, also called “clear‐sky component of the Antarctic mass balance and its behavior in precipitation” (even though it also occurs under overcast a changing climate influences global sea level change, and conditions beneath a cloud layer; G. Birnbaum, personal (2) for a correct interpretation of ice cores (one of the most communication). Diamond dust, which is formed from in important information sources in paleoclimatology), knowl- situ nucleation of ice crystals in the extremely cold air [King edge about the seasonality of accumulation and possible and Turner, 1997], is assumed to show some seasonal changes in that seasonality during climatic change is a basic variations but basically occurs in each month. Episodically requirement. occurring, synoptically induced high‐precipitation events [3] In Dronning Maud Land (DML), in the Atlantic sector are rare in the interior of the continent, but a few events per of Antarctica, two deep ice cores were recently drilled: one year can bring a large percentage of the total annual pre- in the framework of the European Project for Ice Coring in cipitation. A possible tendency of those events to occur in certain seasons could lead to a strong bias in ice core 1Institute of Meteorology and Geophysics, University of Innsbruck, properties [Noone and Simmonds, 1998; Jouzel et al., 1997, Innsbruck, Austria. 2003; Schlosser, 1999], in particular in the stable isotope 2Mesoscale and Microscale Meteorology Division, Earth System Laboratory, National Center for Atmospheric Research, Boulder, ratio, which is used to derive paleotemperatures, but also in Colorado, USA. various chemical properties. A possible over‐representation 3Alfred‐Wegener Institute for Polar and Marine Research, of summer snow, for instance, would lead to a higher stable Bremerhaven, Germany. 4 isotope ratio and, thus, to a seemingly higher temperature, Graduate School of Environmental Studies, Department of even if the mean annual temperature had not changed at all. Hydrospheric‐Atmospheric Science, Nagoya University, Furo‐cho, Chikusa‐Ku, Nagoya, Japan. Therefore, a thorough understanding of precipitation pro- cesses is needed for a correct ice core interpretation. For Copyright 2010 by the American Geophysical Union. Kohnen Station, because it is a summer ice core drilling 0148‐0227/10/2009JD013410 D14107 1of14 D14107 SCHLOSSER ET AL.: HIGH‐PRECIPITATION EVENTS IN ANTARCTICA D14107 station, daily precipitation observations are available only eral synoptically induced precipitation events per year that for a restricted time period. However, model results show brought exceptionally high precipitation to the high Ant- for the majority of the time very small daily precipitation arctic plateau. Two case studies revealed that the high pre- sums. Unlike at Dome C or Dome Fuji, which are both cipitation amounts were caused by amplification of upper situated at higher altitudes and larger distances from the level planetary waves directing warm, moist air from lower coast than Kohnen Station, these small precipitation latitudes toward the interior of the continent. amounts are not necessarily attributed to diamond dust [9] These results were confirmed by Reijmer and Van den formation; they can also be attributed to a weak synoptic Broeke [2003], who found that accumulation at several influence. However, both types seem to be fairly evenly AWSs in DML occurred in many small and a few large distributed over the year and, thus, do not lead to a bias in precipitation events per year, with those few large events the ice core properties. accounting for up to 50% of the total annual accumulation. [4] Climate model simulations have shown a poleward Usually air temperature and wind speed increased consid- shift of Southern Hemispheric storm tracks in a warmer erably during the large events [Reijmer and Van den Broeke, climate, which means significant changes in the spatial 2001]. This had also been found by Noone and Simmonds precipitation distribution [Bengtsson et al., 2006]. This [1998], who used a general circulation model (GCM) to supports the hypothesis of systematic changes in cyclone investigate the synoptic patterns that cause unusually high behavior between glacial and interglacial time periods, precipitation in Antarctica. which must be considered for interpretation of ice core [10] At Kohnen Station, Birnbaum et al. [2006] investi- properties. gated the weather patterns that led to high precipitation [5] In this study, an investigation of “high‐precipitation amounts during several summer seasons. They studied a set events” at Kohnen Station, the EPICA drilling site in of visual observational data and the corresponding ECMWF western Dronning Maud Land, is presented. The study is operational analyses. For the summer they identified three based mainly on the high‐resolution Antarctic Mesoscale typical categories of weather situations that brought excep- Prediction System (AMPS) archive data, but it also draws tionally high snowfall: (1) occluding fronts from eastward on some temporally restricted observational data from moving low‐pressure systems, (2) large‐scale lifting pro- Kohnen Station [Birnbaum et al., 2006] and Dome Fuji cesses caused by an upper‐air low west of Kohnen Station, [Fujita and Abe, 2006]. Typical synoptic patterns connected and (3) retrograde lows or secondary lows with frontal to high‐precipitation events are classified, and their fre- systems. The second category, an upper air low west of the quency and seasonality is investigated. The corresponding base, leads to a northwesterly flow over DML that can be precipitation amounts are compared to estimated amounts fairly stable over several days in the case of a blocking during periods with diamond dust. An overview of previous anticyclone above eastern DML. Such blocking high‐ studies of Antarctic precipitation and the synoptics involved pressure systems were also studied by Enomoto et al. [1998] is given in section 2, and AMPS is described in section 3. In for Dome Fuji, where they observed an extreme winter section 4 the synoptic patterns for high‐precipitation events warming connected to a blocking high that persisted for are introduced and, in section 5, frequency distribution and several weeks and involved the aforementioned advection of seasonality of these events are discussed. After a short warm, moist air. Owing to the extremely high altitude of consideration of diamond dust (section 6), a summary and Dome Fuji (3810 m asl), the air is often not moist enough to conclusions are presented in section 7. produce precipitation, but the corresponding cloud cover changes the radiation conditions, namely the longwave
Recommended publications
  • Layering of Surface Snow and Firn at Kohnen Station, Antarctica – Noise Or Seasonal Signal?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Confidential manuscript submitted to replace this text with name of AGU journalprovided by Electronic Publication Information Center Layering of surface snow and firn at Kohnen Station, Antarctica – noise or seasonal signal? Thomas Laepple1, Maria Hörhold2,3, Thomas Münch1,5, Johannes Freitag4, Anna Wegner4, Sepp Kipfstuhl4 1Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Telegrafenberg A43, 14473 Potsdam, Germany 2Institute of Environmental Physics, University of Bremen, Otto-Hahn-Allee 1, D-28359 Bremen 3now at Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, 27568 Bremerhaven, Germany 4Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, 27568 Bremerhaven, Germany 5Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany Corresponding author: Thomas Laepple ([email protected]) Extensive dataset of vertical and horizontal firn density variations at EDML, Antarctica Even in low accumulation regions, the density in the upper firn exhibits a seasonal cycle Strong stratigraphic noise masks the seasonal cycle when analyzing single firn cores Abstract The density of firn is an important property for monitoring and modeling the ice sheet as well as to model the pore close-off and thus to interpret ice core-based greenhouse gas records. One feature, which is still in debate, is the potential existence of an annual cycle of firn density in low-accumulation regions. Several studies describe or assume seasonally successive density layers, horizontally evenly distributed, as seen in radar data.
    [Show full text]
  • Ice Core Science
    PAGES International Project Offi ce Sulgeneckstrasse 38 3007 Bern Switzerland Tel: +41 31 312 31 33 Fax: +41 31 312 31 68 [email protected] Text Editing: Leah Christen News Layout: Christoph Kull Hubertus Fischer, Christoph Kull and Circulation: 4000 Thorsten Kiefer, Editors VOL.14, N°1 – APRIL 2006 Ice Core Science Ice cores provide unique high-resolution records of past climate and atmospheric composition. Naturally, the study area of ice core science is biased towards the polar regions but ice cores can also be retrieved from high .pages-igbp.org altitude glaciers. On the satellite picture are those ice cores covered in this issue of PAGES News (Modifi ed image of “The Blue Marble” (http://earthobservatory.nasa.gov) provided by kk+w - digital cartography, Kiel, Germany; Photos by PNRA/EPICA, H. Oerter, V. Lipenkov, J. Freitag, Y. Fujii, P. Ginot) www Contents 2 Announcements - Editorial: The future of ice core research - Dating of ice cores - Inside PAGES - Coastal ice cores - Antarctica - New on the bookshelf - WAIS Divide ice core - Antarctica - Tales from the fi eld - ITASE project - Antarctica - In memory of Nick Shackleton - New Dome Fuji ice core - Antarctica - Vostok ice drilling project - Antarctica 6 Program News - EPICA ice cores - Antarctica - The IPICS Initiative - 425-year precipitation history from Italy - New sea-fl oor drilling equipment - Sea-level changes: Black and Caspian Seas - Relaunch of the PAGES Databoard - Quaternary climate change in Arabia 12 National Page 40 Workshop Reports - Chile - 2nd Southern Deserts Conference - Chile - Climate change and tree rings - Russia 13 Science Highlights - Global climate during MIS 11 - Greece - NGT and PARCA ice cores - Greenland - NorthGRIP ice core - Greenland 44 Last Page - Reconstructions from Alpine ice cores - Calendar - Tropical ice cores from the Andes - PAGES Guest Scientist Program ISSN 1563–0803 The PAGES International Project Offi ce and its publications are supported by the Swiss and US National Science Foundations and NOAA.
    [Show full text]
  • Antarctic Treaty
    ANTARCTIC TREATY REPORT OF THE NORWEGIAN ANTARCTIC INSPECTION UNDER ARTICLE VII OF THE ANTARCTIC TREATY FEBRUARY 2009 Table of Contents Table of Contents ............................................................................................................................................... 1 1. Introduction ................................................................................................................................................... 2 1.1 Article VII of the Antarctic Treaty .................................................................................................................... 2 1.2 Past inspections under the Antarctic Treaty ................................................................................................... 2 1.3 The 2009 Norwegian Inspection...................................................................................................................... 3 2. Summary of findings ...................................................................................................................................... 6 2.1 General ............................................................................................................................................................ 6 2.2 Operations....................................................................................................................................................... 7 2.3 Scientific research ..........................................................................................................................................
    [Show full text]
  • Internal Structure of the Ice Sheet Between Kohnen Station and Dome Fuji, Antarctica, Revealed by Airborne Radio-Echo Sounding
    Annals of Glaciology 54(64) 2013 doi:10.3189/2013AoG64A113 163 Internal structure of the ice sheet between Kohnen station and Dome Fuji, Antarctica, revealed by airborne radio-echo sounding Daniel STEINHAGE, Sepp KIPFSTUHL, Uwe NIXDORF, Heinz MILLER Alfred-Wegener-Institut Helmholtz-Zentrum fu¨r Polar und Meeresforschung, Bremerhaven, Germany E-mail: [email protected] ABSTRACT. This study aims to demonstrate that deep ice cores can be synchronized using internal horizons in the ice between the drill sites revealed by airborne radio-echo sounding (RES) over a distance of >1000 km, despite significant variations in glaciological parameters, such as accumulation rate between the sites. In 2002/03 a profile between the Kohnen station and Dome Fuji deep ice-core drill sites, Antarctica, was completed using airborne RES. The survey reveals several continuous internal horizons in the RES section over a length of 1217 km. The layers allow direct comparison of the deep ice cores drilled at the two stations. In particular, the counterpart of a visible layer observed in the Kohnen station (EDML) ice core at 1054 m depth has been identified in the Dome Fuji ice core at 575 m depth using internal RES horizons. Thus the two ice cores can be synchronized, i.e. the ice at 1560 m depth (at the bottom of the 2003 EDML drilling) is 49 ka old according to the Dome Fuji age/depth scale, using the traced internal layers presented in this study. INTRODUCTION At sites where the accumulation is high enough, the upper During recent decades several deep ice cores in Antarctica parts of ice cores can be dated by counting annual layers, and Greenland have been drilled in order to study palaeo- revealed by measurements of the electrical or chemical climate.
    [Show full text]
  • Comparison of Different Methods to Retrieve Optical-Equivalent Snow Grain Size in Central Antarctica
    Comparison of different methods to retrieve optical-equivalent snow grain size in central Antarctica Tim Carlsen, Gerit Birnbaum, André Ehrlich, Johannes Freitag, Georg Heygster, Larysa Istomina, Sepp Kipfstuhl, Anaïs Orsi, Michael Schäfer, Manfred Wendisch To cite this version: Tim Carlsen, Gerit Birnbaum, André Ehrlich, Johannes Freitag, Georg Heygster, et al.. Comparison of different methods to retrieve optical-equivalent snow grain size in central Antarctica. The Cryosphere, Copernicus 2017, 11 (6), pp.2727-2741. 10.5194/tc-11-2727-2017. hal-03225815 HAL Id: hal-03225815 https://hal.archives-ouvertes.fr/hal-03225815 Submitted on 16 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Cryosphere, 11, 2727–2741, 2017 https://doi.org/10.5194/tc-11-2727-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Comparison of different methods to retrieve optical-equivalent snow grain size in central Antarctica Tim Carlsen1, Gerit Birnbaum2, André Ehrlich1, Johannes Freitag2, Georg Heygster3, Larysa
    [Show full text]
  • Waba Directory 2003
    DIAMOND DX CLUB www.ddxc.net WABA DIRECTORY 2003 1 January 2003 DIAMOND DX CLUB WABA DIRECTORY 2003 ARGENTINA LU-01 Alférez de Navió José María Sobral Base (Army)1 Filchner Ice Shelf 81°04 S 40°31 W AN-016 LU-02 Almirante Brown Station (IAA)2 Coughtrey Peninsula, Paradise Harbour, 64°53 S 62°53 W AN-016 Danco Coast, Graham Land (West), Antarctic Peninsula LU-19 Byers Camp (IAA) Byers Peninsula, Livingston Island, South 62°39 S 61°00 W AN-010 Shetland Islands LU-04 Decepción Detachment (Navy)3 Primero de Mayo Bay, Port Foster, 62°59 S 60°43 W AN-010 Deception Island, South Shetland Islands LU-07 Ellsworth Station4 Filchner Ice Shelf 77°38 S 41°08 W AN-016 LU-06 Esperanza Base (Army)5 Seal Point, Hope Bay, Trinity Peninsula 63°24 S 56°59 W AN-016 (Antarctic Peninsula) LU- Francisco de Gurruchaga Refuge (Navy)6 Harmony Cove, Nelson Island, South 62°18 S 59°13 W AN-010 Shetland Islands LU-10 General Manuel Belgrano Base (Army)7 Filchner Ice Shelf 77°46 S 38°11 W AN-016 LU-08 General Manuel Belgrano II Base (Army)8 Bertrab Nunatak, Vahsel Bay, Luitpold 77°52 S 34°37 W AN-016 Coast, Coats Land LU-09 General Manuel Belgrano III Base (Army)9 Berkner Island, Filchner-Ronne Ice 77°34 S 45°59 W AN-014 Shelves LU-11 General San Martín Base (Army)10 Barry Island in Marguerite Bay, along 68°07 S 67°06 W AN-016 Fallières Coast of Graham Land (West), Antarctic Peninsula LU-21 Groussac Refuge (Navy)11 Petermann Island, off Graham Coast of 65°11 S 64°10 W AN-006 Graham Land (West); Antarctic Peninsula LU-05 Melchior Detachment (Navy)12 Isla Observatorio
    [Show full text]
  • K4MZU Record WAP WACA Antarctic Program Award
    W.A.P. - W.A.C.A. Sheet (Page 1 of 10) Callsign: K4MZU Ex Call: - Country: U.S.A. Name: Robert Surname: Hines City: McDonough Address: 1978 Snapping Shoals Road Zip Code: GA-30252 Province: GA Award: 146 Send Record Sheet E-mail 23/07/2020 Check QSLs: IK1GPG & IK1QFM Date: 17/05/2012 Total Stations: 490 Tipo Award: Hunter H.R.: YES TOP H.R.: YES Date update: 23/07/2020 Date: - Date Top H.R.: - E-mail: [email protected] Ref. Call worked Date QSO Base Name o Station . ARGENTINA ARG-Ø1 LU1ZAB 15/02/1996 . Teniente Benjamin Matienzo Base (Air Force) ARG-Ø2 LU1ZE 30/01/1996 . Almirante Brown Base (Army) ARG-Ø2 LU5ZE 15/01/1982 . Almirante Brown Base (Army) ARG-Ø4 LU1ZV 17/11/1993 . Esperanza Base (Army) ARG-Ø6 LU1ZG 09/10/1990 . General Manuel Belgrano II Base (Army) ARG-Ø6 LU2ZG 27/12/1981 . General Manuel Belgrano II Base (Army) ARG-Ø8 LU1ZD 19/12/1993 . General San Martin Base (Army) ARG-Ø9 LU2ZD 19/01/1994 . Primavera Base (Army) (aka Capitan Cobett Base) ARG-11 LW7EYK/Z 01/02/1994 . Byers Camp (IAA) ARG-11 LW8EYK/Z 23/12/1994 . Byers Camp (IAA) ARG-12 LU1ZC 28/01/1973 . Destacamento Naval Decepción Base (Navy) ARG-12 LU2ZI 19/08/1967 . Destacamento Naval Decepción Base (Navy) ARG-13 LU1ZB 13/12/1995 . Destacamento Naval Melchior Base (Navy) ARG-15 AY1ZA 31/01/2004 . Destacamento Naval Orcadas del Sur Base (Navy) ARG-15 LU1ZA 19/02/1995 . Destacamento Naval Orcadas del Sur Base (Navy) ARG-15 LU5ZA 02/01/1983 .
    [Show full text]
  • Appendix 2 Wolfs Fang Runway Iee South Pole and Atka Bay
    Wolfs Fang Runway IEE, Appendix 2 South Pole and Atka Bay Visits IEE August 2017 APPENDIX 2 WOLFS FANG RUNWAY IEE SOUTH POLE AND ATKA BAY VISITS INITIAL ENVIRONMENTAL ASSESSMENT AUGUST 2017 1 Wolfs Fang Runway IEE, Appendix 2 South Pole and Atka Bay Visits IEE August 2017 CONTENTS 1 Introduction ...................................................................................................................... 4 2 Activities Considered ....................................................................................................... 4 3 Background ....................................................................................................................... 5 3.1 Proposed changes in operations .......................................................................... 5 4 Legislative context and screening ................................................................................... 7 5 Environmental Impact Approach and Methodology ..................................................... 9 5.1 Consultation and Stakeholder Engagement .............................................................. 9 5.2 Approach ................................................................................................................. 11 6 Description of Existing Environment and Baseline Conditions ................................. 13 6.1 Study Areas, Spatial and Temporal Scope ........................................................ 13 6.2 South Pole and FD83 ...............................................................................................
    [Show full text]
  • Polar Measurements Data (ESSD)
    CMYK RGB History of Geo- and Space Open Access Open Sciences Advances in Science & Research Open Access Proceedings Drinking Water Drinking Water Engineering and Science Engineering and Science Open Access Access Open Discussions Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Discussions Earth Syst. Sci. Data Discuss., 5, 585–705, Earth 2012 System Earth System www.earth-syst-sci-data-discuss.net/5/585/2012/ Science Science doi:10.5194/essdd-5-585-2012 ESSDD © Author(s) 2012. CC Attribution 3.0 License. 5, 585–705, 2012 Open Access Open Open Access Open Data Data This discussion paper is/has been under review for the journal Earth System Science Discussions Polar measurements Data (ESSD). Please refer to the corresponding final paper in ESSD if available. Social Social R. Sander and Open Access Open Geography Open Access Open Geography J. Bottenheim A compilation of tropospheric Title Page measurements of gas-phase and Abstract Instruments aerosol chemistry in polar regions Data Provenance & Structure Tables Figures R. Sander1 and J. Bottenheim2 1 Air Chemistry Department, Max-Planck Institute of Chemistry, J I P.O. Box 3060, 55020 Mainz, Germany 2Environment Canada, 4905 Dufferin Street, Toronto M3H 5T4, Canada J I Received: 16 July 2012 – Accepted: 18 July 2012 – Published: 3 August 2012 Back Close Correspondence to: R. Sander ([email protected]) Full Screen / Esc Published by Copernicus Publications. Printer-friendly Version Interactive Discussion 585 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract ESSDD Measurements of atmospheric chemistry in polar regions have been made for more than half a century. Probably the first Antarctic ozone data were recorded in 1958 dur- 5, 585–705, 2012 ing the International Geophysical Year.
    [Show full text]
  • Airborne-Based Geophysical Investigation Dronning Maud Land
    Airborne-based Geophysical Investigation In Dronning Maud Land, Antarctica Dissertation zur Erlangung des Grades Dr. rer. nat. vorgelegt dem Fachbereich Geowissenschaften der Universität Bremen von SVEN RIEDEL Alfred Wegener Institut für Polar- und Meeresforschung Bremerhaven August 28, 2008 Sven Riedel Alfred-Wegener-Institut für Polar- und Meeresforschung Columbusstrasse D-27568 Bremerhaven gegenwärtige Anschrift: Christian Albrechts Universität zu Kiel Institut für Geowissenschaften, Abt. Geophysik Otto Hahn Platz 1 D-24118 Kiel Die vorliegende Arbeit ist die inhaltlich unveränderte Fassung der Dissertations- schrift, die 2008 dem Fachbereich Geowissenschaften der Universität Bremen vorgelegt wurde. Gutachter: Prof. Dr. H. Miller (Universität Bremen/AWI) Prof. Dr. H. Villinger (Universität Bremen) Prüfer: Prof. Dr. C. Spiegel (Universität Bremen) Prof. Dr. R. Tiedemann (Universität Bremen/AWI) Promotionskolloquium: am 04.Februar 2009 2 This is about the times, the places, the people, that have shaped me. Kurzfassung Die Antarktis steht bei der Rekonstruktion der Großkontinente Rodinia und Gondwana jeweils im Mittelpunkt erdgeschichtlicher Untersuchungen. Geologische Großstrukturen zeugen von der Bildung und dem Zerfall dieser Superkontinente, je- doch ist deren direkte Erschließung, bedingt durch die Eisbedeckung Antarktikas, nicht möglich und begrenzt sich nur auf spärliche, geologische Aufschlüsse. Daher ermöglichen nur satelliten- und flugzeuggestützte, also indirekte Messungen, eine flächenhafte Erfassung geophysikalischer Daten
    [Show full text]
  • Neumayer III and Kohnen Station in Antarctica Operated by the Alfred Wegener In- Stitute
    Journal of large-scale research facilities, 2, A85 (2016) http://dx.doi.org/10.17815/jlsrf-2-152 Published: 17.08.2016 Neumayer III and Kohnen Station in Antarctica operated by the Alfred Wegener In- stitute Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany * Observatory Scientists: - Air chemistry: Rolf Weller, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, phone: +49(0) 471 4831 1508, email: [email protected] - Meteorology: Gert König-Langlo, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeres- forschung, phone: +49(0) 471 4831 1806, email: [email protected] - Geophysics: Tanja Fromm, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, phone: +49(0) 471 4831 2009, email: [email protected] - Geophysics: Alfons Eckstaller, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeres- forschung, phone: +49(0) 471 4831 1209, email: [email protected] Logistics: - Uwe Nixdorf, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, phone: +49(0) 471 4831 1160, email: [email protected] - Eberhard Kohlberg, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, phone: +49(0) 471 4831 1422, email: [email protected] - Christine Wesche, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, phone: +49(0) 471 4831 1967, email: [email protected] Abstract: The Alfred Wegener Institute operates two stations in Dronning Maud Land, Antarctica. The German overwintering station Neumayer III is located on the Ekström Ice Shelf at 70°40’S and 08°16’W and is the logistics base for three long-term observatories (meteorology, air chemistry and geophysics) and nearby research activities.
    [Show full text]
  • Microstructure of Snow and Its Link to Trace Elements and Isotopic Composition at Kohnen Station, Dronning Maud Land, Antarctica
    feart-08-00023 February 11, 2020 Time: 14:39 # 1 ORIGINAL RESEARCH published: 12 February 2020 doi: 10.3389/feart.2020.00023 Microstructure of Snow and Its Link to Trace Elements and Isotopic Composition at Kohnen Station, Dronning Maud Land, Antarctica Dorothea Elisabeth Moser1,2*, Maria Hörhold1, Sepp Kipfstuhl1 and Johannes Freitag1* 1 Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Bremerhaven, Germany, 2 Institut für Geologie und Paläontologie, University of Münster, Münster, Germany Understanding the deposition history and signal formation in ice cores from polar ice sheets is fundamental for the interpretation of paleoclimate reconstruction based on climate proxies. Polar surface snow responds to environmental changes on a seasonal time scale by snow metamorphism, displayed in the snow microstructure Edited by: and archived in the snowpack. However, the seasonality of snow metamorphism and Maurine Montagnat, Centre National de la Recherche accumulation rate is poorly constrained for low-accumulation regions, such as the East Scientifique (CNRS), France Antarctic Plateau. Here, we apply core-scale microfocus X-ray computer tomography Reviewed by: to continuously measure snow microstructure of a 3-m deep snow core from Kohnen Jesper Sjolte, Station, Antarctica. We compare the derived microstructural properties to discretely Lund University, Sweden Neige Calonne, measured trace components and stable water isotopes, commonly used as climate UMR 3589 Centre National proxies. Temperature and snow height data from an automatic weather station are used de Recherches Météorologiques (CNRM), France for further constraints. Dating of the snow profile by combining non-sea-salt sulfate and *Correspondence: density crusts reveals a seasonal pattern in the geometrical anisotropy.
    [Show full text]