No.124, Year 2013

Total Page:16

File Type:pdf, Size:1020Kb

No.124, Year 2013 МАТИЦА СРПСКА ОДЕЉЕЊЕ ЗА ПРИРОДНЕ НАУКЕ ЗБОРНИК МАТИЦЕ СРПСКЕ ЗА ПРИРОДНЕ НАУКЕ MATICA SRPSKA DEPARTMENT OF NATURAL SCIENCES JOURNAL FOR NATURAL SCIENCES Покренут 1951 / First published in 1951. Published as Научни зборник, серија природних наука until the tenth issue (1955), as the Series for Natural Science from the eleventh issue (1956) — Зборник за pриродне науке, and under its present title since the sixty-sixth issue (1984) Главни уредници / Editors-in-Chief Miloš Jovanović (1951), Branislav Bukurov (1952—1969), Lazar Stojković (1970—1976), Slobodan Glumac (1977—1996), Rudolf Kastori (1996—2012), Ivana Maksimović (2013—) 124 Уредништво / Editorial Board Consulting Editors S. GAJIN A. ATANASSOV, Bulgaria S. ĆURČIĆ P. HOCKING, Australia V. JANJIĆ A. RODZKIN, Belarus V. JOVIĆ K. ROUBELAKIS-ANGELAKIS, Greece D. KAPOR S. STOJILJKOVIĆ, USA R. KASTORI G. SCHILING, Germany L. LEPŠANOVIĆ GY. VÁRALLYAY, Hungary I. MAKSIMOVIĆ A. VENEZIA, Italy V. MARIĆ M. ŠKRINJAR Articals are available in full-text at the web site of Matica Srpska and in the fol- lowing data bases: Serbian Citation Index, EBSCO Academic Search Complet, abstract level at Agris (FAO), CAB Abstracts, CABI Full-Text and Thomson Reuters Master Journal List. Главни и одговорни уредник / Editor-in-Chief IVANA MAKSIMOVIĆ YU ISSN 0352-4906 UDK 5/6 (05) MATICA SRPSKA JOURNAL FOR NATURAL SCIENCES 124 NOVI SAD 2013 SCIENTIFIC BOARD 5TH INTERNATIONAL SCIENTIFIC MEETING MYCOLOGY, MYCOTOXICOLOGY AND MYCOSES Professor Dragan Stanić, President of Matica Srpska Professor Ferenc Balaž, Ph.D. Professor Dilek Heperkan, Ph.D. Akademician Dragutin Đukić Professor Hans van Egmond, Ph.D. Professor Elias Nerantzis, Ph.D. Akademician Rudolf Kastori Professor Đoko Kungulovski, Ph.D. Professor Antonio Logrieco, Ph.D. Professor Antonio Moretti, Ph.D. Professor Hrvoje Pavlović, Ph.D. Professor Stevan Popov, Ph.D. Professor Peter Raspor, Ph.D. Professor Aleksej Smirnov, Ph.D. Professor Marija Škrinjar, Ph.D. ORGANIZATION BOARD 5TH INTERNATIONAL SCIENTIFIC MEETING MYCOLOGY, MYCOTOXICOLOGY AND MYCOSES Professor Marija Škrinjar, Ph.D., President Dr Mira Ac, Ph.D. Professor Ferenc Bagi, Ph.D. Dr Slavica Vesković Moračanin, Ph.D. Professor Jelena Vukojević, Ph.D. Akademician Dragutin Đukić Mirjana Zrnić, Secretary Dr Dobrila Jakić Dimić, Ph.D. Dr Jelena Lević, Ph.D. Professor Ida Leskošek Čukalović, Ph.D. Professor Antonio Logrieco, Ph.D. Professor Milan Matavulj, Ph.D. Professor Stevan Maširević, Ph.D. Professor Miomir Nikšić, Ph.D. Professor Igor Stojanov, Ph.D. The papers published in this Collection of Papers at The 5th International Scientific Meeting Mycology, Mycotoxicology and Mycoses, on April 17-19 2013, in Matica Srpska and are also the results of the research in the project Mycotoxins in Foodstuffs financed by The Ministry of Education Science and Technological Development of Republic of Serbia and Provincial Secre- tariate of Science and Technological Development of the Autonomous Province of Vojvodina CONTENTS САДРЖАЈ ARTICLES AND TREATISES ЧЛАНЦИ И ПРИЛОЗИ Sándor Kocsubé, János Varga, Gyöngyi Szigeti, Nikolett Ba- ra nyi, Katalin Suri, Beáta Toth, Éva Toldi, Tibor Bartók, Akos Mesterházy, Aspergillus species as mycotoxin producers in agricultural products in Central Europe – Aspergillus врсте као продуценти микотоксина у пољопривредним производима у централној Европи . 13 Biljana Stojanovska-Dimzoska, Zehra Hajrulai-Musliu, Eli za- beta Dimitrieska-Stojkovic, Risto Uzunov, Pavle Seku lov- s k i , Occurrence of аflatoxins in peanuts and peanut based products determined by liquid chromatography with fluorescence detection – Одређивање при су ства афлатоксина у кикирикију и производима од кикирикија применом течне хроматографије са флуоресцентним детектором . 27 I r e n a M. K i r i l o v, G o r d a n a M. Đ o k i ć, S a š a Z. P o p o v – Validation of immunoenzymatic tests for the detection of аflatoxin present in food – Валидација имуноензимских тестова за детекцију афлатоксина присутних у храни . 37 V o j i s l a v a P. B u r s i ć, G o r i c a Lj. V u k o v i ć, I g o r M. J a j i ć, S a n j a D. Lazić, Magdalena H. Cara, Radmilo R. Čolović, Đuro M. Vukmirović, Analysis of aflatoxins B1 and G1 maize by QuEChERS – QuEChERS анализа афлатоксина B1 и G1 у кукурузу . 51 Jovana J. Kos, Elizabet P. Janić Hajnal, Jasna S. Mastilović, Ivan Lj. Milovanović, Bojana M. Kokić, The influence of drought on the occurence of aflatoxins in maize – Утицај суше на појаву афлатоксина у кукурузу . 59 Radmilo R. Čolović, Vojislava P. Bursić, Gorica Lj. Vuković, Đ u r o M. V u k m i r o v i ć, S a n j a D. L a z i ć, J o v a n k a D. L e v i ć, Ferenc F. Bagi, Reducing the level of mycotoxin in corn by removal of fines – Снижавање нивоа микотоксина у кукурузу уклањањем честица прашине . 67 Sandra M. Jakšić, Igor M. Jajić, Ksenija D. Nešić, Igor M. Sto- j a n o v, M i l i c a M. Ž i v k o v B a l o š, Ž e l j k o A. M i h a l j e v, B i l j a n a F. A b r a m o v i ć – Interlaboratory comparison for determination of ochratoxin A by ELISA in maize – Међулабораторијско поређење резултата одре ђи ва ња охратоксина A ELISA методом у кукурузу . 77 7 K a r o l i n a S. B o d o č i, F e r e n c F. B a g i, J a n o š J. B e r e n j i, V e r a B. S t o j š i n, D r a g a n a B. B u d a k o v, L i v i a T. N a đ, Level of seed infec- tion of cultivated sorghum with fungi from genus Fusarium – Степен заразе семена гајеног сирка гљивама из рода Fusarium . 85 Ksenija D. Nešić, Sandra M. Jakšić, Miloš S. Kapetanov, Preven- tion, control and detection of fusarial toxins – Превенција, контрола и детек- ци ја фузариo микотоксина . 91 I g o r M. J a j i ć, S a š a Z. K r s t o v i ć, B i l j a n a Č. P e r i š i ć, S a n d r a M. Jakšić, Vojislava P. Bursić, Radivoje M. Jevtić, Biljana F. Abramović, Presence of zearalenone in the most commonly grown wheat cultivars in Serbia – Присуство зеараленона у најчешће узгајаним сортама пшенице у Србији . 101 V e s n a S. K r n j a j a, J e l e n a T. L e v i ć, S l a v i c a Ž. S t a n k o v i ć, T a n j a S. P e t r o v i ć, M i l o š D. L u k i ć, Molds and mycotoxins in freshly harvested maize – Плесни и микотоксини у зрну кукуруза после бербе . 111 Jasna Z. Prodanov-Radulović, Radoslav Đ. Došen, Igor M. Sto- janov, Ivan M. Pušić, Milica Ž. Živkov-Baloš, Radomir Ra- t a j a c , Miloš S. Kapetanov, Influence of mycotoxin zearalenone on the swine reproductive failure – Утицај микотоксина зеараленона на поремећаје у репродукцији свиња . 121 Elizabet P. Janić Hajnal, Jovana J. Kos, Jasna S. Mastilović, Presence of T-2 and HT-2 toxins in maize – Присуство T-2 и HT-2 токсина у кукурузу . 131 M i l o š C. K a p e t a n o v, D u b r a v k a V. P o t k o n j a k, I g o r M. S t o j a n o v, Milica M. Živkov-Baloš, Sandra M. Jakšić, Clinical and patho- morphological diagnostics of mycotoxicosis in parent poultry flock caused by T-2 trychotecene – Улога клиничке и патоморфолошке дијагностике ми ко- ток сикоза изазване Т-2 токсином код родитељског јата у експлоатацији . 137 Zagorka N. Stanojev, Ferenc F. Bagi, Marija I. Bodroža Sola- r o v, V e r a V. S t o j š i n, J o v a n a N. V u č k o v i ć, D r a g a n a B. B u d a - kov, Karolina S. Bodoči, Mycobiota of Serbian wheat grain in 2010 – Микобиота зрна пшенице у Србији током 2010. године . 145 S t a m e n S. R a d u l o v i ć, R a d m i l a V. M a r k o v i ć, D r a g a n D. M i l i ć, Dobrila P. Jakić Dimić, Dragan S. Šefer, Degree of mycotoxico- logical contamination of feed and complete feed mixtures for pigs and poultry during the period 2007–2012. on the territory of the Republic of Serbia – Степен микотоксиколошке контаминације хранива крмних смеша за исхрану сви ња и живине током периода 2007-2012. године на територији Републике Србије . 153 Emilija Ivanova, Natalija Atanasova-Pančevska, Džoko Kun- gulovski, Antimicrobial activities of laboratory produced essential oil solutions against five selected fungal strains – Антимикробне активности лабо ра ториј- ски произведених раствора из есенцијалних уља у односу на пет изабраних фунгалних сојева . 171 V l a d i s l a v a M. Š o š o, M a r i j a M. Š k r i n j a r, N e v e n a T. B l a g o j e v, Iva na S. Čabarkapa, Dragan C. Lukić, Antifungal activity of oleo- resins used in meat industry on some toxigenic Aspergillus spp – Антифунгална активност олеорезина који се користи у месној индустрији на неке токси- ге не врсте рода Aspergillus spp .
Recommended publications
  • Tricholoma Aurantium
    Tricholoma aurantium Pilzportrait Fungi, Dikarya, Basidiomycota, Agaricomycotina, Agaricomycetes, Agaricomycetidae, Agaricales, Tricholomataceae Tricholoma aurantium Orangeroter Ritterling Tricholoma aurantium Tricholoma aurantium (Schaeffer) Ricken 1915 Agaricus aurantia Schaeffer 1774 Agaricus aurantius Schaeffer 1774 Agaricus aurantius Schaeffer 1774 Amanita punctata var. aurantia (Schaeffer) Lamarck 1783 Amanita aurantia Lamarck 1783 Armillaria aurantia (Schaeffer) P. Kummer 1871 Gyrophila aurantia (Schaeffer) Quélet 1886 Mastoleucomyces aurantius (Schaeffer) Kuntze 1891 Melanoleuca aurantia (Schaeffer) Murrill 1914 Tricholoma aurantium (Schaeffer) Ricken 1915 makroskopisch Fruchtkörperfarbe / Farbspektrum Orange Fleischfarbe / Trama / Farbe Schnitt Fruchtkörper Weiss Hutfarbe Lebhaft orange - organgebraun Hutmerkmale Rand of etwas gerippt Stielmerkmale Genattert, mit Ring Lamellenmerkmale Im Alter an Schneiden fleckend, gekerbt Oxidation / Verfärbung: Fruchtkörper, Milch, Röhren Lamellen fleckend Sporenfarbe / Sporenpulver (Abwurf) Weiss olfaktorisch / organoleptisch Geruch / Geruchsprofil Stark nach Gurken Geschmack Zuerst nach Gurken, dann bitter und Bitterkeit ziemlich lang im Mund anhaltend, adstringierend botanisch / ökologisch Standort Picea, Kalkboden, collin bis alpin mikroskopisch Sporenmasse 4 x 5,5 µm - sehr kleine Sporen, teilweise fast rund Sporenmembran, Oberfläche, Skulptur Glatt Gattung/en: Tricholoma https://www.mycopedia.ch/pilze/1090.htm Siehe auch TRICHOLOMA_AURANTIUM www.mycopedia.ch - T. Flammer© 07.09.2021
    [Show full text]
  • A Nomenclatural Study of Armillaria and Armillariella Species
    A Nomenclatural Study of Armillaria and Armillariella species (Basidiomycotina, Tricholomataceae) by Thomas J. Volk & Harold H. Burdsall, Jr. Synopsis Fungorum 8 Fungiflora - Oslo - Norway A Nomenclatural Study of Armillaria and Armillariella species (Basidiomycotina, Tricholomataceae) by Thomas J. Volk & Harold H. Burdsall, Jr. Printed in Eko-trykk A/S, Førde, Norway Printing date: 1. August 1995 ISBN 82-90724-14-4 ISSN 0802-4966 A Nomenclatural Study of Armillaria and Armillariella species (Basidiomycotina, Tricholomataceae) by Thomas J. Volk & Harold H. Burdsall, Jr. Synopsis Fungorum 8 Fungiflora - Oslo - Norway 6 Authors address: Center for Forest Mycology Research Forest Products Laboratory United States Department of Agriculture Forest Service One Gifford Pinchot Dr. Madison, WI 53705 USA ABSTRACT Once a taxonomic refugium for nearly any white-spored agaric with an annulus and attached gills, the concept of the genus Armillaria has been clarified with the neotypification of Armillaria mellea (Vahl:Fr.) Kummer and its acceptance as type species of Armillaria (Fr.:Fr.) Staude. Due to recognition of different type species over the years and an extremely variable generic concept, at least 274 species and varieties have been placed in Armillaria (or in Armillariella Karst., its obligate synonym). Only about forty species belong in the genus Armillaria sensu stricto, while the rest can be placed in forty-three other modem genera. This study is based on original descriptions in the literature, as well as studies of type specimens and generic and species concepts by other authors. This publication consists of an alphabetical listing of all epithets used in Armillaria or Armillariella, with their basionyms, currently accepted names, and other obligate and facultative synonyms.
    [Show full text]
  • Checklist of the Species of the Genus Tricholoma (Agaricales, Agaricomycetes) in Estonia
    Folia Cryptog. Estonica, Fasc. 47: 27–36 (2010) Checklist of the species of the genus Tricholoma (Agaricales, Agaricomycetes) in Estonia Kuulo Kalamees Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St. 51005, Tartu, Estonia. Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 181 Riia St., 51014 Tartu, Estonia E-mail: [email protected] Abstract: 42 species of genus Tricholoma (Agaricales, Agaricomycetes) have been recorded in Estonia. A checklist of these species with ecological, phenological and distribution data is presented. Kokkukvõte: Perekonna Tricholoma (Agaricales, Agaricomycetes) liigid Eestis Esitatakse kriitiline nimestik koos ökoloogiliste, fenoloogiliste ja levikuliste andmetega heiniku perekonna (Tricholoma) 42 liigi (Agaricales, Agaricomycetes) kohta Eestis. INTRODUCTION The present checklist contains 42 Tricholoma This checklist also provides data on the ecol- species recorded in Estonia. All the species in- ogy, phenology and occurrence of the species cluded (except T. gausapatum) correspond to the in Estonia (see also Kalamees, 1980a, 1980b, species conceptions established by Christensen 1982, 2000, 2001b, Kalamees & Liiv, 2005, and Heilmann-Clausen (2008) and have been 2008). The following data are presented on each proved by relevant exsiccates in the mycothecas taxon: (1) the Latin name with a reference to the TAAM of the Institute of Agricultural and Envi- initial source; (2) most important synonyms; (3) ronmental Sciences of the Estonian University reference to most important and representative of Life Sciences or TU of the Natural History pictures (iconography) in the mycological litera- Museum of the Tartu University. In this paper ture used in identifying Estonian species; (4) T. gausapatum is understand in accordance with data on the ecology, phenology and distribution; Huijsman, 1968 and Bon, 1991.
    [Show full text]
  • Full-Text (PDF)
    African Journal of Microbiology Research Vol. 5(31), pp. 5750-5756, 23 December, 2011 Available online at http://www.academicjournals.org/AJMR ISSN 1996-0808 ©2011 Academic Journals DOI: 10.5897/AJMR11.1228 Full Length Research Paper Leucocalocybe, a new genus for Tricholoma mongolicum (Agaricales, Basidiomycota) Xiao-Dan Yu1,2, Hui Deng1 and Yi-Jian Yao1,3* 1State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. 2Graduate University of Chinese Academy of Sciences, Beijing, 100049, China. 3Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, United Kingdom. Accepted 11 November, 2011 A new genus of Agaricales, Leucocalocybe was erected for a species Tricholoma mongolicum in this study. Leucocalocybe was distinguished from the other genera by a unique combination of macro- and micro-morphological characters, including a tricholomatoid habit, thick and short stem, minutely spiny spores and white spore print. The assignment of the new genus was supported by phylogenetic analyses based on the LSU sequences. The results of molecular analyses demonstrated that the species was clustered in tricholomatoid clade, which formed a distinct lineage. Key words: Agaricales, taxonomy, Tricholoma, tricholomatoid clade. INTRODUCTION The genus Tricholoma (Fr.) Staude is typified by having were re-described. Based on morphological and mole- distinctly emarginate-sinuate lamellae, white or very pale cular analyses, T. mongolicum appears to be aberrant cream spore print, producing smooth thin-walled within Tricholoma and un-subsumable into any of the basidiospores, lacking clamp connections, cheilocystidia extant genera. Accordingly, we proposed to erect a new and pleurocystidia (Singer, 1986). Most species of this genus, Leucocalocybe, to circumscribe the unique genus form obligate ectomycorrhizal associations with combination of features characterizing this fungus and a forest trees, only a few species in the subgenus necessary new combination.
    [Show full text]
  • Ectomycorrhizal Communities Associated with a Pinus Radiata Plantation in the North Island, New Zealand
    ECTOMYCORRHIZAL COMMUNITIES ASSOCIATED WITH A PINUS RADIATA PLANTATION IN THE NORTH ISLAND, NEW ZEALAND A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by Katrin Walbert Bioprotection and Ecology Division Lincoln University, Canterbury New Zealand 2008 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy ECTOMYCORRHIZAL COMMUNITIES ASSOCIATED WITH A PINUS RADIATA PLANTATION IN THE NORTH ISLAND, NEW ZEALAND by Katrin Walbert Aboveground and belowground ectomycorrhizal (ECM) communities associated with different age classes of the exotic plantation species Pinus radiata were investigated over the course of two years in the North Island of New Zealand. ECM species were identified with a combined approach of morphological and molecular (restriction fragment length polymorphism (RFLP) and DNA sequencing) analysis. ECM species richness and diversity of a nursery in Rotorua, and stands of different ages (1, 2, 8, 15 and 26 yrs of age at time of final assessment) in Kaingaroa Forest, were assessed above- and belowground; furthermore, the correlation between the above- and belowground ECM communities was assessed. It was found that the overall and stand specific species richness and diversity of ECM fungi associated with the exotic host tree in New Zealand were low compared to similar forests in the Northern Hemisphere but similar to other exotic plantations in the Southern Hemisphere. Over the course of this study, 18 ECM species were observed aboveground and 19 ECM species belowground. With the aid of molecular analysis the identities of Laccaria proxima and Inocybe sindonia were clarified.
    [Show full text]
  • Phd. Thesis Sana Jabeen.Pdf
    ECTOMYCORRHIZAL FUNGAL COMMUNITIES ASSOCIATED WITH HIMALAYAN CEDAR FROM PAKISTAN A dissertation submitted to the University of the Punjab in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BOTANY by SANA JABEEN DEPARTMENT OF BOTANY UNIVERSITY OF THE PUNJAB LAHORE, PAKISTAN JUNE 2016 TABLE OF CONTENTS CONTENTS PAGE NO. Summary i Dedication iii Acknowledgements iv CHAPTER 1 Introduction 1 CHAPTER 2 Literature review 5 Aims and objectives 11 CHAPTER 3 Materials and methods 12 3.1. Sampling site description 12 3.2. Sampling strategy 14 3.3. Sampling of sporocarps 14 3.4. Sampling and preservation of fruit bodies 14 3.5. Morphological studies of fruit bodies 14 3.6. Sampling of morphotypes 15 3.7. Soil sampling and analysis 15 3.8. Cleaning, morphotyping and storage of ectomycorrhizae 15 3.9. Morphological studies of ectomycorrhizae 16 3.10. Molecular studies 16 3.10.1. DNA extraction 16 3.10.2. Polymerase chain reaction (PCR) 17 3.10.3. Sequence assembly and data mining 18 3.10.4. Multiple alignments and phylogenetic analysis 18 3.11. Climatic data collection 19 3.12. Statistical analysis 19 CHAPTER 4 Results 22 4.1. Characterization of above ground ectomycorrhizal fungi 22 4.2. Identification of ectomycorrhizal host 184 4.3. Characterization of non ectomycorrhizal fruit bodies 186 4.4. Characterization of saprobic fungi found from fruit bodies 188 4.5. Characterization of below ground ectomycorrhizal fungi 189 4.6. Characterization of below ground non ectomycorrhizal fungi 193 4.7. Identification of host taxa from ectomycorrhizal morphotypes 195 4.8.
    [Show full text]
  • Georgios I. Zervakis Mycodiversity in Greece
    Georgios I. Zervakis Mycodiversity in Greece Abstract Zervakis, G. I.: Mycodiversity in Greece. - Bocconea 13: 119-124.2001. - ISSN 1120-4060. Research on fungal biodiversity and conservation has been fragmentary and inadequate in Greece. Large gaps exist in our knowledge, despite the ecologica I importance and value of this region. The geographic position, the variety of landscapes and climatic conditions, the distinct topography and geology combined to create a multitude of habitats for living organisms. As concerns fungi in particular, the large number of host plants, many ofwhich are endemie, pro­ vides an additional clue for the alleged existence of a particularly rich mycoflora. Based on scarce and rather ancient literature data, the number of funga I species is about 2,500. In con­ trast, relatively recent, but stili limited, interest in macromycetes contributed at establishing an estimate of935 species, ofwhich 815 be long to Basidiomycota and 120 to larger Ascomycota. However, these figures represent only a small fraction of the existing mycodiversity as it is also evidenced from relevant detailed studies in other European countries, and from the rate of recording new species for Greece. The need for intensifying this type ofwork and producing an inventory of the fungal biota is here emphasized. The acquisition and evaluation of new data, first in selected representative ecosystems, could eventually contribute at accomplishing the goal of mapping the Greek mycoflora. Of great priority is also the issue of conservation, and protection of sites which are rich in macrofungi, but nowadays they are rapidly deteriorating. Introduction 2 Greece covers an area of 132,000 km , is situated in the southemmost part ofthe Balkan peninsula, and belongs to the Mediterranean zone ofthe Palearctic biogeographical region.
    [Show full text]
  • RSC COFI Prelims 1..4
    The Chemistry of Fungi James R. Hanson Department of Chemistry, University of Sussex, Brighton, UK ISBN: 978-0-85404-136-7 A catalogue record for this book is available from the British Library r James R. Hanson, 2008 All rights reserved Apart from fair dealing for the purposes of research for non-commercial purposes or for private study, criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulations 2003, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of The Royal Society of Chemistry or the copyright owner, or in the case of reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of the licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the address printed on this page. Published by The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK Registered Charity Number 207890 For further information see our web site at www.rsc.org Preface The diverse structures, biosyntheses and biological activities of fungal meta- bolites have attracted chemists for many years. This book is an introduction to the chemistry of fungal metabolites. The aim is to illustrate, within the context of fungal metabolites, the historical progression from chemical to spectroscopic methods of structure elucidation, the development in biosynthetic studies from establishing sequences and mechanisms to chemical enzymology and genetics and the increasing understanding of the biological roles of natural products.
    [Show full text]
  • Pigments of Higher Fungi: a Review
    Czech J. Food Sci. Vol. 29, 2011, No. 2: 87–102 Pigments of Higher Fungi: A Review Jan VELÍŠEK and Karel CEJPEK Department of Food Chemistry and Analysis, Faculty of Food and Biochemical Technology, Institute of Chemical Technology in Prague, Prague, Czech Republic Abstract Velíšek J., Cejpek K. (2011): Pigments of higher fungi – a review. Czech J. Food Sci., 29: 87–102. This review surveys the literature dealing with the structure of pigments produced by fungi of the phylum Basidiomycota and also covers their significant colourless precursors that are arranged according to their biochemical origin to the shikimate, polyketide and terpenoid derived compounds. The main groups of pigments and their leucoforms include simple benzoquinones, terphenylquinones, pulvinic acids, and derived products, anthraquinones, terpenoid quinones, benzotropolones, compounds of fatty acid origin and nitrogen-containing pigments (betalains and other alkaloids). Out of three orders proposed, the concern is only focused on the orders Agaricales and Boletales and the taxonomic groups (incertae sedis) Cantharellales, Hymenochaetales, Polyporales, Russulales, and Telephorales that cover most of the so called higher fungi often referred to as mushrooms. Included are only the European species that have generated scientific interest due to their attractive colours, taxonomic importance and distinct biological activity. Keywords: higher fungi; Basidiomycota; mushroom pigments; mushroom colour; pigment precursors Mushrooms inspired the cuisines of many cul- carotenoids and other terpenoids are widespread tures (notably Chinese, Japanese and European) only in some species of higher fungi. Many of the for centuries and many species were used in folk pigments of higher fungi are quinones or similar medicine for thousands of years.
    [Show full text]
  • C. Ciccarone, M. Pasqualetti, S. Tempesta & A
    C. Ciccarone, M. Pasqualetti, S. Tempesta & A. Rambelli An annotated list of macrofungi from Gargano areas (S-Italy) Abstract Ciccarone, C., Pasqualetti, M., Tempesta, S. & Rambelli, A.: An annotated list of macrofungi from Gargano areas (S-Italy). — Fl. Medit. 15: 621-668. 2005. — ISSN 1120-4052 The authors report a survey on the macrofungi from Gargano areas. 279 taxa (29 Ascomycetes and 250 Basidiomycetes) are here reported. The most representative genera are Amanita, Lactarius and Cortinarius. Introduction In the present work we list the fungal species found in the areas of the different Gargano environments. Samples were collected through a surveying net according to the Forest Rangers Guard and to a Mycological association placed in Vico del Gargano. The list lies surely far from completeness, in fact, more different and notorious species, otherwise, surely present in the same area (beyond many others, Boletus satanas Lenz, Stropharia aeruginosa (Curtis: Fr.) Quél. or Battarrea phalloides (Dicks.: Pers.) Pers. eluded all our temptatives). Neverthless we believe that the level of biodiversity richness and the interest of many of the reperta here produced through the real work of collectors, represents a valid proposal for further study on this subject. Gargano is, in fact, a widely open environment where anthropization produces a continuous crossed ebb and flow of species introduction and species extinction so that a static picture of the fungal biodiversi- ty can be hardly traced. Moreover, an important contribution is given to the nomenclatural updating of the taxa which are often locally known by local expressions or obsolete binomial combinations. Anyway this study is part of much bigger one regarding the whole garganic eumycotal world and represents a new temptative of discover in this scarcely deepened subject.
    [Show full text]
  • Inventory of Macrofungi in Four National Capital Region Network Parks
    National Park Service U.S. Department of the Interior Natural Resource Program Center Inventory of Macrofungi in Four National Capital Region Network Parks Natural Resource Technical Report NPS/NCRN/NRTR—2007/056 ON THE COVER Penn State Mont Alto student Cristie Shull photographing a cracked cap polypore (Phellinus rimosus) on a black locust (Robinia pseudoacacia), Antietam National Battlefield, MD. Photograph by: Elizabeth Brantley, Penn State Mont Alto Inventory of Macrofungi in Four National Capital Region Network Parks Natural Resource Technical Report NPS/NCRN/NRTR—2007/056 Lauraine K. Hawkins and Elizabeth A. Brantley Penn State Mont Alto 1 Campus Drive Mont Alto, PA 17237-9700 September 2007 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientific community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. The Natural Resources Technical Reports series is used to disseminate the peer-reviewed results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service’s mission. The reports provide contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. Current examples of such reports include the results of research that addresses natural resource management issues; natural resource inventory and monitoring activities; resource assessment reports; scientific literature reviews; and peer reviewed proceedings of technical workshops, conferences, or symposia.
    [Show full text]
  • A Compilation for the Iberian Peninsula (Spain and Portugal)
    Nova Hedwigia Vol. 91 issue 1–2, 1 –31 Article Stuttgart, August 2010 Mycorrhizal macrofungi diversity (Agaricomycetes) from Mediterranean Quercus forests; a compilation for the Iberian Peninsula (Spain and Portugal) Antonio Ortega, Juan Lorite* and Francisco Valle Departamento de Botánica, Facultad de Ciencias, Universidad de Granada. 18071 GRANADA. Spain With 1 figure and 3 tables Ortega, A., J. Lorite & F. Valle (2010): Mycorrhizal macrofungi diversity (Agaricomycetes) from Mediterranean Quercus forests; a compilation for the Iberian Peninsula (Spain and Portugal). - Nova Hedwigia 91: 1–31. Abstract: A compilation study has been made of the mycorrhizal Agaricomycetes from several sclerophyllous and deciduous Mediterranean Quercus woodlands from Iberian Peninsula. Firstly, we selected eight Mediterranean taxa of the genus Quercus, which were well sampled in terms of macrofungi. Afterwards, we performed a database containing a large amount of data about mycorrhizal biota of Quercus. We have defined and/or used a series of indexes (occurrence, affinity, proportionality, heterogeneity, similarity, and taxonomic diversity) in order to establish the differences between the mycorrhizal biota of the selected woodlands. The 605 taxa compiled here represent an important amount of the total mycorrhizal diversity from all the vegetation types of the studied area, estimated at 1,500–1,600 taxa, with Q. ilex subsp. ballota (416 taxa) and Q. suber (411) being the richest. We also analysed their quantitative and qualitative mycorrhizal flora and their relative richness in different ways: woodland types, substrates and species composition. The results highlight the large amount of mycorrhizal macrofungi species occurring in these mediterranean Quercus woodlands, the data are comparable with other woodland types, thought to be the richest forest types in the world.
    [Show full text]