<<

Czech J. Food Sci. Vol. 29, 2011, No. 2: 87–102

Pigments of Higher Fungi: A Review

Jan VELÍŠEK and Karel CEJPEK

Department of Food Chemistry and Analysis, Faculty of Food and Biochemical Technology, Institute of Chemical Technology in Prague, Prague, Czech Republic

Abstract

Velíšek J., Cejpek K. (2011): Pigments of higher fungi – a review. Czech J. Food Sci., 29: 87–102.

This review surveys the literature dealing with the structure of pigments produced by fungi of the phylum and also covers their significant colourless precursors that are arranged according to their biochemical origin to the shikimate, polyketide and terpenoid derived compounds. The main groups of pigments and their leucoforms include simple benzoquinones, terphenylquinones, pulvinic acids, and derived products, anthraquinones, terpenoid quinones, benzotropolones, compounds of origin and nitrogen-containing pigments (betalains and other ). Out of three orders proposed, the concern is only focused on the orders and and the taxonomic groups (incertae sedis) Cantharellales, , , , and Telephorales that cover most of the so called higher fungi often referred to as . Included are only the European species that have generated scientific interest due to their attractive colours, taxonomic importance and distinct biological activity.

Keywords: higher fungi; Basidiomycota; pigments; mushroom colour; pigment precursors

Mushrooms inspired the cuisines of many cul- carotenoids and other terpenoids are widespread tures (notably Chinese, Japanese and European) only in some species of higher fungi. Many of the for centuries and many species were used in folk pigments of higher fungi are quinones similar for thousands of years. However, lit- conjugated structures that are mostly classified ac- tle is known that mushrooms were a commonly cording to the perceived biosynthetic pathways, re- used textile dye before the invention of synthetic flecting their structure, to pigments derived from (i) dyes because of the vast range of vivid and rich the shikimate (chorismate) pathway, (ii) the acetate- colours achievable (Mussak & Bechtold 2009). malonate (polyketide) pathway, (iii) the mevalonate The chromophores of mushroom dyes contain a (terpenoid) pathway, and (iv) pigments containing variety of fascinating organic compounds. Their nitrogen. Several review articles covering the litera- pigmentation may vary with the age and some ture published from its inception during the latter undergo distinctive colour changes on bruising; half of the 19th century to the end of 2009 have been therefore, the colours of mushrooms are one of already published (Gill & Steglich 1987; Gill the essential features used in their identification. 1994, 1996, 1999, 2003; Hanson 2008a,b; Räisänen Furthermore, the pigments of mushrooms may 2009; Zhou & Liu 2010). protect the organism from UV damage and bacte- The shikimate pathway provides a route to the rial attack or play a role as insect attractants. essential amino acids , and Mushrooms do not contain the pigments that tryptophan via the central intermediates shikimic dominate in higher plant colours. Chlorophylls and and chorismic acids. Phenylalanine and tyrosine are anthocyanins are not present in fungi at all; betalains, precursors for a wide range of compounds includ-

Partly supported by the Ministry of Education, Youth and Sports of the Czech Republic, Project No. MSM 6046137305.

87 Vol. 29, 2011, No. 2: 87–102 Czech J. Food Sci. ing arylpyruvic, cinnamic and benzoic acids that (anthranol, anthrone, anthrahydroquinone, and represent the building blocks for many pigments of oxanthrone derivatives) that may occur in the form higher fungi. Condensation of two arylpyruvic acid of various glycosides. Many natural anthraquinones yields red to brown terphenylquinones and related are oligomers formed by coupling of two or more to red grevillins. Diarylcyclopentenones, anthraquinone molecules. These oligomers further responsible for the colour changes in some bruised differ in the points through which monomers are mushrooms, are formed by ring contractions of attached and may have more than one polymor- terphenylquinones while oxidative cleavage of the phic form (Velíšek et al. 2007, 2008; Velíšek & hydroxyquinone ring in terphenylquinones and Cejpek 2008). Styrylpyrones are biosynthesised rearrangement of thus formed intermediates results by a combined shikimate and polyketide pathway, in a series of yellow and orange lactones known as which otherwise yields various terpenoids includ- pulvinic (pulvic) acids. Their decarboxylation yields ing carotenoids. the yellow pulvinones that can be oxidised and fur- Various pigments and other fungi constituents ther transformed to a number of structurally related show important biological activities (antioxidative, products. Reduction of cinnamic acids affords the free radical scavenging, anticarcinogenic, immu- corresponding alcohols that are the building blocks nomodulatory, antiviral, and antibacterial) that of benzotropolone pigments. Tyrosine, hydroxy- have generated intensive research interest (Steg- lated to 3,4-dihydroxyphenylalanine (DOPA), is lich 1981; Calìa et al. 2003; Liu 2006; Medicinal the precursor of the red-violet betacyanins and the Mushrooms 2008; Schüffler & Anke 2009). orange-yellow betaxanthins. Both amino acids and The of the kingdom Fungi (the subking- their transformation products can be converted via dom Dikarya) is in a state of constant flux; therefore, quinones into the heterogeneous dark pigments the most recent 2007 classification adopted by a melanins by the enzymatic browning reactions coalition of mycologists was used (Thorna et al. (oxidations and polymerisations). Tryptophan is 2007; MycoBank 2010). Out of seven phyla (divisions) transformed to hydroxyanthranilic acids that be- proposed, the concern of this review only deals with come the precursor of phenoxazines and other ni- the phylum Basidiomycota (“club fungi”)1 (subphy- trogen-containing pigments. Benzoquinones can be lum Agaricomycotina, class Agaromycetes, subclass synthesised from very different starting substances Agaromycetidae) that covers most of the so called “high- and via different biochemical pathways, e.g. using er fungi” often referred to as “mushrooms”growing benzoic acids produced in the shikimate pathway. in Europe. The referred pigments, not reviewed up Terpenoid quinones are formed by combination of to now, are arranged according to the mushroom the shikimate pathway with the mevalonate path- orders. Many other pigments were identified in way. The polyketide pathway yields either aromatic fungi indigenous to Australasia. ketides or fatty acids. For the aromatic ketides, the growing chain stabilises by cyclization reactions and partial reduction, whereas for fatty acids, the 1 Agaricales carbonyl groups of the chain are reduced before attachment of the next C2 group. Products of this The genera L., Leucoagarius Locq. ex pathway include tetra-, hepta-, octa- and higher Singer and Macrolepiota Singer of the Agaricaceae, ketides and compounds of fatty acid origin. Fungi including the common mushroom A. bisporus (J.E. contain a range of pigments of octaketide origin Lange) Imbach (now cultivated in at least 70 coun- (e.g. anthraquinones) that are based on the anthra- tries around the world), contain the glutamic acid 9,10-quinone skeleton with both rings substituted. derived hydrazine agaritine (1) that may be enzy- In many cases, anthraquinones are found in fungi matically oxidised at the C-4 hydroxymethyl group as the corresponding colourless reduced forms to the corresponding formyl and carboxyl deriva-

1The containing Ascomycota and Basidiomycota is classified as subkingdom Dikarya. The phylum Ascomycota (“sac fungi”) covers some higher fungi (belonging to the subdivision Pezizomycotina, class Pezizomycetes, subclass Penzizomycodidae, Pezizales), such as the true morel ( Dill. ex Pers., Morchellaceae), the false morel (Gyromitra Fr., Discinaceae) and the truffle (Tuber P. Micheli ex F.H. Wigg., Tuberaceae). Their pigments have been stud- ied only sporadically; the black pigments of the black truffle T. melanosporum are polymeric allomelanins of polyketide origin (De Angelis et al. 1996).

88 O O H H O N COOH N COOHN N H N N N N N N N COOH N H H N N H H N HO NHHO2 NH H H 2 O O Czech HJ.O Food Sci. NH2 ȱ O Vol. 29, 2011,ȱ No. 2: 87–102ȱ ȱ 1.ȱagaritineȱȱ 1.ȱagaritineȱȱ 2.ȱagariconeȱȱ ȱ 2.ȱagariconeȱȱ 1. agaritine 2. agaricone O O HO HO O O O O O OH OH H HO H N N OH N COOHN O COOH N COOHN COOH N N N N N N H H COOH H H H H HO NH HO 2 N NH2 NHO2 NH2 H O NH NH ȱ NH ȱ ȱ ȱ ȱ ȱ ȱ ȱ 2 NH 1.ȱagaritineȱȱ 1.ȱagaritineȱȱ 3.ȱJȬglutamyl2.ȱagariconeȬ4Ȭhydroxybenzeneȱȱȱ 3.2.ȱJȱȬagariconeȱglutamylȬȱȱ4Ȭhydroxybenzeneȱ 4.ȱ2ȬhydroxyȬ4Ȭimino4.Ȭȱȱ2ȬhydroxyȬ4ȬiminocyclohexaȬ2,5Ȭdienoneȱȱ 3. γ-glutamyl-4-hydroxybenzȱȱ ene 4. 2-hydroxy-4-iminocyclohexa-2,5ȱȱȱȱ-dienonecyclohexaȬ2,5Ȭdienoneȱȱ O O COOH HO HO O O  OH OH COOH - HOOC COO- COO O – COOH COOH – - HOOC COO COO O COO + O + + N N + - – O N O H H COO + O + N + N N N COO NH2 +NH2 N O – O N N NH N NH N COO ȱ ȱ ȱ O ȱ COOH OH O COOH 3.ȱJȬglutamylȬ4Ȭhydroxybenzene3.ȱJȬglutamylȬ4ȱȬhydroxybenzeneȱ 4.ȱ2Ȭhydroxy4.ȱ2OȬȬhydroxyH4ȬiminoȬȱȬ4ȬiminocyclohexaȬ2,5Ȭdienoneȱȱ ȱȱ ȱȱȱȱcyclohexaȬ2,5Ȭdienoneȱȱ HOOCN COOH HOOCN COOH HOOCCOOH N COOH HOOC N COOH H H H  HOOC N COOH HOOC - N COHOH HOOC N COOH HOOC N COOH - COO OH HOOC H COO H ȱ H ȱ ȱ ȱ - COO + O + + + 5.ȱNmuscapurpurinO ȱ 6.ȱmuskaaurin- ȱIȱ 7.ȱmuskaaurinȱIIȱ 8.ȱvulgaxanthinȱIȱ O 5. Nmuscapurpurin N 6. muskaaurinN I 7. muskaaurin II N 8. vulgaxanthinCOO I COOH O O CONH H OH 2 tives, which are hydrolysed to 4-(hydroxymethyl)- and yellow muscaflavinN ( ). Muscaurin I ( ) and CONH2 N COOH 12 COOH 6 N N N phenylhydrazine and 4-carboxymethylbenzoicH COOH acid, muscaurinH II (7) are derived from unusual nonpro- HO NH + + + 2 HOOCN COOH - O - - respectively.HOOC 4-(Hydroxymethyl)phenylhydrazineN COOH HOOC N COOH is tein aminoN COO acids ibotenicHOOC acidN N and COOCOOH stizolobic acid,N COO + + H – + H – H oxidised to NtheH correspondingCOO– diazoniumN COO cation. respectively,N COO and are the major pigments. ȱ ȱ ȱ ȱ The metabolic fate of 1.agaritineagaritine has been linked Pigments named2. agaricone muscaurins III–VII are mix- O 5.ȱmuscapurpurinȱ 6.ȱmuskaaurinȱIȱ 7.ȱmuskaaurinȱIIȱ O 8.ȱvulgaxanthinȱIȱ with the carcinogenity of the mushroom (Walton tures of pigments derivedO from common proteno- HO et al. 2001). The yellow pigment characteristic of genous amino acids. MuscaurinHOOCO NH IIICOOH is a mixtureHOOC ofN COOH CONH2 O HOOC N COOH HOOC N COOH HOOC N CHOOH H H H the yellow-stainingHOOC N CA.OO xanthodermusH HOOCCOOHCON OGenev.H COOH and of vulgaxanthin I (H8O),O knownC N asC (OSO)-glutamine-beta-H H N H H ȱȱ H ȱȱ ȱȱ ȱ some other Agaricus speciesH is caused by another xanthin, miraxanthin III (9), known as (S)-aspartic + + + - NH2- COO9.ȱmiraxanthin- ȱIIIȱ 10.ȱvulgaxanthinȱIIȱ 11.ȱindicaxanthinȱ 12.ȱmuscaflavinȱ azaquinone9.NmiraxanthCOO metabolitein III agariconeN10. vulgaxanthin COO (2) that formsII Nby11. indicaxanthinacid-betaxanthin,12. andmu ascafl betaxanthinNH avin derived from oxidation of the corresponding leucophenol in the 2-aminoadipic acid. Muscaurin IV is a mixture of 3. γ-glutamyl-4-hydroxybenzene 4. 2-hydrOoxy-4-iminocyclohexa-2,5-dienone 2- damaged tissue. The agaritine analogues derived vulgaxanthin I and miraxanthin III. Muscaurin CH3 CH3 COOH from 4-aminophenol γ-glutamyl-4-hydroxybenzene V is a mixture of vulgaxanthin II (10), known as O CH COOH + COOH N 3 O R O (HOOC3) readily N oxidiseCOOH toHOOC the corresponding N COOH quinoneHOOC N (SCOOH)-glutamic acid-betaxanthin,– N N CindicaxanthinH3 (11), O HOOC R + – HOOC COON O COOH + H H N COHO H O O V O O 2 H via γ-glutamyl-3,4-dihydroxybenzene.– This quinone known as (S)-proline-betaxanthin, and betaxan- O ȱȱ COO ȱȱ + O ȱȱ + ȱ O ++ + N O O V O 2 H – O O decomposes to 2-hydroxy-4-iminocyclohexa-2,5-O N N thinsN derived from valine and leucine. MuscaurinN COO VI O O H3C N O 9.dienoneȱmiraxanthin ( ),ȱ whichIIIȱ imparts10.ȱvulgaxanthin a pink-redȱ IIcolourȱ 11.to ȱsomeindicaxanthin is a mixtureȱ 12. ofȱmuscaflavin vulgaxanthinȱ HOOC II andN indicaxanthin.COOH 4 O H3C N COOH O HOOC N COOH OH H CH3 (e.g. to A. bisporus) (Hanson 2008a,b).H ȱMuscaurin ȱ VII ȱ is derivedCH 3from2- histidine (Musoȱ ȱ ȱ ȱ CH3 The striking orange-red pigmentsCOOH of the cap of ȱ 1976; Li & Oberlies13.ȱhygroaurins 2005).ȱ (Rȱ=ȱaminoȱacidȱresidue)ȱȱ 14.ȱamavadinȱ fly agaric Amanita muscaria13. hygroaur (L.)in sHook.(R = amino H(OAmanitaOC acidNresidue) COOFlyH agaricHOOC andO N mushrooms14.CNamavadinOOH CH3 of theHO genusOC NHygrocybeCOOH HOOCR N + COOH H Pers., Amanitaceae) are a HmixtureN of the purpleH (Fr.) P. Kumm. O(Hygrophoraceae),O e.g. HH. conica O +CH3 O V O 2 H OCH3 betacyanin muscapurpurin5. muscapurp (u5rin), orangeCH3 6.betaxanmuskaaurin- (Schaeff.)I 7.P. musKumm.,kaaurin commonlyII known8. vulgaxanthin as the witch’sI OCH3 O O O HO OH OH O thins muscaurins (muscaaurins) I–VII (6 and 7) hat, synthesise the yellow pigment muscaflavin (12), OH OH O O HO H3CO OH OHH3C O N O HOOC N COOH OH OH OH O H3CO H CH OH CONH2 OH 3 OOHOH OH ȱ ȱ ȱ O CȱO ȱOHH OH ȱ OH ȱ H CO 3 OH RO CH3 H3CO OHOHO CH3 ȱ 13.ȱhygroaurinsȱ(Rȱ=ȱaminoȱacidȱresidue)ȱȱ 14.ȱamavadinCH ȱ RO + + – + – 3 CH ȱ ȱ OH NO OCOHO– N COO N COO 3 15.ȱfallacinolȱ 16.ȱ(3R,3Rȇ,M)ȬflavomanninȬ6,6ȇȬdiȬOȬmethylȱetherȱȱȱȱȱȱȱȱȱȱ17.ȱ(3R)Ȭatrochrysone,ȱRȱ=ȱHȱ CH3 15. fallacinol 16. (3R,3R',M)-flavomanninOCH3 -6,6'-di-O-methyl ether O 17. (3R)-atrochrysone, R = H ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ(3R)Ȭtorosachrysone,ȱRȱ=ȱCH3ȱ O OH OH O HO OH(3R)-OHtorosachrO ysone, R = CH3 H3CO OH HOOC N COOH HOOC N COOH HOOHOHOOC N COOH OH HOOC N H H H COOH OH H CO H 3 RO CH3 OHOHO CH3 9. miraxanthin III 10. vulgaxanthin II 11. indicaxanthinȱ 12. muscaflavin ȱ 15.ȱfallacinolȱ 16.ȱ(3R,3Rȇ,M)ȬflavomanninȬ6,6ȇȬdiȬOȬmethylȱetherȱȱȱȱȱȱȱȱȱȱ17.ȱ(3R)Ȭatrochrysone,ȱRȱ=ȱHȱ

ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ(3R)Ȭtorosachrysone,CH3 ȱRȱ=ȱCH3ȱ COOH 89 O N CH3 R + N O O O + O V O 2 H O O H3C N O HOOC N COOH H CH3

13. hygroaurins (R = residue) 14. amavadin

CH3 OCH3 O OH OH O HO OH OH O H3CO OH OH O OH OH OH H CO 3 RO CH3 OH O OH CH3

15. fallacinol 16. (3R,3R',M)-flavomannin-6,6'-di-O-methyl ether 17. (3R)-atrochrysone, R = H (3R)-torosachrysone, R = CH3 O O H H N N N NCOOH COOH N N N N N N H H H H HO NH HO 2 NH2 O O ȱ ȱ ȱ ȱ 1.ȱagaritineȱȱ 1.ȱagaritineȱȱ ȱ 2.ȱagariconeȱ ȱȱ 2.ȱagariconeȱȱ

O O HO HO O O OH OH COOH COOH N N H H NH2 NH 2 NH NH ȱ ȱ ȱ ȱ 3.ȱJȬglutamylȬ43.ȬhydroxybenzeneȱJȬglutamylȬ4Ȭhydroxybenzeneȱ ȱ 4.ȱ2ȬhydroxyȬ44.Ȭiminocyclohexaȱ2ȬhydroxyȬ4ȬiminocyclohexaȬ2,5Ȭdienoneȱȱ Ȭ2,5Ȭdienoneȱȱ

COOH COOH - - - - COO O HOOC HOOC COO COO COO O - - + + + COO COO + O + O + + O + N N O N O - - N O N N N N N COO N COO O O COOH COOH OH OH

HOOCN COOH HOOCN COOH HOOC N COOHHOOC N COOH HOOCN COOHHOOC N COOHHOOC N COOH HOOCN COOH H H H H H H H H ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ 5.ȱmuscapurpurin5.ȱmuscapurpurinȱ 6.ȱmuskaaurinȱ ȱ6.Iȱȱmuskaaurin7.ȱmuskaaurinȱIȱ ȱ7.IIȱȱmuskaaurin8.ȱIIvulgaxanthinȱ 8.ȱȱIvulgaxanthinȱ ȱIȱ

CONH2 CONH2 COOH COOH

+ + + + - + - + - - - N COO N COO-N COO N COO N COO N COO

O O

HOOC N COOHHOOC NHOOCCOOH N COOHHOOC NHOOCCOOH N COOHHOOC N COOHN H H HOOC COOHHOOC N COOH H H H H H H Vol. 29, 2011,ȱȱ No. 2: 87–102ȱȱ ȱȱ ȱȱ ȱȱ ȱȱ ȱ Czechȱ J. Food Sci. 9.ȱmiraxanthin9.ȱIIIȱmiraxanthinȱ 10.ȱvulgaxanthinȱIIIȱ 10.ȱȱIIvulgaxanthinȱ 11.ȱindicaxanthinȱIIȱ 11.ȱindicaxanthin12.ȱmuscaflavinȱ 12.ȱ ȱmuscaflavinȱ O H N COOH N 2- 2- N N N CH3 CH3 H COOH COOH H HO NH2 O O N CHO 3 N CH3 R + R + N N O O O O + O 2 H O + 1. agaritine 2. agariconeO V O O V O 2 H O O O O H3C N O HO3C N O HO HOOC N COOHHOOC N COOH O H H CH3 OH CH3 ȱ ȱȱ ȱ ȱ ȱ COOH ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ N ȱ ȱ 13.ȱhygroaurinsH 13.ȱ(Rȱhygroaurinsȱ=ȱaminoȱacidȱ(Rȱresidue)ȱ=ȱaminoȱȱȱacidȱresidue)ȱȱ 14.ȱamavadinȱ 14.ȱamavadinȱ NH 2 NH derived from dihydroazepine, and store it in the cup C. citrinus J.E. Lange ex P.D. Orton and C. croceus CH3 CH 3 OCH 3.skin.γ-gluta Analogouslymyl-4-hydro toxybenz betalamicene acid involved3 in 4.the2- hyOCHd(Schaeff.)ro3xy-4-im inocGray,yc lohewhilexa -in2,5 Australian-dienone fungi it forms as O O HO OH OH O OH OH O formation of betalains, muscaflavinHO can spontane- a mixture of (3R,3R', M)-OH (16)OH and O(3R,3OHR', POH)-atropoiO - H3CO H3CO COOH OH OH ously condense with amino acids, under the forma- somers.- The green (3R)-atrochrysone (17) occurs in OOHOH OOHOH- OH OH tionHOO Cof aldimine bonds, yielding yellowCO hygroaurinsO C. atrovirensCOO O Kalchbr. and C. odoratusOH (M.M.Moser)OH - H3CO H CO 3 + RO RO + COO + O CH3 CH3 + (13) (Muso 1976; Li & Oberlies 2005). M.M.Moser,N O (3S)-torosachrysone-8-CH- O3 -methyl etherCH OHOHO O OHOHN O N N N COO 3 The unusually high concentration of vanadium in C. fulmineusȱ (Fr.) ȱFr., C. citrinus J.E.ȱ Lange ex ȱ O COOH 15.inȱfallacinol some Amanitaȱ 15.ȱfallacinol species16.ȱ(3ȱ R,3 isR ȇascribed,M)Ȭ16.flavomanninȱ(3R to,3R theȇ,M Ȭ)formaO6,6ȬflavomanninH ȇȬdiȬ-OȬmethylP.D.Ȭ6,6 Orton,ȱetherȇȬdiȬOȱȱȱȱȱȱȱȱȱȱȬ methylC. splendens17.ȱȱ(3etherR)Ȭatrochrysone,ȱȱȱȱȱȱȱȱȱȱ R. Henry,17.ȱ(3R )T.ȱȬRatrochrysone, ȱequestre=ȱHȱ (L.)ȱR ȱP.=ȱ Hȱ tion of amavadin (14), a blue complex (1:2) Kumm. andȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ the Sulphur(3R)Ȭȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱtorosachrysone, Knight(3 T.R sulphureum)Ȭtorosachrysone,ȱRȱ=ȱCH3ȱ (Bull.)ȱRȱ= ȱCH3ȱ of vanadium V4+ with (2S,2´S)-N-hydroxyimino- P. Kumm. (Gill & Steglich 1987; Gill 1994). A HOOC N COOH HOOC N COOH HOOC N COOH HOOC N COOH H 2,2'-dipropionicH acid, isolated originallyH from number of anthraquinone pigmentsH formally derived A. muscaria (Bayer & Kneifel 1972). from torosachrysone and atrochrysone by coupling The5. genusmuscap Cortinariusurpurin (Pers.)6. mus Graykaaurin (Cortina-I 7. mus(dimeric,kaaurin trimericII and8. tetramericvulgaxanthin octaketides)I have riaceae) represents the largest of agarics, con- been described, mostly in Australian fungi belonging taining aboutCON 1000H2 different species in Europe and to the genera Cortinarius, Dermocybe and, to a lesser COOH found worldwide together with the closely related extent, (Gill & Morgan 2001). + + + - - generaN DermocybeCOO- (Fr.) WünscheN CO (Cortinariaceae)O N COOThe European members of the genus Cortinarius and Tricholoma (Fr.) Staude (). A characteristically contain the xanthone dermoxan- range of anthraquinones and biogenetically related thone (18) andO its methyl ester that were found in metabolites has been found in these mushrooms the stem of the Surprise Webcap C. semisanguineus

principally due to the activity in the studyH OofOC the N (Fr.)COO Gill.H These xanthones are responsible for the HOOC N COOH HOOC N COOH HOOC N COOH AustralianH Cortinarius/DermocybeH species. The ma- H bright yellow fluorescenceH under UV light (Gill jor dark orange pigment of the European toadstool 1999). The fruiting bodies of several Cortinarius 9.C.m cinnabarinusiraxanthin III Fr. is 10.fallacinolvulgaxanthin (6-O-methoxycitreII 11. indicaxanthin- species, such12. asmu thescafl Violetavin Webcap C. violaceus orosein, 15) (Gill & Steglich 1987; Gill 1994). (L.) Gray, have a strikingly deep violet colour 2- Several species of the genera Cortinarius, Dermo- of the fruiting bodies,CH3 which is ascribes to the cybe and Tricholoma, such asC C.OO Hcinnamomeoluteus unique β-DOPA-Fe3+ complex [Fe3+L (H O )]– or O N CH3 2 2 2 R + 3+ 2– P.D. Orton and T. equestre (L.)N P. Kumm. (trivially [Fe L4(H2O2)] ,O whereO L is the (3R)-β-DOPA anion O + known as Man on Horseback), produce a bright (19).O TheseV mushroomsO 2 H concentrate iron yellow dimeric anthraquinone flavomannin-6,6'- by as much as 100-foldO O over other Basidiomycota H3C N O di-O-methyl ether (16). ThisHO OpigmentC N isC biosyntheOOH - (Von Nussbaum et al. 1998). Unusually high con- H CH sised by 7,7'-coupling of the corresponding green centrations of iron were3 also found in the Velvet dihydroanthracenone13. hygroaur (3R)-torosachrysoneins (R = amino acid (residue)17). In Bolete, Suillus14. amavadinvariegatus (Sw.) Kuntze (Boletales) its homochiral form it also occurs in the European (Drbal et al. 1975; Kalač et al. 1989).

CH3 OCH3 O OH OH O HO OH OH O H3CO OH OH O OH OH OH H CO 3 RO CH3 OH O OH CH3 15. fallacinol 16. (3R,3R',M)-flavomannin-6,6'-di-O-methyl ether 17. (3R)-atrochrysone, R = H (3R)-torosachrysone, R = CH3

90 Czech J. Food Sci. Vol. 29, 2011, No. 2: 87–102

--- HOOCHOOCHOOC OOO OHOHOH -–- - HOOCHOOC OO O OHOHOH OOOO O OOOO O OOOO O COOHCOOHCOOHCOOHCOOH HHHH H RRRR R --- - NNN N COOHCOOHCOOHCOOH O -–- - --–-- - N COOH OOOO O OOOO O COOCOOCCOOCOOOCOOO HHHH H +++++ + HHH3H33CO3COCOHCOCO OOOO O NHNHNH3 + HOHOHO 3 3 NHNNHH33NH33 3 HOHO ȱȱȱȱȱ ȱ ȱȱȱȱȱ ȱ ȱȱȱȱȱ ȱ 18.18.18.18.ȱ18.ȱȱdermoxanthoneȱdermoxanthoneȱdermoxanthonedermoxanthoneȱdermoxanthoneȱȱȱȱȱ ȱ 19.19.19.19.ȱΆȬ19.ȱΆȬȱΆȬȱΆȬȱΆȬβDOPA-DOPAȱΆȬDOPDOPADOPADOPAAȱȱȱanionȱanionȱanionanionȱanionȱȱȱȱȱ ȱ 20.20.20.20.ȱ20.ȱȱscaurinȱscaurinȱscaurinscaurinȱscaurinȱȱȱA,ȱA,ȱA,A,ȱȱȱRȱA,RȱȱRRȱȱȱ=ȱ=ȱȱ=Rȱ=ȱȱHȱHȱHH=ȱȱȱȱȱHȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱscaurinscaurinscaurinscaurinscaurinȱȱȱB,ȱB,ȱB,B,ȱȱȱRȱRB,ȱRRȱȱȱ=ȱ=ȱȱ=Rȱ=ȱȱOHȱOHȱOHOH=ȱOHȱȱȱȱȱ ȱ

OHOHOHOHOHOOOO O OHOHOHOHOH HOHOHOHOHO

O OOOO O OOOO O RRRR R OOOO O OOOO O NNNN N HOHOHOHOHO H OHOHOHOHOH HHHH H RRRR R OOOO O NNNN N OOOO O COOCHCOOCHCOOCH3 O OOOO O COOCHCOOCH3333 3 HOHOHOHOHO OOOO O ȱȱȱȱȱȱȱȱȱȱ ȱȱ ȱȱȱȱȱȱȱȱȱȱ ȱȱ ȱȱȱȱȱȱȱȱȱȱ ȱȱ ȱȱȱȱȱ ȱ 21.21.21.21.ȱ21.ȱȱcanthinȱcanthinȱcanthincanthinȱcanthinȬȬȬ6Ȭ6Ȭ6Ȭ6ȬȬoneȬoneȬȬone6oneȬoneȱȱȱȱȱ ȱ 22.22.22.22.ȱ22.ȱȱinfractinȱinfractininfractinȱinfractininfractinȱinfractinȱȱȱA,ȱA,ȱA,A,ȱȱȱRȱA,RȱȱRRȱȱȱ=ȱ=ȱȱ=Rȱ=ȱȱHȱHȱHH=ȱȱȱȱȱHȱ ȱ 23.23.23.23.ȱ23.ȱȱaurantricholoneȱaurantricholoneȱaurantricholoneaurantricholoneȱaurantricholoneȱȱȱȱȱ ȱ 24.24.24.24.ȱ24.ȱȱaurantricholideȱaurantricholideȱaurantricholideaurantricholideȱaurantricholideȱȱȱA,ȱA,ȱA,A,ȱȱȱȱRA,ȱRȱRRȱȱȱ=ȱ=ȱ=Rȱ=ȱȱOHȱOHȱOHOH=ȱOHȱȱȱȱȱ ȱ ȱȱȱȱȱ ȱ ȱȱȱȱȱȱȱȱinfractinȱȱinfractininfractininfractininfractinȱȱinfractinȱȱȱB,ȱB,ȱB,B,ȱȱȱRȱRB,ȱRRȱȱ=ȱ=ȱȱȱ=Rȱ=ȱȱOHȱOHȱOHOH=ȱOHȱȱȱȱȱȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱaurantricholideaurantricholideaurantricholideaurantricholideaurantricholideȱȱȱB,ȱB,ȱB,B,ȱȱȱRȱRB,ȱRRȱȱȱ=ȱ=ȱ=Rȱ=ȱȱHȱHȱHH=ȱȱȱȱȱHȱ ȱ

RRRR R Scaurins (20) are the polyene pigments with and Pholiota (Fr.) P. Kumm., where they have a OHOHOHOHOH NO bound glutamic acid that were isolated from the considerable taxonomic significance (GillNO NO1994).NONO2NO2222 2 COOHCOOHCOOHCOOHCOOH fruiting bodies of C. scaurus (Fr.) Fr. (GillOHOHOHOHOH O1998,OOO O Hispidin is biosynthesised by two different mecha- R HHHH H 2003).RRRR R Alkaloids containingHOHOHOHOHO the canthin-6-one nisms using the activated 4-hydroxy-6-methylpyN - HOOCHOOCHOOCHOOC OOO OOO - -- - OOOO O NNNN N OOOO OHOOHOHOH OOOOOO OOOO RRRR R OOOO NNCOOHNNCOOHCOOHNCOOH ClClClClCl skeleton are produced by some other C. species. rone (a condensation product of threeHHHHH activated RRRR O HHHH H OH HOHOHOHOHO HO OOO OOOO O OHOHOHOHOH The parent compound canthin-6-oneHOHOHOHOHO - -- - (21) occurs- -- - acetates) and the activatedOO O 3,4-dihydroxybenzoicNNNN COOHCOOHCOOHCOOH OȱȱȱȱOOȱ Oȱ OOOO COOCOOCOOCȱȱȱOȱȱ Oȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱHHHH ȱȱȱȱȱ ȱ in the bitter-tasting C. infractus (Pers.) Fr. together+ ++ + acid or from phenylalanine via a cinnamyl derivative H3HHCO33HCOCO3CO OOOO NHNHNHNH HOHOHOHO 25.25.25.25.ȱ25.ȱȱbisnoryangonin,ȱbisnoryangonin,ȱbisnoryangonin,bisnoryangonin,ȱbisnoryangonin,ȱȱȱRȱRȱRRȱȱȱ=ȱ=ȱ=Rȱ=ȱȱHȱHȱHH=ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱHȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ26.26.26.26.ȱ26.ȱȱhispolon,ȱhispolon,ȱhispolon,hispolon,ȱhispolon,ȱȱȱRȱRȱRRȱȱȱ=ȱ=ȱȱ=Rȱ=ȱȱCHȱCHȱCHCH=ȱ3CH333ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ3ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ3ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ33ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ27.27.27.27.ȱ27.ȱdihydroxerulin,ȱdihydroxerulin,ȱȱdihydroxerulin,dihydroxerulin,ȱdihydroxerulin,ȱȱȱRȱRȱRRȱȱȱ=ȱ=ȱ=Rȱ=ȱȱCHȱCHȱCHCH=ȱCH222Ȭ2ȬȬ2CHȬCHȬCHCH2ȬCH222Ȭ2ȬȬ2CHȬCHȬCHCH2ȬCH333ȱȱȱȱȱȱȱȱȱȱ3ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ3ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ3ȱȱȱȱȱȱȱȱȱȱ28.28.28.28.ȱ28.ȱȱstephanosporinȱstephanosporinȱstephanosporinstephanosporinȱstephanosporinȱȱȱȱȱ ȱ with the β-carboline derivativesȱ ȱȱ infractin A and ȱ ȱȱ that is combined with either acetate or malonateȱ ȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱhispidin,hispidin,hispidin,hispidin,hispidin,ȱȱȱRȱRȱRRȱȱ=ȱ=ȱȱ=Rȱ=ȱȱOHȱOHȱOHOH=ȱOHȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱxerulin,xerulin,xerulin,xerulin,xerulin,ȱȱȱRȱRȱRRȱȱȱ=ȱ=ȱ=Rȱ=ȱȱCH=CHȱCH=CHȱCH=CHCH=CH=ȱCH=CHȬȬȬCHȬCHȬCHCHȬCH333ȱ3ȱȱ3ȱȱ 3ȱ B (22) (Gill 1996). through the polyketide pathway. The related open ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ18.18.18.ȱ18.dermoxanthoneȱȱdermoxanthonedermoxanthonedermoxanthonȱ ȱȱe ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ19.ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ19.19.ȱΆȬ19.ȱΆȬȱΆȬDOPAβDOPADOPA-DOPȱanionȱAȱanionanionanionȱ ȱȱ xerulinicxerulinicxerulinicxerulinicxerulinicȱȱȱacid,ȱacid,ȱacid,acid,ȱacid,20.ȱ20.ȱ20.ȱRȱRȱRȱ20.Rȱscaurinȱȱ=ȱ=ȱȱ=scaurinRȱscaurin=ȱȱCH=CHȱCH=CHȱCH=CHscaurinCH=CH=ȱCH=CHȱA,ȱȱA,A,ȬȱȬȬRCOOHAȬCOOHȱȬCOOHȱRȱCOOHR,=ȬȱRȱCOOH==HȱȱH=Hȱ Hȱȱȱȱȱȱȱ ȱ The benzotropolone derivative aurantricholone chainȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ β-ketoscaurin scaurinesterscaurinscaurin ȱ(B,26ȱȱB,B,ȱRBȱ,ȱRȱ R,=RȱRȱ==OH =ȱȱOH=OH COOCHOȱ Hȱȱ 3) was isolated NH NHNHNHNH22NH22 (NH23NHNHNH222NH2),2 2isolated from the bright orange-red2 2 caps some years ago as the Brick Cap H. sublateritium OHOHOHOOHOOO of Tricholoma aurantium (Schaeff.) Ricken,COOH is (Schaeff.)HOOCHOOCHOOCHOOCHOOCOHOHOH OQuél.H pigment. The yellow pigment COOHCOOHCOOH COOHCOOHCOOHCOOHCOOH closely relatedCOOHCOOH to the naphthalenoid pulvinic acidHOHOHOH O hispolon is the hydrolytic and decarboxylation OOO N N HHHNNN NNN O O NNNN N NNNN N HNNHN badioneNN N A occurring in the Boletales mushrooms product of the openOOOO chain β-keto ester (26) (Gill OOOO O OOOO OOOO O RRRR (see Chapter 2). It occurs naturally as a metal 1994).HHH It also occursNHNHNH in mushrooms of the Hy- OOOO HH H NHNHNH HHHH H NH NHNHNHNHNH HNHNHN chelate; theNH NHpredominantNHNHNH HN counterNNN ionN is calciumOOOO menochaetaceaeHNHNHN family, e.g. inX severalNO OOO HNHNHNHNHN N N NNNN N XXXX X NONONONONO (KlostermeyerO O et al. 2000).NNN NMinor pigments are P. Karst.,NNN NHOOnniaHOHONHOOOO O P. Karsten and Phellinus Quél. HHHH OOO O OHOHOHOH OOOO O COOH O RRR RRRR OOOO the yellowNNNN aurantricholidesȱȱȱȱ A COOHandCOOHCOOHCOOHCOOH B ( ). ȱspecies. ȱȱȱ R R (Lee & Yunȱ 2006) ȱȱȱȱȱȱȱȱȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ 24 ȱȱȱ ȱȱȱȱ ȱȱȱ ȱȱȱ ȱȱȱȱ ȱȱȱ ȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱ OOOȱOȱȱȱ ȱ The yellow-brown styrylpyroneCOOCHCOOCH COOCHpigmentsCOOCH bis- Orange-yellow polyenes of fatty acid origin, 29.29.29.29.ȱ29.ȱȱmycearubinȱmycearubinȱmycearubinmycearubinOȱmycearubinOOO ȱȱȱAȱAȱAAȱȱȱȱȱAȱ ȱ 30.30.30.30.ȱ30.ȱȱmycearubinȱmycearubinȱmycearubinmycearubinȱmycearubin3 33 3ȱȱȱBȱBȱBȱBȱȱȱȱȱBȱ 31.31.31.31.ȱ31.ȱȱsanguinoneȱsanguinoneȱsanguinonesanguinoneȱsanguinoneȱȱȱA,ȱA,ȱA,A,ȱȱȱȱRA,ȱRȱRRȱȱȱ=ȱ=ȱ=Rȱ=ȱȱHȱHȱHH=ȱȱȱȱȱȱȱȱȱHȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱHO ȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱHOHO ȱȱȱȱȱȱȱȱȱȱȱȱHO 32.32.32.32.ȱ32.ȱȱhaematopodin,ȱhaematopodin,ȱhaematopodin,haematopodin,ȱhaematopodin,OOOO ȱȱȱXȱXȱXXȱȱȱ=ȱ=ȱȱ=Xȱ=ȱȱOȱOȱOO=ȱȱȱȱȱOȱ ȱ noryangonin andȱȱȱȱȱȱ hispidin ( ) are widespreadȱȱȱȱȱȱ dihydroxerulin, xerulinȱȱȱȱȱȱ and xerulinic acid (ȱ ȱȱ ), ȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ25 ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱsanguinonesanguinonesanguinonesanguinonesanguinoneȱȱȱB,ȱB,ȱB,B,ȱȱȱRȱRB,ȱRRȱȱ=ȱ=ȱȱ=Rȱ=ȱȱCHȱCHȱCHCH=ȱCH333ȱ3ȱȱ3ȱȱ3ȱ ȱȱ ȱȱ ȱȱ ȱȱhaematopodin ȱȱhaematopodinhaematopodinhaematopodin ȱȱhaematopodinȱȱȱ27B,ȱB,ȱB,B,ȱȱȱXȱXB,ȱXXȱȱȱ=ȱ=ȱ=Xȱ=ȱȱNHȱNHȱNHNH=ȱNHȱȱȱȱȱ ȱ 21.among21.21.ȱ21.canthinȱȱcanthincanthincanthin fungiȬ6ȬȬȬ66one-ȬȬ6oneone- ofoȱnȱȱ ethe Strophariaceae22.22.22.ȱ22.infractinȱȱinfractininfractininfracȱtA,iȱȱnA,A,ȱRAȱȱ RȱRfamily,,=ȱRȱ==HȱȱH=Hȱ Hȱȱ genera23.23.23. ȱ23.aurantricholoneȱȱaurantricholoneaurantricholoneareaurantricholone the pigmentsȱ ȱȱ of Oudemansiella24.24.24.ȱ24.aurantricholideȱȱaurantricholideaurantricholideaurantricholide melanotrichaȱA,ȱȱA,A,ȱRAȱȱRȱR,=ȱRȱ=OH=ȱȱOH=OHOHȱ ȱȱ OOOO O ȱ Gymnopilusȱȱ P. Karst., ȱȱHypholomainfractinȱȱȱȱinfractininfractininfracȱtB,iȱȱnB,B,ȱRBȱ ȱRȱ(Fr.)R,=ȱRȱ==OHȱȱOH=OH OHP.ȱȱȱȱȱȱ Kumm. ȱ ȱ ȱ (Dörfelt) ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ M.M. HMoserC (aurantricholideOudemansiellaaurantricholideaurantricholideaurantricholideȱB,ȱȱB,B,ȱR BȱȱRSpeg.,ȱR,=ȱRȱ=H=ȱȱH=Hȱ Hȱȱ HHH3H33C3C3CHC3C HHH3H3CCCHC C 333 R3 RRR OOOO O OOOO O OOOO O OHOHOHOHOH OHOHOHOH H C OOOO O HHH3H33C3C3CHC3C NONONO2N22O2 OOO OO O COOHCOOHCOOHCOOH OHOHOHOHOOOO RRR OOOO O O OH HHHH RRRR RR HORHOHOHO OOOO O OHOHOHOHOH OOOO O OOOO O OOOO OOONNNN OOOO OOOO RRRR OO ONNNN ClClClCl OOOO O OOO HHHH OO OOOOO OHOHOHOH HOHOHOHO HOHOHOHO HOHOHOHOHO OOOO OOOO O ȱ ȱȱ ȱ ȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱ ȱȱ OHOHOHOHOH 25.25.25.ȱ25.bisnoryangonin,ȱȱbisnoryangonin,bisnoryangonin,bisnoryangonin,ȱRȱȱRȱR=ȱRȱ=H=ȱȱH=HȱȱȱȱȱȱȱȱHȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ26.26.26.ȱ26.hispolon,ȱȱhispolon,hispolon,hispoloȱRnȱȱRȱR,=ȱRȱ==CHȱȱCH=CHC3ȱȱȱȱȱȱȱȱȱȱȱȱȱȱH33ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ3 27.27.27.ȱ2dihydroxerulin,ȱ7ȱdihydroxerulin,dihydroxerulin,. dihydroxerulin,ȱRȱȱRȱR=ȱRȱ=CH=ȱȱCH=CHC2ȬH2CH2ȬȬCH2CH-C2ȬH2CH2ȬȬCHCH2-C3ȱȱȱȱȱȱȱȱȱȱH33ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ3 28.28.28.ȱ2stephanosporinȱ8ȱstephanosporinstephanosporin. stephanosporinCH ȱ ȱȱ OOOO O OHOHOHOHOH CHCHCHCH333CH33 3 ȱȱȱȱȱȱRȱȱȱȱȱȱRȱȱȱȱȱȱRRhispidin,Rhispidin,hispidin,hispidȱRinȱȱRȱR,=ȱRȱ==OHȱȱOH=OHOHȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱHOHOHOHOHO ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱxerulin,xerulin,xerulin,xeruȱlin,RȱȱRȱR=ȱȱR==CH=CHȱȱCH=CH=CH=CHCH=CȬCHȬHȬCHCH-C3ȱ3H3ȱȱ 3 OOOO O ȱȱȱȱȱ ȱ ȱȱȱȱ ȱȱ ȱ ȱ ȱ ȱȱ ȱ ȱȱȱȱ ȱȱ ȱ ȱ ȱ ȱȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ xerulinicxerulinicxerulinicxerulinicȱacid,ȱȱacid,acid,aȱciRȱȱRdȱR=,ȱȱ=R=CH=CHȱȱCH=CHCH=CH= CH=CHȬCOOHȬȬCOOHCOOH- COOȱ ȱȱH 33.33.33.33.ȱ33.ȱȱpolyporicȱpolyporicȱpolyporicpolyporicȱpolyporicȱȱȱacid,ȱacid,ȱacid,acid,ȱacid,ȱȱȱRȱRȱRRȱȱȱ=ȱ=ȱ=Rȱ=ȱȱHȱHȱHH=ȱȱȱȱȱȱȱȱȱHȱȱ ȱȱ 34.34.34.34.ȱ34.ȱȱleucomentinȱleucomentinleucomentinȱleucomentinleucomentinȱleucomentinȬȬȬ2Ȭ2Ȭ2ȱȱ2ȱȱȱȱȱȱȬȱȱ2ȱȱ 35.35.35.35.ȱ35.ȱȱflavomentinȱflavomentinflavomentinȱflavomentinflavomentinȱflavomentinȱȱȱAȱAȱAAȱȱȱȱȱAȱ ȱ ȱȱȱȱȱȱatromentin,ȱRȱ=ȱOHȱ NHNHNHNH ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱNHNHȱȱȱȱȱȱatromentin,NHatromentin,2atromentin,,N22Hatromentin,2 ȱȱRȱRȱRRȱȱ=ȱ=ȱ=Rȱ=ȱOHȱOHȱOHOH=ȱOHȱȱȱȱ ȱ 2 22 2 HOOCHOOCHOOCHOOC 91 COOHCOOHCOOHCOOH COOHCOOHCOOHCOOH

OOOO HHNHNHNN NNNN NNNN NNNN OOOO OOOO HHHH NHNHNHNH HHHH NHNHNHNH NHNHNHNH HNHNHNHN HNHNHNHN NNNN NNNN XXXX NONONON O OOOO NNNN OOOO OOOO OOOO COOHCOOHCOOHCOOH RRRR ȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱ ȱȱȱȱ ȱȱȱ ȱȱȱ ȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱ ȱȱ 29.29.29.ȱ29.mycearubinȱȱmycearubinmycearubinmycearubȱAiȱȱnAAȱ ȱAȱ 30.30.30.ȱ30.mycearubinȱȱmycearubinmycearubinmycearubȱBiȱȱnBȱBȱȱB 31.31.31.ȱ31.sanguinoneȱȱsanguinonesanguinonesanguinoneȱA,ȱȱA,A,ȱRAȱȱRȱR,=ȱRȱ=H=ȱȱH=HȱȱHȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱ32.32.32.ȱ3haematopodin,ȱ2ȱhaematopodin,haematopodin,. haematopodin,ȱXȱȱXȱX=ȱXȱ=O=ȱȱO=Oȱ ȱOȱ ȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱsanguinonesanguinonesanguinonesanguinonȱB,ȱȱB,eB,ȱRBȱȱRȱR,=ȱRȱ==CHȱȱCH=CHC3ȱH33ȱȱ3 ȱȱhaematopodin ȱȱ ȱȱhaematopodinhaematopodinhaematopodȱB,iȱȱnB,B,ȱXBȱȱXȱX,=ȱXȱ=NH=ȱȱNH=NHNȱ Hȱȱ

OOOO H3HHC33HCC3C H3HHC33HCC3C OOOO OOOO OOOO OHOHOHOH OOOO H3HHC33HCC3C OOOO

RRRR OOOO OOOO OHOHOHOH OOOO OOOO OOOO OOOO OOOO HOHOHOHO OOOO

OHOHOHOH

OOOO OHOHOHOH CHCHCH3C33H3 RRRR HOHOHOHO OOOO ȱ ȱȱ ȱ ȱȱ ȱ ȱ ȱ ȱȱ ȱ ȱ 33.33.33.ȱ33.polyporicȱȱpolyporicpolyporicpolyporicȱacid,ȱȱacid,acid,aciȱRdȱȱRȱR,=ȱRȱ=H=ȱȱH=HȱȱHȱȱȱȱ 34.34.34.ȱ34.leucomentinȱȱleucomentinleucomentinleucomentȬ2iȬȬnȱȱ22-ȱȱȱȱ2 35.35.35.ȱ35.flavomentinȱȱflavomentinflavomentinflavomentinȱAȱȱAAȱ ȱAȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱatromentin,atromentin,atromentin,atromentin,ȱRȱȱRȱR=ȱRȱ==OHȱȱOH=OHOȱ Hȱȱ HOOC - - - - HOOCHOOCHOOCO OOHO O OHOHO OHOO O O OO O O OO O COOHCOOHCOOHCOOH H HH H R RR R ------N NCOOHN N COOHCOOHCOOH O OO OO OO O COO COOCOOCOO H HH H H CO H CO O O + + + + 3 H3CO3 H3CO O O NH3 NHNH3 NH3 3 HO HOHOHO ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ 18.ȱdermoxanthone18.18.ȱdermoxanthone18.ȱdermoxanthoneȱdermoxanthoneȱ ȱ ȱ ȱ 19.ȱΆȬ19.DOPA19.ȱΆȬ19.ȱΆȬDOPAȱΆȬDOPAȱanionDOPAȱanionȱȱanionȱanionȱ ȱ ȱ 20.ȱscaurin20.20.ȱscaurin20.ȱscaurinȱȱA,scaurinȱRȱA,=ȱȱA,HȱRȱA,ȱȱRȱ=ȱȱȱ=RHȱȱH=ȱ ȱȱHȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱscaurinscaurinscaurinȱB,scaurinȱRȱȱ=B,ȱȱB,OHȱRȱȱB,Rȱ=ȱȱȱȱ=ROHȱȱOH=ȱOHȱ ȱ ȱ

OH OOHOHOHOO O OH OHOHOH HO HOHOHO

O OOO O OO O R RR R O OO O O OO O N NN N HO HOHOHO OH OHOHOH H HH H R RR R O OO O N NN N O OO O COOCHCOOCH O OO O COOCH3 COOCH3 3 3 HO HOHOHO O OO O ȱȱ ȱȱȱȱ ȱȱ ȱȱ ȱȱȱȱ ȱȱ ȱȱ ȱȱȱȱ ȱȱ ȱ ȱ ȱ ȱ 21.ȱcanthin21.21.ȱcanthin21.ȱcanthinȬȱ6canthinȬoneȬ6ȬȱȬ6oneȬȬone6Ȭoneȱ ȱ 22.ȱ ȱinfractin22.22.ȱinfractin22.ȱinfractinȱinfractinȱA,ȱRȱA,=ȱȱA,HȱRȱA,ȱRȱ=ȱȱȱ=RHȱȱH=ȱ ȱȱHȱ 23.ȱaurantricholone23.23.ȱaurantricholone23.ȱaurantricholoneȱaurantricholoneȱ ȱ ȱ ȱ 24.ȱaurantricholide24.24.ȱaurantricholide24.ȱaurantricholideȱaurantricholideȱA,ȱRȱA,=ȱȱA,OHȱȱRA,ȱRȱ=ȱȱȱȱ=ROHȱȱOH=ȱOHȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱinfractinȱȱinfractinȱȱinfractinȱȱinfractinȱB,ȱRȱȱ=B,ȱȱB,OHȱRȱȱB,Rȱ=ȱȱȱȱȱ=ROHȱȱOH=ȱOHȱȱȱȱ ȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱaurantricholideaurantricholideaurantricholideaurantricholideȱB,ȱRȱȱ=B,ȱȱB,HȱRȱȱB,Rȱ=ȱȱȱ=RHȱȱH=ȱ ȱȱHȱ

R RR R

OH OHOHOH NO2 NONO2NO2 2 COOHCOOHCOOHCOOH OH OHOOHOHOO O H HH H R RR R HO HOHOHO O O O OO O N NN N OO O OO O R RR R N NN N Cl ClCl Cl H HH H O OO O OH OHOHOH HO HOHOHO HO HOHOHO O OO O ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ

25.ȱbisnoryangonin,25.25.ȱbisnoryangonin,25.ȱbisnoryangonin,ȱbisnoryangonin,ȱRȱ=ȱHȱRȱȱȱȱȱȱȱȱȱRȱ=ȱȱȱ=RHȱȱH26.=ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱHȱhispolon,ȱȱȱȱȱȱȱȱ26.26.ȱhispolon,26.ȱhispolon,ȱhispolon,ȱRȱ=ȱCHȱRȱRȱ=3ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ=RCHȱȱCH=ȱCH327.ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ3ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ3ȱdihydroxerulin,ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ27.27.ȱdihydroxerulin,27.ȱdihydroxerulin,ȱdihydroxerulin,ȱRȱ=ȱCHȱRȱRȱ=2ȱȱȬȱ=RCHȱȱCH=ȱCH2Ȭ2CHȬCH2ȬCH23Ȭȱȱȱȱȱȱȱȱȱȱ2CHȬCH2ȬCH3ȱȱȱȱȱȱȱȱȱȱ328.ȱȱȱȱȱȱȱȱȱȱ3ȱȱȱȱȱȱȱȱȱȱȱstephanosporin28.28.ȱstephanosporin28.ȱstephanosporinȱstephanosporinȱ ȱ ȱ ȱ ȱȱȱȱȱȱhispidin,ȱȱȱȱȱȱȱȱȱȱȱȱVol.hispidin,ȱȱȱȱȱȱhispidin, hispidin,29,ȱRȱ= ȱ2011,OHȱRȱRȱ=ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ=ROHȱ ȱOH=No.ȱOHȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ 2:ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ 87–102 ȱȱȱȱȱȱȱxerulin,ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱxerulin,xerulin,ȱRxerulin,ȱ=ȱCH=CHȱRȱRȱ=ȱȱȱ=RCH=CHȱȱCH=CH=ȱȬCH=CHCH3ȬȱCHȬCHȬCH3ȱ3ȱ 3ȱ Czech J. Food Sci. - - - ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱHOOCHOOCHOOC O OO OHOHOHȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱO OOȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱO OO xerulinicxerulinicxerulinicxerulinicȱacid,ȱȱacid,Rȱacid,ȱ=ȱacid,ȱCH=CHȱRȱRȱ=ȱȱȱ=RCH=CHȱȱCH=CH=ȱȬCH=CHCOOHȬCOOHȬCOOHȱȬCOOHȱ ȱ ȱ O OO COOHCOOHCOOH H HH R RR ------N NN COOHCOOHCOOH O NH2 NHNHNH2 NH2 NHNH2 NH2 2 O O O OO2 2 COOCOOCOO H HH H HCOHCOCO O OO + + + 3 3 3 COOHNHCOOHNH3NH3 3 HOOCHOOCHOOCHOHOOCHOHO COOHCOOHCOOHCOOH ȱ ȱ ȱ COOHCOOH ȱ ȱ ȱ ȱ ȱ ȱ O OO O N N HN HHNNHN N NN N18.18.ȱ18.dermoxanthoneȱdermoxanthoneȱdermoxanthoneȱ ȱ ȱ 19.19.ȱΆȬ19.ȱΆȬDOPANȱΆȬNDOPADOPAN ȱanionȱanionȱanionȱ ȱ ȱ NN N 20.20.ȱ20.scaurinȱscaurinȱscaurinȱA,ȱA,ȱȱRA,ȱȱR=ȱȱRȱH=ȱȱ=ȱHȱHȱ ȱ O OO O ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱscaurinscaurinscaurinȱB,ȱB,ȱRȱOB,ȱȱR=ȱȱRȱOH=ȱȱO=OHOȱOHȱ Oȱ ȱ H HH H NH NHNHNH H HH H NH NHNHNH NH NHNHNH N HN HNHNOHOHHN O HN HNHNHN NN N N NN N OH O OO X XX X NONONONO OO O N NON NOHOOHOOHO O OO O HOHOHO O OO O COOHCOOHCOOHCOOH R RR R ȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱ ȱ ȱȱȱ ȱȱ ȱȱȱ ȱȱȱȱ ȱȱȱ ȱȱ ȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ O OO O OO 29.ȱmycearubin29.29.ȱmycearubin29.ȱmycearubinȱmycearubinȱAȱ ȱAȱAȱ ȱAȱ R R30.R ȱmycearubin30.30.ȱmycearubin30.ȱmycearubinȱmycearubinȱBȱ ȱBȱBȱ ȱȱBȱ 31.ȱsanguinone31.31.ȱsanguinone31.ȱsanguinoneȱsanguinoneȱA,ȱRȱA,=ȱȱA,HȱȱRA,ȱȱȱRȱ= ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ=RHȱȱH=ȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱH ȱȱȱȱȱȱȱȱȱȱȱȱ32.ȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱhaematopodin,32.32.ȱhaematopodin,32.ȱhaematopodin,ȱhaematopodin,ȱXȱ=ȱOȱXȱXȱ=ȱȱȱ=XOȱȱO=ȱ ȱȱOȱ ȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱOsanguinoneOO sanguinonesanguinonesanguinoneȱB,ȱRȱȱ=B,ȱȱB,CHȱRȱȱB,Rȱ=3ȱȱȱȱ=RCHȱȱCH=ȱCH3ȱ3ȱ3ȱ ȱȱhaematopodin ȱȱhaematopodin ȱȱhaematopodin ȱȱhaematopodinȱB,ȱXȱȱ=B,ȱȱB,NHȱXȱȱB,Xȱ=ȱȱȱ=XNHȱȱNH=ȱNHȱ ȱ ȱ O OO N NN HOHOHO H HH OHOHOH O OO O Physalacriaceae) that act as inhibitors of choles- of the mushroomH C H decomposingHCCH C R underRR theO O influenceO N NN 3 3 3 3 terol biosynthesis (Kuhnt et al. 1990). H3C H3HC3CH3C of air and light (Hopmann & Steglich 2006). O OO COOCHCOOCHCOOCH3 OO O OO 3 3 O OO O HOHOHO O The carrot truffle,ȱȱ ȱȱ ȱȱStephanosporaO O OcaroticolorO ȱȱ ȱȱȱȱ O ȱȱ OȱȱOȱȱ O OH OHOHOH ȱ ȱ ȱ O OO O (Berk.) Pat. (StephanosporaH3C Pat.,H3HC3CH3 CStephanospo- 21.21.ȱ21.canthinȱcanthinȱcanthinȬ6Ȭone6ȬȬ6oneȬoneȱ ȱ ȱ 22.22.ȱ22.infractinȱinfractinȱinfractinȱA,ȱA,ȱȱRA,ȱȱR=ȱȱRȱH=ȱȱ=ȱHȱHȱ ȱ 23.23.ȱ23.aurantricholoneȱaurantricholoneȱaurantricholoneȱ ȱ ȱ O OO24.O24.ȱ24.aurantricholideȱaurantricholideȱaurantricholideȱA,ȱA,ȱȱRA,ȱȱR=ȱȱRȱOH=ȱȱ=OHȱOHȱ ȱ ȱ raceae), contains in its subterranean tuber-like 2 Boletales ȱ ȱ ȱ ȱȱinfractinȱȱinfractinȱȱinfractinȱB,ȱB,ȱRȱOB,ȱȱR=ȱȱRȱOH=ȱȱ=OHȱOOHȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱaurantricholideaurantricholideaurantricholideȱB,ȱB,ȱRȱB,ȱȱR=ȱȱRȱH=ȱȱ=ȱHȱHȱ ȱ fruiting bodies theR pigmentRR R stephanosporinO (O ).O O OHO OHOHOH O OO O O O28O O O OO O R RR This unusual hydrazine derivative is biosynthesisedO OO O Mushrooms of the orderO BoletalesOO O are charac- HO HOHOHO O OO O using 2-chloro-4-nitrophenolOHOHOH as the building block. terised by a diversity of colours mainly derived NONO2NO2 2 Both compounds occur naturally as their potasOH -OHOHOHfrom terphenylquinones and pulvinic acids. Ter- COOHCOOHCOOH O OO O OH OHOHOHOOHOO CH3 CHCH3 CH3 3 R RsiumR R salts and are responsibleHO for HOtheHOHO bright orange phenylquinones, exemplified byO polyporicOO OH HH acid R RR HOHOHO ȱ ȱ ȱ ȱ ȱ ȱ ȱȱ ȱ ȱ ȱ O OO NȱN ȱN ȱȱ ȱ ȱ ȱ colour of the mushroomO OO O (LangOO et al. 2001). R R(R33) and atromentin (33), are mainly producedN NN by ClClCl H HH 33.ȱpolyporic33.33.ȱpolyporic33.ȱThepolyporicȱpolyporicȱ acid,pyrroloquinoneȱȱacid,Rȱacid,ȱ=ȱacid,ȱHȱRȱȱȱRȱ=ȱȱȱ=RHȱȱH=ȱȱȱȱȱH alkaloidsȱȱ 34.isolatedȱleucomentin34.34.ȱleucomentin34.ȱ leucomentinfromȱleucomentin ȬMy-2ȱȱ Ȭ 2Ȭȱȱ2ȱȱȬwood-rotting2ȱȱ higher35. fungiȱflavomentin35.35.ȱflavomentin35. ȱofflavomentinȱ flavomentintheȱ Aorderȱ ȱAȱAO ȱPolyporalesȱOAOȱ OHOHOH HOHOHO HOHOHO O OO ȱȱȱȱȱȱatromentin,ȱȱȱȱȱȱȱȱȱȱȱȱcenaatromentin,ȱȱȱȱȱȱatromentin,atromentin, (Pers.)ȱRȱ=ȱOHȱ RRousselȱRȱ=ȱȱȱȱ=ROHȱȱOH=ȱOHȱ ȱ ()ȱ ȱ ȱ ȱ species include ȱ growingȱ ȱ on various treesȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ but in other ȱ ȱ ȱ

the25. red25.ȱ25.bisnoryangonin,ȱ pigmentsbisnoryangonin,ȱbisnoryangonin, mycearubinȱRȱȱR=ȱȱRȱH=ȱȱ=ȱȱȱȱȱȱȱȱHȱHȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ A26. 26.(ȱ2926.hispolon,ȱhispolon,),ȱhispolon, mycearubinȱRȱȱR=ȱȱRȱCH=ȱȱ=CHȱCH3ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ B3ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ 3ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ27.higher27.ȱ27.dihydroxerulin,ȱdihydroxerulin,ȱdihydroxerulin, fungi, suchȱRȱȱR= ȱȱRasȱCH=ȱȱ=CH ȱinCH2ȬCH 2theȬ2CHȬCH2Ȭ CH2BoletalesȬ2CHȬCH3ȱȱȱȱȱȱȱȱȱȱ3ȱȱȱȱȱȱȱȱȱȱ3ȱȱȱȱȱȱȱȱȱȱ28. 28.fungi,ȱ28.stephanosporinȱstephanosporinȱstephanosporin they ȱ ȱ ȱ (30ȱȱȱȱȱȱ) ȱȱȱȱȱȱandȱȱȱȱȱȱhispidin,hispidin, hispidin,relatedȱRȱȱ R=compoundsȱȱRȱOH=ȱȱ=OHȱOHȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ from the fruiting bod- ȱȱȱȱȱȱȱonlyȱȱȱȱȱȱȱȱȱȱȱȱȱȱxerulin,xerulin, xerulin,appearȱRȱȱR=ȱȱRȱ CH=CH=sporadically.ȱȱ=CH=CHȱCH=CHȬCHȬCHȬCH3ȱ 3ȱ3 ȱHowever, atromentin ies ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱofȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱM. rosea (Schumach.) Grambergȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ (Peters & isxerulinic theirxerulinicxerulinic keyȱacid,ȱacid, ȱintermediateacid,ȱRȱȱR=ȱȱRȱCH=CH=ȱȱ=CH=CHȱCH=CHȬCOOH ȬforCOOHȬCOOH manyȱ ȱ ȱ conversions Spiteller 2007a) and the Bleeding Fairy leading to more highly hydroxylated terphenyl- NHNHNH2 M. haematopusNHNH2NH2 2 (Pers.) P. Kumm. The blue2 2san- quinones, hydroxypulvinic acids, cyclopentenones HOOCHOOCHOOC guinones ACOOH andCOOHCOOH B (31) were isolated from M. sanCOOH-COOHCOOHand related compounds. In the intact fruit bodies, guinolenta (Alb. & Schwein.)O O P.O Kumm. (PetersN atromentin occurs in the form of itsHNH colourlessHNN N NN N N N NN & Spiteller 2007b) andO OredO haematopodins from precursors leucomentins. O OO the fragile reddish-brown stems of M. haematopus LeucoderivativeH HH NHofNH atromentinNH esterified withH H H NHNHNH NHNHNH HNHNHN (Hopmann & SteglichHNHN 2006;HN PetersN NN et alN. N2008).N (2Z,4S,5S)-4,5-epoxyhex-2-enoicX XacidX fromNONONO the O OO N NN O OO O OO These alkaloidsO OO are exemplified by theCOOH minorCOOHCOOH pigment lignicolousR R Rfungi atrotomentosa (Batsch) haematopodin (32), aȱȱȱȱ breakdownȱȱȱȱȱȱȱȱ product of the labile Šutaraȱ ȱȱȱȱ ȱȱȱȱ ( ȱȱȱTapinella E.-J. Gilbert,ȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱ ) ȱȱȱȱȱȱȱȱȱ spo-ȱ ȱ ȱ red29. haematopodin29.ȱ29.mycearubinȱmycearubinȱmycearubinȱA ȱBȱAȱ Aȱ(32ȱ ), which is30. the30.ȱ30.mycearubin mainȱmycearubinȱmycearubin pigmentȱBȱBȱȱB ȱ rophore31.31.ȱ31.sanguinone isȱsanguinone ȱleucomentin-2sanguinoneȱA,ȱA,ȱȱRA,ȱȱR=ȱȱRȱH=ȱȱ =ȱȱH(ȱ34H ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱ) ȱȱȱȱȱȱȱȱȱȱȱȱ (Gill32.32.ȱ32.haematopodin, &ȱhaematopodin,ȱ haematopodin,Steglichȱ XȱȱX=ȱȱXȱO=ȱȱ=ȱOȱOȱ ȱ ȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ1987; Gillsanguinonesanguinonesanguinone 1994; LiuȱB,ȱB,ȱRȱ B,2006ȱȱR=ȱȱRȱCH=ȱȱ=CHȱ;CH3 ȱHanson3ȱ3ȱ ȱȱhaematopodin ȱȱ2008b).haematopodin ȱȱhaematopodin ThisȱB, ȱB,ȱXȱB,ȱȱX=ȱȱXȱNH=ȱȱ=NHȱNHȱ ȱ ȱ

O OO H3HC3HC3C H3HC3HC3C O OO O OO O OO OHOHOH O OO H3HC3HC3C O OO

R RR O OO O OO OHOHOH O OO O OO O OO O OO O OO HOHOHO O OO

OHOHOH

O OO OHOHOH CHCH3CH3 3 R RR HOHOHO O OO ȱ ȱ ȱ ȱ ȱȱ ȱ ȱ ȱ ȱȱ ȱ ȱ 33.33.ȱ33.polyporicȱpolyporicȱpolyporicȱacid,ȱacid,ȱacid,ȱRȱȱR=ȱȱRȱH=ȱȱ=ȱȱHȱHȱȱȱȱ 34.34.ȱ34.leucomentinȱleucomentinȱleucomentinȬ2ȱȱȬ2Ȭȱȱ2ȱȱ 35.35.ȱ35.flavomentinȱflavomentinȱflavomentinȱAȱȱAȱAȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱatromentin,atromentin,atromentin,ȱRȱȱR=ȱȱRȱOH=ȱȱ=OHȱOHȱ ȱ ȱ

92 Czech J. Food Sci. Vol. 29, 2011, No. 2: 87–102

OH OH O O OH OH OH OH O O OH OH OH OH O O O O HO HO O O O O O O O O O O HO HO O O O O O O HO HO HO HO R R CH3 CH3 R OH OH ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ 36.ȱspiromentin36.ȱspiromentinȱAȱȱ ȱAȱȱ 37.ȱcycloleucomelone,37.ȱcycloleucomelone,ȱRȱ=ȱHȱRȱȱ=ȱHȱ ȱ ȱ ȱȱȱȱȱȱ38. ȱȱȱȱȱȱȱthelephoric38.ȱthelephoricȱacidȱȱȱacidȱȱ ȱȱȱȱȱȱȱcyclovariegatin,ȱȱȱȱȱȱȱcyclovariegatin,ȱRȱ=ȱOHȱRȱ=ȱȱOHȱ

2 2 - compound and leucomentin-3,R R -4, -5 and -6 were quinone ring has beenO- oxidizedO- and opened. The - - OOHOOH OH OH OOOO O O found in a number ofOH otherOH fungi. Mushrooms of unsubstitutedO parentO compound, , 1 1 the genusR TapinellaR also produce3 small3 amounts of onlyR Roccurs in the form of its methyl ester named orange-yellow flavomentins A-DR andR violet spiro- . Xerocomic and variegatic acids play O O O O HO HO HO HO mentins A-D (spiromentinsO O E-J, derivatives of ben- the most importantO O role being responsible for zene-1,2,4,5-tetraol, are colourless)ȱ derivedȱ ȱ from ȱ the blue colours acquired inȱ manyȱ boletes after atromentin.39.ȱatromentic39.ȱatromentic Theȱacid, flavomentinsȱacid,ȱR1ȱ=ȱR12ȱ=ȱR23ȱ =constituteȱRH3ȱȱȱ=ȱHȱȱ diesters ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ 40.ȱchinonmethidtheir40.ȱchinonmethid fruitingȱanion bodiesȱanionȱofȱxerocomic areȱofȱxerocomic injured,ȱacid, ȱwhichacid,ȱRȱ=ȱHȱRȱȱ =resultsȱHȱ in andȱȱȱȱȱȱ monoestersxerocomicȱȱȱȱȱȱxerocomicȱacid, of atromentinȱacid,ȱR1ȱ=ȱRH,1ȱȱ=RȱH,2ȱ= withȱROH,2ȱ=ȱȱOH, R(23ȱZ=ȱ,4RH3Sȱȱ=,5ȱHSȱ)-4,5- ȱȱȱȱȱȱchinonmethidthe ȱȱȱȱȱȱ chinonmethidoxidationȱanion ofȱ aniontheseȱofȱvariegaticȱof acidsȱvariegatic toȱacid, theȱacid,ȱR correspondingȱ=ȱOHȱRȱ=ȱȱOHȱ epoxyhex-2-enoicȱȱȱȱȱȱgomphidicȱȱȱȱȱȱgomphidicȱacid, andȱacid,ȱR1ȱ =(2ȱRH,Z1ȱȱ=R,4ȱH,2ȱE=ȱ)-hexa-2,4-dienoicR23ȱȱ=ȱROH3ȱ=ȱȱOHȱ blue chinonmethid anions (40). Pulvinic acids are 1 2 3 acids.ȱȱȱȱȱȱ isoxerocomicTheȱȱȱȱȱȱisoxerocomic spiromentinsȱacid,ȱacid,ȱR1ȱ= ȱpossessROH,1ȱ=ȱȱOH,R2ȱ= ȱRa 23ȱunique=ȱRH3ȱȱ=ȱH ȱspiro especially widespread in mushrooms belonging to 1 1 2 2 3 3 structureȱȱȱȱȱȱvariegaticȱȱȱȱȱȱvariegatic in whichȱacid,ȱacid,ȱR aȱ= 4,5-dihydroxybenzo-1,2-ȱROH,ȱ=ȱȱOH,R ȱ=ȱROH,ȱ=ȱȱOH,R ȱ=ȱRHȱȱ=ȱHȱ the Gomphidiaceae and families, to the quinone is linked to a lactone acetal unit (Besl genera3 3 Gomphidius2 2 Fr. and Gary. The yellow R R R R OH OH O O et al. 1989). Flavomentin A (35OH) andOH spiromentin pigment gomphidicHO acidHO (39) was found for the first OH OH A (36) exemplify these metabolites. time in the1 Slimy1 Spike-cap G. glutinosus (Schaeff. HO R R HO HO O OO O Simple oxidation products of terphenylquinonesO Oex Fr.) Fr. (Knight & Pattenden 1976). O O HO HO OH OH O O underHO theHO preservation of the central quinone4 4 The yellow-brown cap and stem of the Larch O O R R O O O O ring include cycloleucomelone (37ȱ ) ȱand cyclova- Bolete Suillusȱȱȱȱȱȱȱȱȱ grevilleiȱȱȱȱȱȱȱȱȱ (Klotzsch) Sing.ȱ containȱ at riegatin (37), which is the precursor of the violet least 11 yellow, orange and red pigments derived 41.ȱ341.ȇ,4ȇ,4ȱ3Ȭȇ,4trihydroxypulvinoneȇ,4Ȭtrihydroxypulvinoneȱ OHȱ 42.ȱgrevillin42.ȱgrevillinȱAȱȱAȱ ȱ ȱ ȱ ȱ 43.ȱgomphilactone43.ȱgomphilactoneȱ ȱ thelephoric acid (38O). Cycloleucomeloneȱȱȱȱ ȱȱȱ occursgrevillin ȱȱȱgrevillin ȱBȱfromȱBȱ decarboxylatedOH pulvinic acids, of which 3',4',4-OH in the fruiting bodiesO of leucomelaena trihydroxypulvinoneOH (41) is the major pigmentO H ȱȱȱȱ ȱȱȱgrevillin ȱȱȱgrevillinȱCȱO ȱCȱ O (Pers.) Fayod (Boletopsis Henn., Suillaceae) (Jägers (Besl & Bresinsky 1997). Cyclovariegatin ( ) ȱȱȱgrevillinȱȱȱgrevillinHO ȱDȱ ȱDȱ 37 et al. 1987) and is accompaniedO by a series of is also partly responsible for its colourO (Edwards O O O O O colourlessHO analogues containing five, four and & Gill 1973). O O O O O three acetyl residues. Cyclovariegatin occursO inO O In the pathway leading toO atromentin,O O instead of HO HO this mushroom as the colourless peracetateHO HO of the two C-C bonds only oneHO C-CHO bond may be formed. CH R OH leucoform (Edwards & Gill3 1973). TheO resultingO lactonisation then yieldsO grevilO -

The major36. sp irpigmentsomentin A of the order Boletales37. cyclo lareeucome linslone O(,42R =).OH Grevillins A, B, C3 and8. thelep D arehoric aO groupacidO of O O O O the yellow pulvinic acids (39) that areHO formedcHOyclovarie HOgatin,characteristicHO R = OH orange toHO redHO 2H-pyran-2,5(6HO HO H)dione O O OH OH through lactone formation,OH OH after the terphenylO -O pigments that occur only inO theO fruiting body of O O HOOCHOOC HOOCHOOC HOOCHOOC HOOCHOOC 2 – R OH OH O OH OH R R – O OH OH O O O O O OH O HO HO 1 O O R 3 R OH OH R OH OH OH OH O ȱȱȱ ȱȱȱ ȱȱȱO ȱȱȱ ȱ ȱ HO HO 44.ȱxerocomorubin,44.ȱxerocomorubin,ȱRȱ=ȱHȱRȱȱȱ=OȱHȱȱ ȱ45.ȱbadioneȱ45.ȱbadioneȱAȱȱAȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱO ȱȱȱȱȱȱȱȱȱȱȱ46.ȱnorbadione46.ȱnorbadioneȱAȱ ȱAȱ ȱȱȱȱȱȱvariegatorubin,ȱȱȱȱȱȱvariegatorubin,ȱRȱ=ȱOHȱRȱ=ȱȱOHȱ 39. atromentic acid, R1 = R2 = R3 = H 40. chinonmethid anion of xerocomic acid, R = H xerocomic acid, R1 = H, R2 = OH, R3 = H chinonmethid anion of , R = OH gomphidic acid, R1 = H, R2 = R3 = OH isoxerocomic acid, R1 = OH, R2 = R3 = H variegatic acid, R1 = OH, R2 = OH, R3 = H

3 2 R R OH O OH HO OH 93 1 R HO O O O O HO OH O HO 4 O R O O

41. 3',4',4-trihydroxypulvinone 42. grevillin A 43. gomphilactone grevillin B grevillin C grevillin D

O O O O O HO HO O O

O O O O HO HO HO HO O OH OH O O O HOOC HOOC HOOC HOOC R OH OH O HO O OH OH OH

44. xerocomorubin, R = H 45. badione A 46. norbadione A variegatorubin, R = OH Vol. 29, 2011, No. 2: 87–102 Czech J. Food Sci.

3 2 R R OH O OH HO OH 1 R HO O O O O HO OH O HO OH 4 O O R OHO O OH ȱ ȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱ O OH OH 41.ȱ3ȇ,4ȇ,4Ȭtrihydroxypulvinoneȱ 42.ȱgrevillinO ȱA,ȱR1ȱ=ȱR3ȱ=ȱR4ȱ=ȱH,ȱR2ȱ=ȱOHȱ 43.ȱgomphilactoneO ȱ HO 1 3 2 4 O ȱȱ ȱȱȱgrevillinȱB,ȱȱR ȱ=ȱR ȱ=ȱH,ȱR ȱ=ȱR ȱ=ȱOHȱ O 1 2 4 3 O ȱȱ ȱȱȱgrevillinȱC,OȱȱR ȱ=ȱR ȱ=ȱR ȱ=ȱOH,ȱR ȱ=ȱHȱ O HO O ȱȱȱgrevillinȱD,ȱȱR1ȱ=ȱR3ȱ=ȱR4ȱ=ȱOH,ȱR2ȱ=ȱHȱ O O HO HO mushrooms belonging to the genus Suillus Gray. Norbadione A (46) is the dominating compound CH3 R OH S. grevillei (Klotzsch) Sing. andȱ S. luteus (L. ex Fr.) in the dyingȱ ȱ mushroom Pisolithus arrhizus (Scop.)ȱ S.36. F.ȱ spiromentin(Slippery Jack)ȱAȱȱ contain grevillins37.ȱcycloleucomelone, A, B and C, ȱRRauschertȱ=ȱHȱ ȱ(Pisolithus ȱȱȱȱȱȱ38. Alb.ȱthelephoric & Schwein,ȱacidȱȱ Scleroder- S. granulatus (L. ex Fr.) O. Kuntze ȱȱȱȱȱȱȱ(Weepingcyclovariegatin, Bolete) ȱRȱ=mataceae)ȱOHȱ where it occurs in amount of over 25% contains grevillins B, C and D, of which the major of the dry weight of the . Badione A (45) and 2 pigment is grevillin D (BeslR et al. 1974). several similar compoundsO- are minor components - The colourless,OOH but easily oxidisableOH 1,2,4-tri- (WinnerOO et al. 2004). O OH O hydroxybenzene1 and its derivatives commonly Oxidative coupling of two molecules of xerocomic R 3 R occur in mushrooms belongingR to the Gomphi- acid (39) yields bright yellow sclerocitrin (47) oc- O O diaceaeHO family and to the genus Suillus Gray. The HOcurring in the fruiting bodies of the common Earth oxidation products Oof 1,2,4-trihydroxybenzene Ball SclerodermaO citrinum Pers. ( Pers., ȱ ȱ ȱ include39.ȱatromentic the redȱacid, gomphilactoneȱR1ȱ=ȱR2ȱ=ȱR3ȱ=ȱH (ȱȱ43) and ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ the cor40.- ȱchinonmethidSclerodermataceae)ȱanionȱofȱxerocomic togetherȱacid, withȱRȱ= ȱnorbadioneHȱ A respondingȱȱȱȱȱȱxerocomic biphenyls.ȱacid,ȱR1ȱ=ȱH, VariegatorubinȱR2ȱ=ȱOH,ȱR3ȱ=ȱHȱ (44) and ȱȱȱȱȱȱ chinonmethid(46) as theȱanion mainȱof pigments,ȱvariegaticȱacid, whichȱRȱ=ȱ OHareȱ accompa- xerocomorubinȱȱȱȱȱȱgomphidicȱacid, (44ȱR)1 ȱ=exemplifyȱH,ȱR2ȱ=ȱR3ȱ =theȱOH redȱ pigments nied by xerocomic acid (39) and badione A (45) formedȱȱȱȱȱȱisoxerocomic from pulvinicȱacid,ȱR acids1ȱ=ȱOH, byȱR 2theȱ=ȱR 3secondȱ=ȱHȱ lactone (Winner et al. 2004). ringȱȱȱȱȱȱ variegaticproductionȱacid, (ȱBeslR1ȱ=ȱOH, & ȱBresinskyR2ȱ=ȱOH,ȱR3ȱ= ȱ1997).Hȱ Sclerocitrin is the main pigment of the lemon- High concentrations of radionuclides occurring in yellow coloured stalk base of the Peppery Bolete 3 2 R R OH the fruiting bodies of the Bay Bolete badiusO piperatus (Bull.) Bataille (Chalciporus OH HO OH (Fr.) Fr. (Boletus Fr., ) after the nuclear reac- Bataille, 1Boletaceae). It is accompanied by the sec- R torHO accident at Chernobyl have been ascribed to the ond yellow pigment chalcitrinO (48),O norbadione A 137 O complexation of O Cs by the so calledHO naphthalenoid (OH46), variegatic acid (O39) and variegatorubin (44) HO 4 pulvinic acids that occurO as their potassiumR salts inO (Winner et al. 2004). O the cap skin of this toadstool. Theȱ main compounds The decarboxylationȱȱȱȱȱȱȱȱȱ products of pulvinicȱ acids, are41. badioneȱ3ȇ,4ȇ,4Ȭtrihydroxypulvinone A (45) and norbadioneȱ A (4642.)ȱ grevillinthat areȱ Aȱ2,5-diarylcyclopentenones, ȱ ȱ 43.ȱgomphilactone appear inȱ fungi almost as responsible for the chocolate brownȱȱ and ȱȱȱgrevillin goldenȱB ȱ frequently as terphenylquinones. Typical examples yellow colours of cap skin of this boleteȱȱ and ȱȱȱgrevillin relatedȱC ȱ are chamonixin (49), involutin (49) and the more ȱȱȱgrevillinȱDȱ bolete species (Aumann et al. 1989). highly oxidised gyrocyanin (50) and gyroporin (50). O O O O O HO HO O O

O O O O HO HO HO HO O OH OH O O O HOOC HOOC HOOC HOOC R OH OH O HO O OH OH OH ȱȱȱ ȱȱȱ ȱ 44.ȱxerocomorubin,ȱRȱ=ȱHȱȱ ȱ45.ȱbadioneȱAȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱ46.ȱnorbadioneȱAȱ ȱȱȱȱȱȱvariegatorubin,ȱRȱ=ȱOHȱ

94 Czech J. Food Sci. Vol. 29, 2011, No. 2: 87–102

O

COOH OH OH O O H O HO HO O H H O H H O O HO O O HO

O HOOC HOOC O OH OH COOH

HO OH ȱȱ ȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ47.ȱsclerocitrinȱȱ ȱ ȱ 48.ȱchalcitrinȱȱ

They occur e.g. in severalHO families OH of Boletales, in the thatHO occursO in S. granulatus (L. exO Fr.) O.O Kuntze. R genera Chamonixia Rolland (Boletaceae), Its oxidationR products are responsible for the caps’ brown colour. Prenylated benzoquinones, corre- Opat. ()HO , Gyroporus Quél. (Gyroporaceae)OH HO , OH HO O O spondingO to 1,2,4-trihydroxybenzeneO -(mentioned Gray (Boletaceae), Melanogasterȱ Corda ȱ ȱ (Melanogasteraceae), Fr. (Paxillaceae) and above), mostly appear as meroterpenoids named 49.ȱchamonixin,ȱRȱ=ȱHȱ ȱȱ50.ȱgyrocyanin,ȱRȱ=ȱHȱȱ ȱ 51.ȱblueȱanionȱofȱgyrocyaninȱ several other families and genera. The pigments are boviquinones. Boviquinone-3 (2,5-dihydroxy- ȱȱȱȱȱȱȱinvolutin,ȱRȱ=ȱOHȱȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱgyroporin,ȱRȱ=ȱOHȱ responsible for the conspicuous deep brown and 3-farnesyl-1,4-benzoquinone) is biosynthesised bright blue colour reactionsOH observed when the by Chroogogompus rutilus (Schaeff.) O.K. Mill., fruiting bodies of mushroomsOH are bruised. Involutin Chroogomphus (Singer) O.K. Mill. (Gomphi- occurs in P. involutus (Batsch ex Fr.) Fr. (chamonixin diaceae), bovinoquinone-4 (2,5-dihydroxy-3-gera-O CH3 O COOH is a minor compound); chamonixin is a constituent nylgeranyl-1,4-benzoquinone,COOH 53) is an exampleOH of H C O CH CH CH CH OH OH O 3 3 3 O 3 3 OH O in C. caespitosa RollandO and gyrocyanin in G. cya- prenylated benzoquinones foundH in O HO H HO nescens (Bull. exO Fr.)OHO Quél. The colour changesHO of the (L.) Roussel. (Mühlbauer et al. 1998). The red O ȱ H latter mushroom are associated withO the Hrelated me- pigment tridentoquinoneH (54) is the main pigment H 52.ȱsuillinȱ O H H of S. tridenticusO H (Bres.) Singer, which is related tabolite of gyrocyanin, whichH is oxidised to the blue O O O HO O anion ( ) (FelingO et al. 2001; HansonO 2008b).HO HO to theO linear boviquinone-4 (53) from S. bovinus 51 O HO The prenylated compounds occur onlyO rarelyHOOC (L.) Roussel. InHO theOC mushroom, tridentoquinone H C O HOOCCH CH HOOC CH3 CH3 CH CH 3 3 O 3 H3C 3 3 in Boletales Obeing biosynthesisedO from 3,4-dihyOH - is Oaccompanied by several compounds of similarO OH H OH CH OH droxybenzoic acid (Besl3 & BresinskyOH 1997). HTheC structureOH (Lang et al. 2008). MushroomsCH3 of the OH COOH 3 aromatic ring oftenCOOH an additional farnesyl genus Rhizopogon Fr. (i.e. Rhizopogon pumilionum H C O HO HO 3 (Ade) Bataille), closelyO relatedH to the genusHO Suil- or geranylgeranylHO side-chain derived from the OH O CH3 ȱȱ lusO Gray, containCH3 rhizopogoneȱȱ ( ) as the mainO CH terpenoid pathway. Suillin (52) is an exampleȱ of ȱ ȱ 55 3 ȱ acetylatedȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ and47. prenylatedȱsclerocitrin 1,2,4-trihydroxybenzeneȱȱ ȱ47. scler ȱocitrin 48.ȱchalcitrinpigmentȱȱ (Lang et al48.. c2009).halcitrin ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ53.ȱboviquinoneȬ4ȱȱ 54.ȱtridentoquinoneȱ 55.ȱrhizopogoneȱ HO OH HO OH HO O O O HO RO O O R R R HO OH HO OH HO O HO OH HO OH HO O - O O - O O O O O O H ȱ ȱ ȱ H3COOC N 49. chamonixin, R = H 50. CHgyro3 cyanin, R = H 51. blue anion of gyrocyanin 49.ȱchamonixin,ȱRȱ=ȱHȱ H ȱȱ50.ȱgyrocyanin,ȱRȱ=ȱHȱȱ ȱ 51.ȱblueȱanionȱofȱgyrocyaninȱ involutin, R = OH CH3 gyroporin, R = OH ȱȱȱȱȱȱȱinvolutin,ȱRȱ=ȱOHȱȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱgyroporin,ȱRȱ=ȱOHȱ ȱ OH OH 56.ȱmelanocrocinȱ OH OH O CH3 CH3 H C CH CH 3 H3C CH3 3 3 H3C O CH3 CH3 CH3 CH3 H3C O CH3 CH3 CH3 CH3 O O CH CH H C CH 3 ȱ 3 3 3 CH3 52. suillin O 52.ȱsuillinȱ ȱ 57.ȱcanthaxanthinȱ 95 H3C CH3 CH3 CH3 CH3 H C CH CH H C CH CH CH3 CH3 CH CH3 3 3 3 3 3 O O H3C 3 3 O O O H O CH H CH 3 OH OH CH 3 OH OH H3C CH 3 OH H3C 3 OH H C O HOH C O 3 HO HO 3 HO O CH O CH O CH O CH O 3 CH 3 O CH 3 3 ȱ 3 ȱ ȱ 3 ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ53.ȱboviquinoneȬ4ȱȱ 53. boviquinone54.ȱtridentoquinone-4 ȱ 54. tridentoquinone 55.ȱrhizopogoneȱ 55. rhizopogone

O O O H O H H3COOC N CH3 H3COOC N H CH3 H CH3 CH3 ȱ 56.ȱmelanocrocinȱ 56. melanocrocin

O O H3C CH CH3C CH CHH3C CH3 3 3 H3C CH3 3 3

CH CH H3C CH3 CH CH H3C CH3 3 3 CH3 3 3 CH3 O O ȱ 57.ȱcanthaxanthinȱ 57. canthaxanthin O

COOH OH OH O O H O HO HO O H H O H H O O HO O O HO

O HOOC HOOC O OH OH COOH

HO OH ȱȱ ȱȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ47.ȱsclerocitrinȱȱ ȱ ȱ 48.ȱchalcitrinȱȱ

HO OH HO O O O R R

HO OH HO OH HO O O O O- ȱ ȱ ȱ 49.ȱchamonixin,ȱRȱ=ȱHȱ ȱȱ50.ȱgyrocyanin,ȱRȱ=ȱHȱȱ ȱ 51.ȱblueȱanionȱofȱgyrocyaninȱ ȱȱȱȱȱȱȱinvolutin,ȱRȱ=ȱOHȱȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱgyroporin,ȱRȱ=ȱOHȱ

OH OH

CH3

H3C O CH3 CH3 CH3 CH3

O Vol. 29, 2011, No. 2: 87–102 ȱ Czech J. Food Sci. 52.ȱsuillinȱ O O COOH OH COOHOH O O OH OH H O O HOO HO H C CH CH CH3 CH3 CHH CH 3 3 3 O HO H3C 3 3 O O O HO O H H H CH3 OH O OH CH O H H H H3C 3 OH H O O H O H HO O O H C HO O HO O 3 O HO O O HO HO HOOC O CH O HOOC O CH O CH 3 O 3 HOOC 3 ȱ OOH HOOC ȱ ȱ O OH OH ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ53.ȱboviquinoneȬ4ȱȱ 54.ȱtridentoquinoneOH ȱ 55.ȱrhizopogoneȱ COOH COOH OH Melanocrocin (56) is aH Ounique brilliant yellow HO Karst., the polyporeO Hwith a red-brown fruiting polyene pigment, with bound phenylalanine, iso- body (Bu’Lock et al. 1962), where it is accompa- O 47. sclerocitrin O 48. chalcitrin lated from theH subterranean fungus47. Melanogastersclerocitrin nied by bisnoryangonin48. chalc itrin(25), hypholomin B (58) broomeianusH COOC N that resemble trufflesHO (AulingerOH CH HO O O O 3 and3 the yellow pigment hispolon (26, R = CH3) H HO OH R HO O O O et al. 2001). CH3 (Ali et al. 1996). TheseR pigments also occur in R ȱ several mushroomsR of the HO OH HO OH HO O 56.ȱmelanocrocinȱ - HO O OH family,HO e.g. in InonotusO P. Karst.,OH OnniaHO P. KarstenO O O - 3 Cantharellales and Phellinus Quél.O species and in the genus HyO - 49. chamonixin, R = H O 50. gyrocyanin, R = H 51. blue anion of gyrocyanin pholoma (Fr.) P. Kumm. of the Strophariaceae 49. chainvolmounitin,xinR, R= =OHH H3C 50. gyrogyroporin,cyanin,RR==OHH 51. blue anion of gyrocyanin H C CH CH CH Carotenoids3 3 are3 not widespread3 involutin, in higherR = OH fungi as family (Agaricales).gyroporin, R Inoscavin= OH A, reported to be they are in plants; nevertheless,O theyH were isolated a free radical scavenger, isolated from the fruit- OH from several yellow pigmented CantharellusCHOH CH Juss.H 3Cing CH3 bodies of the mushroom P. xeranticus (Berk.) CH 3 3 (Cantharellaceae)3 species. The GoldenOH Pegler (Phellinus, Hymenochaetaceae) has been O CH3 ȱ C. cibarius Fr. pigment mixture was found to consist assigned the fusedCH3 styrylpyrone structure (59), mainly of β-carotene57. andȱcanthaxanthin alsoH3C presentO ȱ wereC lycopene,H3 C H3 whichC Hrelates3 inoscavinCH3 A closely to hispidin (25) H3C O CH3 CH3 CH3 CH3 α-carotene and two other carotenes,O probably the and thence to hypholomin B (58). γ- and δ-isomers or the xanthophylO canthaxanthin52. suilli n (57) that was found in the pink to red-orange52. Cinsuilli- n nabar Chanterelle C. cinnabarinus (Schwein.) Sch- 5 Polyporales wein. as the main pigment (Haxo 1950; Hanson H3C CH3 CH3 CH3 CH3 H C CH CH 2008b). Species within the order Polyporales are3 sapro- 3 3 H C CH O CH CH3O CH3 CH O CH 3 3 3 H H3C 3 3 CH3 O OH trophic and mostO OofH them wood-rotters. The PolyCH - O H3C H 3 OH CH3 OH OH CH poraceaeH3C are a family of such wood-decay fungi that3 OH H C O 4 HymenochaetalesHO contain3 pigments mostly derived from polyporic HO H C O HO 3 O CH HO O CH3 acids and terphenylquinones.3 The dark red poly- O CH3 O CH O CH O CH Styrylpyrone hispidin (25) was originally isolated3 poric acid (33), the parent3 compound of numerous 3 53. boviquinone-4 54. tridentoquinone 55. rhizopogone as the main constituent of the53. bplantoviquinone pathogen-4 terphenylquinones54. tridentoquin andone related compounds, is the 55. rhizopogone the Chaga Fungus (Bull.) P. major component of nidulans (Fr.)

O O H O O H H3COOC N CH3 H H3COOC N CH CH3 H 3 CH3 56. melanocrocin 56. melanocrocin

O H C O CH CH 3 H3C CH3 3 3 H C CH CH 3 H3C CH3 3 3

H C CH CH3 CH3 3 3 CH3 H C CH CH3 CH3 3 3 O CH3 O 57. canthaxanthin 57. canthaxanthin

96 Czech J. Food Sci. Vol. 29, 2011, No. 2: 87–102

O

CH3

O O O HO O O O HO HO O O HO HO OH OH OH OH 58. hypholomin B 59. inoscavin A

P. Karst. (Hapalopilus P. Karst.) amounting up The strikingOH O yellowish or orange-coloured fruit- OH to 43% of its dry weight. Betulinans A (60) and B ing HbodiesO of the wood-rottingOH O O (61) are two simple terphenylquinones recently Laetiporus sulphurous (Bull.) Murrill (LaetiporusO O H3CO O found in the plant pathogen Lenzites betulina (L.) Murrill),HO belonging to the Fomitopsidaceae family,

N NH2 Fr. (Lenzites Fr.) (Lee etO alCH.3 1996; Gill 1999). TheOCH 3 contains non-isoprenoid polyene known as laetiporic COOH labile 2,3,4-trihydroxycinnamylO alcohol is theO build- acid A (predominantlyHO occurring as the 7-OcisH -isomer, ing block of the purpurogallin (benzotropolone) 66) and 2-dehydro-3-deoxylaetiporic acid A (67) derivative fomentariol60. betulinan A (62) produced61. bybetulinan the plantB as the 6main2. fomen pigmentstariol (Davoli et al63. .2005).cinnabarinic acid pathogen, the Tinder Fungus, Fomes fomentarius O (L.) Fr. of the genus Fomes (Fr.) Fr. (OPolyporaceae)CH3 OH HO (Steglich & Zechlin 1978). 6 Russulales OH Pigments with a phenoxazineO chromophore O widely occur in and toO a smaller extent Apart from carotenoids, only a few lower ter- H3CO R in higher fungi of the family. The penoids areO coloured compounds. The colour of OCH3 cinnabar red pigmentHO of the wood-rotting fungus HOthe injured flesh as well as of the latex of several cinnabarinus (Jacq.) P. Karst. (Pycnopo- Pers. () species own to their rus P. Karst.) is 2-amino-364. corticin AH-phenoxazin-3-one-65. xylcolourerythrin changes, R = H to sesquiterpenoids. The young 1,9-dicarboxylic acid named cinnabaric acid (63). penifruitingophorin body, R = OH of L. deliciosus (L. ex Fr.) S. F. Gray It is biosynthesized from 3-hydroxyanthranilic acid is first carrot-coloured, but slowly turns green H3C O units formed as the tryptophan transformation on aging. The young L. deterrimus Gröger fruit- products (Gripenberg 1958a). ing body CisH 3pale peach coloured and becomes The Crust Fungus caerulea (Lam.) apricot coloured with a greyish green shades on Kuntze (Terana Adans.) of the aging. On cutting, L. deterrimus yields saffron or O family containsHOOC corticins A (64), B and C as the orange coloured latex. These colour changes are CH colourless quinhydronesOH that are oxidized to the due to sesquiterpenoids3 derived from azulene. The O O indigo-blue pigment in hymenal surface (Briggs compounds Oresponsible for these colour changes HO 66. laetiporic acid A et al. 1976). The saprophyticO fungus in L. deliciosusO areO the blue lactarazulene, i.e. HO HO sanguine (Fr.) Pouzar (Phanerochaete P. Karst.) con- H1,4-dimethyl-7-(1-methylethenyl)azulene3C O (68), and O O tains xylerythrin- pigments ( ). Their struc- HO 65 HOlipophilic red-violet lactaroviolin, i.e. 4-methyl- tures suggest a biosynthesis from threeOH molecules of 7-(1-methylethenyl)azulene-1-carbaldehydeCH3 OH (68). arylpyruvic acids. The wood infectedOH by this fungus is However, neither lactarazuleneOH nor lactaroviolin ȱ ȱ ȱ then coloured dark red by its (Gripenberg occurs as such. The orange colour of the fungus 1965ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ; Gripenberg58.ȱhypholomin & MartikkalaȱBȱȱ ȱ 1970). ȱ ȱis due ȱȱȱȱȱ59. toȱinoscavin the labileȱAȱ and easily oxidizable dihy-

OH O OH HOOC HO OH O O O O H3CO O 67. 2-dehydro-3-deoxylaetiporic acidHO A

OCH OCH N NH2 H C3 3 H3C H C 3 3 COOH O O HO OH ȱ ȱ ȱ ȱ ȱȱȱȱ60.ȱbetulinanȱAȱȱ ȱȱȱȱȱȱ61.ȱbetulinanȱBȱ ȱȱȱȱȱȱȱȱ62.ȱfomentariolȱȱ ȱ ȱȱ63.ȱcinnabarinicȱacidȱ CH2 CH R RO CH2 O 3 O H3C H3C H C OCH3 3 OH HO 97 lactarazulene, R = CH3 dihydroazulen-1-ol (R = H) 1,3,5,7(11),9-pentaenyl-14-guaianal 68. O OH 69. 70. lactaroviolin, R = CH=O O O H3CO R O OCH3 HO HO ȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ64.ȱcorticinȱAȱȱ ȱ ȱ 65.ȱxylerythrin,ȱRȱ=ȱHȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱpeniophorin,ȱRȱ=ȱOHȱ

H3CO

CH3

HOOC OH ȱ 66.ȱlaetiporicȱacidȱAȱ

H3C O

CH3

HOOC ȱ 67.ȱ2ȬdehydroȬ3ȬdeoxylaetiporicȱacidȱAȱ

H C H3C 3 H3C

CH2 CH R RO CH2 O 3 H C H3C H C 3 ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ 3 ȱ

68.ȱlactarazulene,ȱRȱ=ȱCH3ȱ ȱȱȱȱȱȱȱȱȱ69.ȱdihydroazulenȬ1Ȭolȱ(Rȱ=ȱH)ȱ 70.ȱ1,3,5,7(11),9ȬpentaenylȬ14Ȭguaianalȱ ȱȱȱȱȱȱlactaroviolin,ȱRȱ=ȱCH=Oȱ O

CH3

O O O HO O O O HO HO O O HO HO OH OH OH OH ȱ ȱ ȱ

O ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ58.ȱhypholominȱBȱȱ ȱ ȱ ȱ ȱȱȱȱȱ59.ȱinoscavinȱAȱ CH O 3 OH O OH O CH O HO OH O 3 OO HO O O O H CO O O O O 3 O O HO HO HO HO O O O O O N NH HO HO OCH OCH 2 HO 3 HO 3 O O COOH OH O O OH HO OH HO HO ȱ ȱ ȱ ȱ OH OH OH ȱ ȱ OH ȱ ȱȱȱȱ60.ȱbetulinanȱAȱȱ ȱȱȱȱȱȱ61.ȱbetulinanȱBȱ ȱȱȱȱȱȱȱȱ62.ȱfomentariolȱȱ ȱ ȱȱ63.ȱcinnabarinicȱacidȱ OH OH ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ58.ȱhypholominȱ ȱ ȱBȱȱ ȱ ȱ ȱ ȱȱȱȱȱ59.ȱinoscavinȱ ȱAȱ O ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ58.ȱhypholominȱBȱȱ ȱ ȱ ȱ ȱȱȱȱȱ59.ȱinoscavinȱAȱ OCH3 OH O HO OH OH HO OH O OH O O OH O OH OO O H3CO HOO OH O O HO O H3CO O R O H3CO O O N NH2 O OCH3 HO OCH3 OCH3 HO O O HO COOH CH HO N NH2 OH OCH3 OCH3 3 ȱ ȱ Vol. 29, 2011, No. 2: 87–102 ȱ ȱ CzechCOOHȱ J. Food Sci. ȱ O O O ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱHO 64.ȱcorticinOȱAȱȱ ȱ ȱOH 65.ȱxylerythrin,ȱRȱ=ȱHȱ ȱȱȱȱȱ 60.ȱbetulinanȱAȱȱ ȱȱȱȱȱȱȱ 61.ȱbetulinanȱBȱO ȱȱȱȱȱȱȱȱ62.ȱ ȱfomentariolȱȱ ȱ ȱȱȱ 63.ȱcinnabarinicȱacidȱ HO ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱpeniophorin,ȱRȱ=ȱOHȱ O O O ȱȱȱȱ60.HOȱbetulinanȱAȱȱ ȱȱȱȱȱȱ61.ȱbetulinanȱBȱ ȱȱȱȱȱȱȱȱHO62.ȱfomentariolȱȱ ȱO ȱȱ63.ȱcinnabarinicȱacidȱ O OCH3 O H3CO OH HO HO OHO OCH 3 OH OH OH OH O HO CH3 OH O OH O OH ȱ ȱ ȱ H CO O 3 O R ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ58.ȱhypholominȱBȱȱ ȱ ȱ ȱ ȱȱȱȱȱ59.ȱinoscavinȱAȱ O O OCH3 H3CO HOOC HO R HO O OH OCH3 ȱ OH O ȱ ȱ HO HO OH ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ64.ȱcorticinȱAȱȱ ȱHO ȱ 65.ȱxylerythrin,OH ȱRȱ=ȱHȱ O ȱ O ȱ 66.ȱlaetiporicȱacidȱAȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱpeniophorin,ȱRȱ=ȱOHȱ O O ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱH3CO 64.ȱcorticinȱAȱȱ ȱO ȱ 65.ȱxylerythrin,ȱRȱ=ȱHȱ HO H C O ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱpeniophorin,ȱRȱ=ȱOHȱ 3 H3CO N NH2 OCH3 OCH3 CH O O H3CO COOH 3 HO CH OH ȱ ȱ ȱ 3 ȱ ȱȱȱȱ60.ȱbetulinanȱAȱȱ ȱȱȱȱȱȱ61.ȱbetulinanȱBȱ ȱȱȱȱȱȱȱȱ62.CHȱfomentariol3 ȱȱ ȱ ȱȱ63.ȱcinnabarinicȱacidȱ HOOC O OCHOH3 HOOC OH HO ȱ OH HOOC O OH 66.ȱlaetiporicȱacidȱAȱ ȱ ȱ O ȱ2ȬdehydroȬ3ȬdeoxylaetiporicȱacidȱAȱ 66.OȱlaetiporicȱacidȱAȱ 67.H C O H3CO R 3 O OCH 3 H C O H C H3C H C HO 3 3 3 droazulen-1-ol ( , R=H) or to their stearates,HO uvidin A and B (CH3) illustrate the broad variety of 69 ȱ ȱ 71 69, R = CO[CH ] CH . Recently, three other redCH compounds found in L. uvidus (Fr.) Fr. Drimane ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ64.ȱcorticin2 16ȱAȱȱ3 ȱ ȱ 65.ȱxylerythrin,3 ȱRȱ=ȱHȱ azulene pigments have been isolated from the sesquiterpenoids like drimenol (72) and uvidins ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱpeniophorin,ȱRȱ=ȱOHȱ CH2 CH fruiting bodies of L. deliciosus being 7-acetyl-4- haveR so far been found only ROin L. uvidus,CH which2 O 3 H C H C 3 3 H3C methylazulene-1-carbaldehyde, 7-(1,2-dihydroxy-H3COhas a white latex rapidlyȱ ȱ turning violet on expoȱ- ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ȱ 1-methylethyl)-4-methylazulene-1-carbaldehyde sure to the air. HOOC 68.ȱlactarazulene,ȱRȱ=ȱCH3ȱ ȱȱȱȱȱȱȱȱȱ69.ȱdihydroazulenȬ1Ȭolȱ(Rȱ=ȱH)ȱ 70.ȱ1,3,5,7(11),9ȬpentaenylȬ14Ȭguaianalȱ ȱ and 7-acetyl-4-methylazulene-1-carboxylic acid ȱȱȱȱȱȱlactaroviolin,IntactCH3 fruitingȱRȱ=ȱCH=O bodiesȱ of Lactarius fuliginosus HOOC (Xang et al. 2006; Zhou & Liu67. ȱ22010).Ȭdehydro TheȬ3Ȭdeoxylaetiporic red ȱ(Krapf)ȱacid Fr. ȱandAȱ L. picinus Fr. contain the isoprenoid pigment 1,3,5,7(11),9-pentaenyl-14-guaianal67.ȱ2ȬdehydroȬ3ȬdeoxylaetiporicȱacidȱA ȱ(70) quinol stearate of 4-methoxy-2-(3-methylbut-2- HOOC H C H3C was found in L. sanguifluus3 (Paulet) Fr., the li- enyl)phenol (73). The pink-red and acridH3C OH H C H3C pophilic3 pigment 1-hydroxymethyl-4-methyl- taste thatȱ develops when Hthe3C toadstool is bruised 7-(1-methylethenyl)azulene66.ȱlaetiporic stearate;ȱacidȱAȱ 68, R = are due to its hydrolysis followed by oxidation to CH2 CH CH2OCO[CH2]16CH3, is Rresponsible for the bril- ROa variety ofCH red2 benzofurans and chromenesO (De 3 H C H3C O H3C liant blue colour CHof2 the Indigo Milk3 Cap L. indigo Bernardi et al. 1992). CH H3C R RO ȱ ȱ CH2 ȱO ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ3 ȱ (Schwein.) Fr. (native to America and Asia and The pale green aminobenzoquinone blennione H3C H3C H C 68.ȱlactarazulene,ȱRȱ=ȱCH3ȱ ȱȱȱȱȱȱȱȱȱ69.ȱCHdihydroazulenȬ1Ȭolȱ(Rȱ=ȱH)ȱ 70.3 ȱ1,3,5,7(11),9ȬpentaenylȬ14Ȭguaianalȱ also reported from southernȱ ȱ ) (Harmonȱ 3( ȱ74) occurs ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ in the fruit bodies of theȱ common ȱȱȱȱȱȱlactaroviolin,ȱRȱ=ȱCH=Oȱ 68.etȱ lactarazulene,al. 1980; AyerȱRȱ=ȱ CH& 3Browneȱ ȱȱȱȱȱȱȱȱȱ69.ȱdihydroazulen 1981; KoulȬ 1etȬol alȱ(R. ȱ=ȱH)toadstool,ȱ 70. theȱ1,3,5,7(11),9 Slimy ȬMilkcappentaenyl Ȭ14LactariusȬguaianalȱ blen- ȱȱȱȱȱȱ1985;lactaroviolin, De RosaȱR ȱ&=ȱCH=O De Stefanoȱ 1987). nius (Fr.) Fr. It is probably biosynthesized using The milky juice of L. scrobiculatus (Scop.) Fr. 3,6-dihydroxyanthranilic acid units (Spiteller & turns rapidly from white to yellow. A range of Steglich 2002). Biosynthetically closely related to lactaraneHOOC and secolactarane sesquiterpenoids, bennione is the red pigment lilacinone (75), which ȱ analogues of the above azulenes, have been iso- is responsible for the violet colour of Lactarius lated (Bosetti67.ȱ2 Ȭetdehydro al. 1989).Ȭ3Ȭdeoxylaetiporic The structuresȱacidȱA ȱof lilacinus (Lasch) Fr. (Spiteller et al. 2003).

H C H3C 3 H3C

CH2 CH R RO CH2 O 3 H C H3C H C 3 ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ 3 ȱ

68.ȱlactarazulene,ȱRȱ=ȱCH3ȱ ȱȱȱȱȱȱȱȱȱ69.ȱdihydroazulenȬ1Ȭolȱ(Rȱ=ȱH)ȱ 70.ȱ1,3,5,7(11),9ȬpentaenylȬ14Ȭguaianalȱ ȱȱȱȱȱȱlactaroviolin,ȱRȱ=ȱCH=Oȱ

98 Czech J. Food Sci. Vol. 29, 2011, No. 2: 87–102

OH OH OH OCH OH OCH3 H C 3 H C 3 CH H3C 3 CH 3 H3C CH3 3 CH3 O O CH3 R CH3 R H H H H H3C CH3 O H C CH OH CH3 H3C CH3 O H C CH3 3 OH CH ȱ ȱ ȱ ȱ 3 3 ȱȱ ȱ ȱ ȱ 3ȱ ȱ 71.ȱuvidin71.ȱuvidinȱA,ȱRȱȱ=A,ȱHȱRȱȱ=ȱHȱ ȱ ȱ ȱȱ72.ȱdrimenol ȱȱ72.ȱdrimenolȱȱ ȱȱȱ ȱ ȱ 73.ȱ473.Ȭmethoxyȱ4ȬmethoxyȬ2Ȭ(3Ȭ2ȬmethylbutȬ(3ȬmethylbutȬ2Ȭenyl)phenolȬ2Ȭenyl)phenolȱ ȱ ȱȱȱȱȱȱuvidinȱȱȱȱȱȱuvidinȱB,ȱRȱ=ȱB,ȱOHȱRȱȱ=ȱOHȱ

O HO O HO N OCH O H2N OH N OCH OHO 3 H2N OH OH OH OCH 3 OCH 3 OHOCH OCH H N COOH 3 3 3 H N H32C COOH H C 2 CH H3C 3 H3C 3 HOOC CH3CH3 N CH HOOC N NH2 3 N O H NH2 N HOOC NH HO O CH HOOC NH 2 O O 3 CH3 R 2 O H OH O R O O COOH O OH OH O H H O COOH H O OH H3C CH3 ȱ CH ȱOH ȱ CH ȱ O ȱ H3CH3CHC 3 3 O H C CHȱ3 ȱ 3 OHȱ CH3 ȱ ȱ ȱȱ ȱ ȱ ȱ 3 ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ74.ȱblennione74.ȱblennioneȱ ȱ 75.ȱlilacinone75.ȱlilacinoneȱȱȱȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱ76. ȱȱȱȱȱȱȱȱȱnecatarone76.ȱnecataroneȱ ȱ 71.ȱuvidinȱA,ȱRȱ=ȱHȱ ȱ71. ȱȱ72.ȱuvidinȱdrimenolȱA,ȱRȱȱȱ=ȱH ȱ ȱ ȱ ȱȱ72.73.ȱȱdrimenol4ȬmethoxyȱȱȬ2Ȭ ȱ(3Ȭmethylbut73.ȱ4ȬȬ2methoxyȬenyl)phenolȬ2Ȭ(3ȬȱmethylbutȬ2Ȭenyl)phenolȱ ȱȱȱȱȱȱuvidinȱ2B,ȱRȱ=ȱOHȱ ȱȱȱȱȱȱuvidinȱB,1 ȱRȱ=ȱOHȱ 2 R 1 R R R OH N N N N OH OCH An alkaloidal pigment necatarone (76O), its de- batrellaceae), whichO included3 HO e.g. the pig- HO H C 3 CH 1 2 H3C N N hydrodimerOCH 3(O77, 3R = R = OH) prevailingH2N OCHCH inO3 aged mentOH grifolinoneH2N B (80), the redOH ketone albatrellin 3 OCH3 OCH O 3 H2N N COOH HNN COOH fruiting Nbodies and the 10-deoxydehydrodimerN 2 (81) and a variety of relatedCH compounds3 of the R 1 2 HOOC N HOOC N ( , R =H H, R = OH) are the principalH pigments mushroomNH2 A. confluens (Alb. &N Schwein.)NH2 Kotl. 77 H H N H3C CH3 O O OH HO HO C CH OH CH3 HOOC O OHNH HO2 O HOOC3 3 O NH O O O of the green-brownȱ flesh ȱ and cap skin ofȱ Lacta-ȱO 2 ȱ& Pouzar ȱ (Yang et al. 2008). ȱ OH O ȱ O COOH O O O COOHOH rius turpis (Weinm.) Fr.ȱ (Fugmann etOH al.O 1984, The Orangeȱ Tooth ȱ aurantiacumȱ O OH 71.ȱuvidinȱȱȱȱȱA,77.ȱRȱnecataroneȱ=ȱHȱȱdehydrodimer ȱ ȱȱ72.ȱdrimenolȱ ȱȱ ȱ ȱ ȱ 73.ȱ4ȬmethoxyȬ2Ȭ(3ȬmethylbutȬ2Ȭenyl)phenolȱȱ ȱ ȱ Klamannȱȱȱȱ77.ȱnecatarone et alȱdehydrodimer. 1989). ȱ (Batsch) P. Karst. (Hydnellum P. Karst., Peniophora- ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱuvidin74.ȱȱB,blennioneȱRȱ=ȱOHȱȱ ȱȱȱȱȱȱȱȱȱȱ74.ȱblennione75.ȱlilacinoneȱ ȱȱ ȱ ȱ75.ȱlilacinone ȱȱȱȱȱȱȱȱ76.ȱȱȱnecatarone ȱȱ ȱ ȱȱȱȱȱȱȱȱ76.ȱnecataroneȱ OCH OH OchroleucinsOCH are the main3 pigments of the fruit- ceae) colourOH is derived from the terphenylquinone 3 HO ing 2bodies of the Common Yellow 2Russula,1 O atromentin.1 The 3,6-dibenzoylatromentin, named R O RR CH R O O CH 2 O N OCH3NO N OH H2N2 OH ochroleuca Pers. and R.OH viscida Kudrna (NRussula aurantiacin,N OCH3 was first isolated as a dark red pig- H N COOH CH Pers.,2 Russulaceae). TheH labile yellowCH ochroleucin3 ment from this mushroom and subsequentlyCH from H2C H 3 H2C 2 H2C OCH HOOC N H2C O CH2 OCH 3 NH2 O N A (78) is rapidly transformed3 O to the stableH red various Hydnellum species (Gripenberg 1956; N CH O N N O N CH O O CH HOOC CH 3 NH2 O 3 O O CH 3 ochroleucin3 B (79) (Sontag et al. 2006).ȱ O GripenbergCH3 1958b). Aurantiacin3 is accompaniedȱ OH O ȱ O COOH Oȱ OH DimericO meroterpenoid OH78.ȱ HOochroleucinȱ O pigmentsȱAȱ haveO been OH HO withO the correspondingȱ79.ȱochroleucin ȱ leucoformȱBȱ dihydroauranȱ - 78.ȱochroleucinȱAȱ ȱ 79.ȱochroleucinȱBȱ ȱȱȱȱȱȱȱȱȱȱreported74.ȱblennione fromȱ the Gray species75.ȱlilacinone (Al- ȱȱtiacin and ȱ thelephoricȱ ȱ ȱȱȱȱȱȱȱȱacid.76.ȱnecataroneȱ O O ȱȱȱȱ77.ȱnecataroneȱdehydrodimerO ȱ ȱȱȱȱ77.ȱnecataroneȱdehydrodimerȱ O 2 H C OH 1 H C OH R H C 3 OH R H C 3 OH 3OCH OH3 N 3 N OCH3 OH CH CH O CH 3 O CH 3 O 3 O O 3 O CH2 O CH O OH CH CH 2 O 3 3 CHOH3 O CH3 CH3 O CH3 H C O CH3 CH3 CH3 H C O CH3 CH3 O CH H C 3 CH3 OH H C 3 CH3 OH 3 3 N CH3 N OHCH 3 CH OH CH H 3 CH3CH 3 H2C 3 H C H H2C 3 H C CH2 CH CH3 2 CH3 2 2 OCH3 OCH3 O O O OH HOO O O O O CH O CH3 CH3 CH3 CH3 3 O CH3 HOȱ CH HOȱ CH HOȱ CH 3 ȱ HO CH 3 ȱ 3 ȱȱ ȱȱ 3 ȱ ȱ ȱȱȱȱ77.ȱnecatarone78.ȱȱochroleucindehydrodimerȱAȱ ȱ 78.ȱochroleucinȱAȱ 79.ȱochroleucinȱBȱ 79.ȱochroleucinȱBȱ 80.ȱgrifolinone80.ȱgrifolinoneȱBȱ ȱBȱ 81.ȱalbatrellin81.ȱalbatrellinȱ ȱ OCH3 O O OH O O H C OH H3C H3C 3 H3C O OHH3C OH H3C OH H C O HOH3C OH O OCH OH O O 3 O O OH H3C 2 O O H3C OH H3C N CH3 H C N CH3 N CH3 3 N CH O O CH3 O CH3 3 CH3 CH OO O H C OO CH O O 3 OO O CH3 + 3OO CH O 3 + H C H + H3C CH3 + 2 N CHH3 2C 2 N CH3 OCH O CH3 N CH3 CH3 CH O CH O CH O CH CH CH O CHCH3 O CH CH O CH H C 3 H C - 3 H C 3 3 3 3 N 3 - 3 3 3 3 3 HO CH3 OH 3 - O O OH CH 3 OH HO CH OHH3C - O O OH CH HO O O O OH 3 O 3 CH 3 OH CH3 CH CH CH3 HOCH O 3 O O OH 3 ȱ 3 3 ȱ CH3 HO OH HO OH HO OH 78.ȱochroleucinȱAȱ ȱ ȱ 79.ȱochroleucinHO ȱBȱ OH ȱ HO CH ȱ ȱ ȱ 3 HO CH3 HO CH3 HO CH3 ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ82.ȱsarcoviolin82.ȱsarcoviolinȱ΅ȱȱ ȱ΅ȱȱ ȱȱ 83.ȱsarcodonin83.ȱsarcodoninȱȱȱ΅ȱ ȱ΅ȱ ȱ ȱ O O ȱ 80.ȱgrifolinoneȱBȱ 80.ȱgrifolinoneȱBȱ 81.ȱalbatrellinȱ 81.ȱalbatrellinȱ ȱ H3C OH H3C OH ȱ ȱ O H3C CH3 H C O H C CH3 O OH 3 O OH 3 O OH H3C O O O O O OH H3C H C H C CH N CH CH3 3 N CH 3 N CH 99 H3C O 3 3 CH3 O 3 CH3 CH3 O 3CH3 N CH3 H3C CH H C OO 3 OOH OO 3 O OOCH3 CHOHO OO CH O + + H3C 3 + H3C 3 + CH3 CH CH N 3 3N CH3 N CH3 N CH3 - - - HO O OHOOH HOO O OH O OHOOH O O- OH

HO CH3 HO CH3 HO OH HO OHȱȱ HO OH HO ȱ OH ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ82.ȱ80.sarcoviolinȱgrifolinoneȱ΅ȱȱȱBȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ82.ȱsarcoviolinȱ΅ȱȱ 83.81.ȱsarcodoninȱalbatrellinȱ΅ȱȱ 83.ȱsarcodoninȱ΅ȱ

ȱ H C 3 O ȱ OH H3C O O O OH H3C N CH H3C ȱ ȱ 3 N CH3 OO O OO CH O + H3C 3 + N CH3 N CH3 - HO O O OH HO O O- OH

HO OH HO OH ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ82.ȱsarcoviolinȱ΅ȱȱ 83.ȱsarcodoninȱ΅ȱ

ȱ

ȱ OH OH OCH3 H C 3 CH H3C 3 CH3 O CH3 R H H H3C CH3 O H C CH OH CH ȱ ȱ 3 3 ȱ ȱ ȱ 3 ȱ 71.ȱuvidinȱA,ȱRȱ=ȱHȱ ȱ ȱȱ72.ȱdrimenolȱȱ ȱ ȱ 73.ȱ4ȬmethoxyȬ2Ȭ(3ȬmethylbutȬ2Ȭenyl)phenolȱ ȱȱȱȱȱȱuvidinȱB,ȱRȱ=ȱOHȱ

O HO N OCH3 O H2N OH OCH3 H2N COOH HOOC N NH H 2 N HOOC NH2 O O O OH O O COOH O OH ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱ74.ȱblennioneȱ 75.ȱlilacinoneȱȱ ȱ ȱ ȱȱȱȱȱȱȱȱ76.ȱnecataroneȱ

R 2 R1 N N

N N

O OH HO O ȱ ȱȱȱȱ77.ȱnecataroneȱdehydrodimerȱ

OCH3 OH

O CH O OH 2 CH H 3 H2C H2C CH2 OCH3 O O O CH CH O CH3 3 ȱ 3 ȱ 78.ȱochroleucinȱAȱ 79.ȱochroleucinȱBȱ

O O

H3C OH H3C OH

O CH3 O CH3

O CH CH CH O CH CH O CH H C 3 3 3 H C 3 3 3 3 CH3 OH 3 CH3 OH CH3 CH3

HO CH3 HO CH3 Vol. 29, 2011, No. 2: 87–102 ȱȱ Czech J. Food Sci. ȱ 80.ȱgrifolinoneȱBȱ 81.ȱalbatrellinȱ

H C 3 O OH H3C O O O OH H3C H3C N CH3 N CH3 OO O OO CH O + H3C 3 + N CH3 N CH3 - HO O O OH HO O O- OH

HO OH HO OH ȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱ82.ȱsarcoviolinȱ΅ȱȱ 83.ȱsarcodoninȱ΅ȱ

ȱ 7 Bosetti A., Fronza G., Vidari G., Vita-Finzi P. (1989): ȱ Norlactarane and lactarane sesquiterpenes from Lacta- The fruiting bodies of leucopus (Pers.) rius scrobiculatus. Phytochemistry, 28: 1427–1431. Maas Geest. & Nannf. (Sarcodon Quél. ex P. Karst., Briggs L.H., Cambie R.C., Dean I.C., Hodges R., Ingram ) contain a range of compounds related W.B., Rutledge P.S. (1976): Chemistry of fungi. XI. Cor- to terphenylquinones. The main pigments are the ticins A, B, and C, benzobisbenzofurans from Corticium unusual nitrogenous violet terphenylquinols sar- caeruleum. Australian Journal of Chemistry, 29: 179–190. coviolins, exemplified by sarcoviolon α (82), which Bu’Lock J.D., Leeming P.R., Smith H.G. (1962): Pyrones. are accompanied by their colourless precursors Part II. Hispidin, a new pigment and precursor of a fungus sarcodonins (83) and structurally related com- “lignin”. Journal of Chemical Society, 2085–2089. pounds (Geraci et al. 2000; Cali et al. 2004). Cali V., Spatafora C., Tringali C. (2004): Sarcodon- ins and sarcoviolins, bioactive polyhydroxy-p-terphenyl pyrazinediol dioxide conjugates from fruiting bodies of Reference s the Basidiomycete Sarcodon leucopus. European Journal of Organic Chemistry, 2004: 592–599. Ali N.A.A., Jansen R., Pilgrim H., Liberra K., Linde- Calìa V., Spatafora C., Tringali C. (2003): Polyhydroxy- quist U. (1996). Hispolon, a yellow pigment from Inono- p-terphenyls and related p-terphenylquinones from fungi: tus hispidus. Phytochemistry, 41: 927–929. Overview and biological properties. Studies in Natural Aumann D.C., Cloth G., Steffan B., Steglich W. (1989). Products Chemistry, 29: 263–307. CompIexation of cesium 137 by the cap pigments of the Davoli P., Mucci A., Schenetti L., Weber R.W.S. (2005): bay boletus (Xevocomus badius). Angewandte Chemie, Laetiporic acids, a family of non-carotenoid polyene pig- International Edition English, 28: 453–454. ments from fruit-bodies and liquid cultures of Laetiporus Aulinger K., Besl H., Spiteller P., Spiteller M., Steg- sulphureus (Polyporales, Fungi). Phytochemistry, 66: lich W. (2001): Melanocrocin, a polyene pigment from 817–823. Melanogaster broomeianus (Basidiomycetes). Zeitschrift De Angelis F., Arcadi A., Marinelli F, Paci M., Botti für Naturforschung, 56C: 495–498. D., Pacioni G., Miranda M. (1996): Partial structures of Ayer W.A., Browne L.M. (1981): Terpenoid metabolites truffle melanins. Phytochemistry, 43: 1103–1106. of mushrooms and related basidiomycetes. Tetrahedron, De Bernardi M., Vidari G., Vita Finzi P., Fronza G. 37: 2197–2248. (1992): The chemistry of Lactarius fuliginosus and Lac- Bayer E., Kneifel H. (1972): Isolation of amavadin, a tarius picinus. Tetrahedron, 48: 7331–7344. vanadium compound occurring in . De Rosa S., De Stefano S. (1987): Guaiane sesquiter- Zeitschrift für Naturforschung, 27B, 207–210. penes from . Phytochemistry, 26: Besl H., Bresinsky A. (1997): Chemosystematics of Suil- 2007–2009. laceae and Gomphidiaceae (suborder Suillineae). Plant Drbal K., Kalač P., Šeflová A., Šefl J. (1975): Obsah Systematics and Evolution, 206: 223–242. stopových prvků železa a manganu v některých druzích Besl H., Bresinsky A., Geigenmiiller G., Herrmann, jedlých hub. Česká mykologie, 29: 110–114. R., Steglich W. (1989): Pilzfarbstoffe, 61 Flavomentine Edwards R.L., Gill M. (1973): Constituents of the higher und Spiromentine, neue Terphenylchinon-Derivate aus fungi. Part XIV. 3',4',4-Trihydroxypulvinone, thelephoric Paxillus atrotomentosus und P. panuoides (Boletales). acid, and novel pyrandione and furanone pigments from Liebigs Annalen der Chemie: 803–810. Suillus grevillei (Klotsch) Sing. [Boletus elegans (Schum. Besl H., Michler I., Preuss R., Steglich W. (1974): Pig- per Fries)]. Journal of the Chemical Society, Perkin Trans- ments of fungi, XXII Grevillin D, the main pigment of actions, 1: 1921–1929. Suillus granulatus, S. luteus and S. placidus (Boletales). Feling R., Polborn K., Steglich W., Mühlbacher J., Zeitschrift für Naturforschung, 29C: 784–786. Bringmann G. (2001): The absolute configuration of

100 Czech J. Food Sci. Vol. 29, 2011, No. 2: 87–102

the mushroom metabolites involution and chamonixin. Jägers E., Hillen-Maske E., Steglich W. (1987): Pilz- Tetrahedron, 57: 7857–7863. farbstoffe, 54. Inhaltsstoffe von Fugmann B., Steffan B., Steglich W. (1984): Necatarone, (Basidiomycetes): Klärung der chemischen Natur von an alkaloidal pigment from the gilled toadstool Lactarius „Leucomelon“ and „Protoleucomelon“. Zeitschrift für necator (Agaricales). Tetrahedron Letters, 25: 3575–3578. Naturforschung, B: Chemical Sciences, 42: 1349–1353. Geraci C., Neri P., Paterno C., Rocco C., Tringali C. Kalač P., Wittingerová M., Stašková I. (1989): Obsah (2000): An unusual nitrogenous terphenyl derivative from sedmi biogenních stopových prvků v jedlých houbách. fruiting bodies of the Basidiomycete Sarcodon leucopus. Potravinářské vědy, 7: 131–136. Journal of Natural Products, 63: 347–351. Klamann J.-D., Fugmann B., Steglich W. (1989): Alka- Gill M. (1994): Pigments of fungi (Macromycetes). Natural loidal pigments from Lactarius necator and L. atroviridis. Products Reports, 11: 67–90. Phytochemistry, 28: 3519–3522. Gill M. (1996): Pigments of fungi (Macromycetes). Natural Klostermeyer D., Knops L., Sindlinger T., Polborn Products Reports, 13: 513–528. K., Steglich W. (2000): Novel nebzotropolone and Gill M. (1999): Pigments of fungi (Macromycetes). Natural 2H-furo[3,2b]benzopyran/2-one pigments from Tricholo- Products Reports, 16: 301–317. ma aurantium (Agaricales). Europen Journal of Organic Gill M. (2003): Pigments of fungi (Macromycetes). Natural Chemistry, 4: 603–609. Products Reports, 20: 615–639. Knight D.W., Pattenden G. (1976): Synthesis of the pul- Gill M., Morgan P.M. (2001): New fungal anthraquinones. vinic acid pigments of and fungi. Journal of Chemi- ARKIVOC, Part (vii): 145–156. cal Society, Chemical Communications: 660–661. Gill M., Steglich W. (1987): Pigments of fungi (Macro- Koul S.K., Taneja S.C., Ibraham S.P., Dhar K.L., Atal mycetes). Fortschritte der Chemie organischer Natur- C.K. (1985): A C-formylated allene from Lactarius deter- stoffe, 51: 1–317. rimus. Phytochemistry, 24: 181–182. Gripenberg J. (1956): Fungus pigments. IV. Auratiacin, the Kuhnt D., Anke T., Besl H., Bross M., Herrmann R. pigment of Hydnum aurantiacum Batsch. Acta Chemica Mocek U., Steffan B., Steglich W. (1990): Scandinavica, 10: 1111–1115. from Basidiomycetes. XXXVII. New inhibitors of choles- Gripenberg J. (1958a): Fungus pigments. VIII. Structure terol biosynthesis from cultures of Xerula melanotricha of cinnabarin and cinnabarinic acid. Acta Chemica Scan- Dörfelt. Journal of Antibiotics, 43: 1413–1420. dinavica, 12: 603–610. Lang M, Jägers E, Polborn K, Steglich W. (2009): Structure Gripenberg J. (1958b): Fungus pigments. IX. Some fur- and absolute configuration of the fungal ansabenzoquinone ther constituents of Hydnum aurantiacum Batsch. Acta rhizopogone. Journal of Natural Products, 72: 214–217. Chemica Scandinavica, 12: 1411–1414. Lang M., Mühlbauer A., Gräf C., Beyer J., Lang-Fug- Gripenberg J. (1965): Fungus pigments. XVI. The pigments mann S., Polborn K., Steglich W. (2008): Studies of Peniophora sanguinea Bres. Acta Chemica Scandi- on the structure and biosynthesis of tridentoquinone navica, 19: 2242–2259. and related meroterpenoids from the mushroom Suil- Gripenberg J., Martikkala J. (1970): Fungus pigments. lus tridenticus (Boletales). European Journal of Organic XX. On the structure of peniophorin. One of the pigments Chemistry: 816–825. produced by Peniophora sanguinea Bres. Acta Chemica Lang M., Spiteller P., Hellwig V., Steglich W. (2001): Scandinavica, 24: 3444–3448. Stephanosporin, ein „spurloser“ Vorläufer von 2-Chlor- Hanson J.R. (2008a): Fungal metabolites derived from 4-nitrophenol im Bauchpilz Stephanospora caroticolor. amino acids. In: Hanson J.R. (ed.): The Chemistry of Angewandte Chemie, International Edition English, 113: Fungi. The Royal Society of Chemistry. Thomas Graham 1749–1751. House, Cambridge: 32–46. Lee I.-K., Yun B.-S. (2006): Hispidin analogs from the Hanson J.R. (2008b): Pigments and odours of fungi. In: Han- mushroom Inonotus xeranticus and their free radical son J.R. (ed.): The Chemistry of Fungi. The Royal Society of scavenging aktivity. Bioorganic & Chemistry. Thomas Graham House, Cambridge: 127–142. Letters, 16: 2376–2379. Harmon A.D., Weisgraber K.H., Weiss U. (1980): Pre- Lee I.-K., Yun B.-S., Cho S.-M., Kim W.-G., Kim J.-P., Ryoo formed azulene pigments of (Schw.) Fries I.-J., Hiroyuki K., Yoo I.-D. (1996): Betulinans A and B, (Russelaceae, Basidiomycetes). Experientia, 36: 54–56. two benzoquinone compounds from Lenzites betulina. Haxo F. (1950): Carotenoids of the mushroom Journal of Natural Products, 59: 1090–1092. cinnabarinus. Botanical Gazette, 112: 228–232. Li C., Oberlies N.H. (2005): The most widely recognized Hopmann C., Steglich W. (2006): Pigments of fungi. 65. mushroom: Chemistry of the genus Amanita. Life Sci- Synthesis of haematopodin – a pigment from the mush- ences, 78: 532–538. room haematopus (Basidiomycetes). Liebigs Liu J.-K. (2006): Natural terphenyls: Developments since Annalen der Chemie, 1996: 1117–1120. 1877. Chemical Review, 106: 2209–2223.

101 Vol. 29, 2011, No. 2: 87–102 Czech J. Food Sci.

Medicinal Mushrooms (2008): Available at http://heal- Steglich W., Zechlin L. (1978): Pilzpigmente, 33: Syn- ing-mushrooms.net/archives/lenzites-betulina-l-fr.html these des Fomentariols. Eine neue Methode zur Dar- (accessed Nov 10, 2010) stellung von Zimtalkoholen. Chemische Berichte, 111: Muso H. (1976): The pigments of fly agaric, Amanita mus- 3939–3948. caria. Tetrahedron, 35: 2843–2853. Thorna R.G., Tibell L., Untereiner W.A., Walker C., Mussak R., Bechtold T. (2009): Handbook of Natural Wang Z., Weir A., Weiss M., White M.M., Winka K., Colorants. John Wiley & Sons, New York: 183–200. Yao Y.-J., Zhang N. (2007): A higher level phylogenetic Mühlbauer A., Beyer J., Steglich W. (1998): The biosyn- classification of the fungi. Mycological Research, 111: thesis of the fungal meroterpenoids boviquinone-3 and 509–547. -4 follows two different pathways. Tetrahedron Letters, Velíšek J., Cejpek K. (2008): Biosynthesis of Food Com- 39: 5167–5170. ponents. Ossis, Tábor. MycoBank (2010): Available at http://www.mycobank.org/ Velíšek J., Davídek J., Cejpek K. (2007): Biosynthesis of DefaultPage.aspx (accessed Nov 8, 2010) food constituents: Natural pigments. Part 1 – a review. Peters S., Spiteller P. (2007a): Mycenarubins A and Czech Journal of Food Sciences, 25: 291–315. B, red pyrroloquinoline alkaloids from the mushroom Velíšek J., Davídek J., Cejpek K. (2008): Biosynthesis of Mycena rosea. European Journal of Organic Chemistry, food constituents: Natural pigments. Part 2 – a review. 2007: 1571–1576. Czech Journal of Food Sciences, 26: 73–98. Peters S., Spiteller P. (2007b): Sanguinones A and B, blue Von Nussbaum F., Spiteller P., Rüth M., Steglich W., pyrroloquinoline alkaloids from the fruiting bodies of Wanner G., Gamblin B., Stievano L., Wagner F.E. the mushroom . Journal of Natural (1998): An iron (III)-catechol complex as a mushroom Products, 70: 1274–1277. pigment. Angewandte Chemie, International Edition Peters S., Jaeger R. J. R., Spiteller P. (2008): Red pyr- English, 37: 3292–3295. roloquinoline alkaloids from the mushroom Mycena Walton K., Coombs M.M., Walker R., Ioannides C. haematopus. European Journal of Organic Chemistry, (2001):The metabolism and bioactivation of agaritine 2008: 319–323. and of other mushroom hydrazines by whole mushroom Räisänen R.: Dyes from lichens and mushrooms (2009): homogenate and by mushroom tyrosinase. , In: Bechtold T., Mussak R. (eds): Handbook of Natural 161: 165–177. Colorants. John Wiley & Sons, New York: 183–200. Winner M., Gimenez A., Schmidt H., Sontag B., Stef- Schüffler A., Anke T. (2009): Chapter 10. Secondary fan B., Steglich W. (2004): Unusual pulvinic acid dimers metabolites of Basidiomycetes. In: Anke T., Weber D. from the common fungi (common (eds): and . Selected Basic and Ap- earthball) and (peppery bolete). plied Aspects. Springer, New York: 209–231. Angewandte Chemie, International Edition English, 43: Sontag B., Rüth M., Spitteler P., Arnold N., Steglich 1883–1886. W., Reichert M., Bringmann G. (2006): Chromogenic Yang X.-L., Luo D.-Q., Dong Z.-J., Liu J.-K. (2006): Two meroterpenoids from the mushroom Russula ochroleuca new pigments from the fruiting bodies of the Basidi- and R. viscida. European Journal of Organic Chemistry, omycete . Helvetica Chimica Acta, 2006, 1023–1033. 89: 988–990. Spiteller P., Arnold N., Spiteller M., Steglich W. Yang X.-L., Qin C., Wang F., Dong Z.-J., Liu J.-K. (2008): (2003): Lilacinone, a red aminobenzoquinone pigment A new meroterpenoid pigment from the Basidiomyc- from Lactarius lilacinus. Journal of Natural Products, ete Albatrellus confluens. Chemistry & Biodiversity, 5: 66: 1402–1403. 484–489. Spiteller P, Steglich W. (2002): Blennione, a green ami- Zhou Z.-Y., Liu J.-K. (2010): Pigments of fungi (Macromy- nobenzoquinone derivative from Lactarius blennius. cetes). Natural Products Reports, 27: 1531–1570. Journal of Natural Products, 65: 725–727. Steglich W. (1981): Biologically active components from Recieved for publication December 29, 2010 higher fungi. Pure & Applied Chemistry, 53: 1233–1240. Accepted after corrections January 15, 2011

Corresponding author: Prof. Ing. Jan Velíšek, DrSc., Vysoká škola chemicko-technologická v Praze, Fakulta potravinářské a biochemické technologie, Ústav chemie a analýzy potravin, Technická 5, 166 28 Praha 6, Česká republika tel.: + 420 220 443 175, e-mail: [email protected]

102