Macrofungi of the Columbia River Basin

Total Page:16

File Type:pdf, Size:1020Kb

Macrofungi of the Columbia River Basin Report on Macrofungi of the Columbia River Basin By: Dr. Steven i. Miller Department of Botany University of Wyoming November 9,1994 Interior Columbia Basin Ecosystem Management Project Science Integration Team - Terrestrial Staff S. L. Miller--Eastside Ecosystem Management Project--l, Biogeography of taxonomic group Macrofungi found within the boundaries of the Eastside Ecosystem Management Project (EEMP) include three major subdivisions--Basidiomycotina, Ascomycotma and Zygomycotina. The subdivision Basidiomycotina. commonly known as the “Basidiomycetes”, include approximately 15,000 or more species. Fungi such as mushrooms, puffballs and polypores are some of the more commonly known and observed forms. Other forms which include the jelly fungi, birds nest fungi, and tooth fungi are also members of the Basidiomycetes. The majority of the Basidiomycetes are either saprouophs on decaying wood and other dead plant material, or are symbiotic with the living cells of plant roots, forming mycorrhizal associations with trees and shrubs. Others are parasites on living plants or fungi. Basidiomycotina are distributed worldwide. The Ascomycotina is the largest subdivision of true fungi, comprised of over 2000 genera. The “Ascomycetes”, as they are commonly referred to, include a wide range of diverse organisms such as yeasts, powdery mildews, cup fungi and truffles. The Ascomycetes are primarily terrestrial, although many live in fresh or marine waters. The majority of these fungi are saprotrophs on decaying plant debris. lMany sapronophic Ascomycetes specialize in decomposing certain host species or even are restricted to a particular part of the host such as leaves or petioles. Other specialized saprouophic types include those fungi that fotrn kuiting structures only where a fire recently occurred or on the dung of certain animals Xlany other Ascomycetes are parasites on plants and less commonly on insects or other animals. Still other Ascomycetes form symbiotic relationships with vascular plants--mycotrhizae, and algae--lichens. Only Ascomycetes that form macroscopic sexual Eruiting structures will be examined in this report. Ascomycetes can be found world wide. The Zygomycotina is a diverse assemblage of fungi that either reproduce asexually by means of non-motile sporangiospores or by large, resistant chlamydospores. Many of these “Zygomycetes” are microscopic fungi that are mold-like, are ubiquitous in soil and dung, and are mostly saprotiophic. These forms wilI not be considered further. Another group within the Zygomycetes form a symbiotic relationship with the roots of grasses, herbaceous and crop plants, as well as with some trees and woody shrubs. This relationship is known as endomycotrhizae. These fungi are also distributed worldwide. -’ Members of each of these three subdivisions are found in abundance within the boundaries of the EEMP. Because of the close and absolute relationships, either symbiotic or saprotrophic, that these fungi have with vascular plants, areas of high macrofungal diversity and presumably endemism would occur where vascular plant diversity is high, relative to individual habitat types. Specifically this would include the mesic areas of Wyoming, Montana and northern Idaho located within the EEMP, as well as similar, although much less extensive areas that may be found in Utah, Nevada and eastern Washington and Oregon. The relationship between high vascular plant diversity and high fungal diversity holds for the endomycorrhizal Zygomycetes as well,. However, the areas of high diversity for these fungi and their hosts will be reiatively drier than mesic forest sites where diversity of Basidiomycetes and Ascomycetes would be highest. Characterized in this fashion, many of the areas of high macrofungal diversity and endemism would be in national forest, wilderness, national grasslands and other properties under federal jurisdiction within the EEMP boundary. S. L. LIiller--Eastside Ecosystem Mxqement Project--3 Key ecological groups and their functions Several key ecological groups can be identified within each taxonomic categories descrilxd above. These include ecto- and endomycotrhizal fungi, saprouophic fungi, parasitic fungi and lichen forming fungi. Key functions of each functional group is provided in Table 1. Table 1. Key functions of ectomycorrhizal, endomycorrhizal, saprouophic, parasitic and lichenized macrofungi. ECOLOGICAL/FUNCTIONAL. GROUPS OF FUNa SaDrotwzb Mvcorr hial Parasitic J,ichen&j ENVIRONMENTAL FACTORS Ecto Endo ‘ 1. Recycle/transport nutrients and water 2. Decomposition of plant biopolymers 3. Link individual hosts 4. Improve condition of soil 5. Prevent infection by root pathogens 6. Elemental release and mineralization 7. Elemental storage and immobilization 8. Accumulation of toxic materials 9. Synthesis of humic materials 10. Regulation of successional trajectory and velocity 11. Regulation of photosynthesis 12. Regulation of population densities S. L. Miller--Eastside Ecosystem Management Project--4 Key environmental factors determining occurrence of each functional group An overview of the key environmental factors that affect t.he distribution and occurrence of each ecological/ functional group listed above is provided in Table 2.. Table 2. Key environmental factors that determine occurrence of ectomycorrhizal, endomycorrhizal, saprouophic, parasitic and lichenized macrofungi. ECOLOGICAL/FUNCTIONAL GROUPS OF FUNGI nrotronhil: JVlvcorrhiaI Par- Licm ENVIRONMENTAL FACTORS Endo 1. Presence of host/ substrate d d 4’ 4 4 2. Age of host/substrate 4 4 4 4 4 3. Condition of host/substrate 4 4 4 4 4 4. Condition of soil 4 4 4. 4 4 5. Moisture 4 4 4 4 4 6. Temperature 4 4 4 4 4 Several criteria can be used for designating particular species for special concern. These are listed below: 1. a species, which is taxonomically discrete, has been collected or observed sufficiently in a particular area by knowledgeable individuals over a sufficient period of time and has been found to occur in&quently in that area. 2. a species, which is taxonomically discrete, has not been collected or observed sufficiently in a particular area by knowledgeable individuals over a sufficient period of time but is suspected to occur infrequently in that area. 3. a species has been found to be of major importance ecologically (ie. keystone species, indicator species) and which also may occur in a habitat that is itself in danger. 4. a species has been found to provide other value and which also may occur in a habitat that is itself in danger. 5. a species that is or appears to be disjunct from populations outside of the area under consideration and which occurs elsewhere in habitats that are in danger (ie. a bioreservoir for possible use during restoration of particular habitats). Table 3 is a list of major macrofungal species that occur within the boundaries of the EEMP compiled from a variety of sources. Table 4 is a list of species of special concern which should be assessed individually. S. L. IMiller--Eastside Ecosystem LManagement Project--5 Specific issues for analysis in the Eastside Assessment process Two interrelated issues should be critically examined during the EEMP Asses?:- lent process. Both stem from the fact that occurrence and diversity of macrofungal populr;- ;ns is directly related to host occurrence and ecosystem health. The ecological importance of macrofungi is abundantly clear. Ln addition, recent conservative estimates hold that only 5- 10’-. of an estimated 1.5 million species of fungi have been described. Therefore, ec;;::.fstem managers should be aware that not only’are fungi that are known to science important to any future management plans, but the fungi which undoubtedly occur in the management area but have not even described yet should be considered. The task of accumulating sufficient mycological information in the near future to be helpful in formulating predictions on community stability is daunting. At this point, so little is lmown regarding macrofungi (see discussion below) that it is not possible or practical to manage for individtiai species of fungi. The only alternative, poor though it may be, is to manage for the habitats where these fungi, and many other potentially undescribed taxi, are likely to occur . This will buy time so that we may increase studies of the ecology and taxonomy of the fungi which occur in those habitats. This dictates that we be conscious of habitats that are disappearing for whatever reason and that we manage for a contiual div- -;ity of habitats. The Eastside Management Team should carefully consider habitat loss, destruction and change, as well as maintenance of diverse habitats, in ttieir actions. Areas of unknown information A multitude of texts have appeared recently on the topic of biodiversity and th. severe consequences shouid the diversity of organisms in any given ecosystem not be maintained. While many of the principles and discussions of broader issues raised in : se works are relevant to most organisms, most lack any substantive content on fungi. This has far-reaching implications not only for the lack of information on fungi, but more importantly for the loss of information regarding how fungi interact with other organis:.“- and function within the ecosystem. It is not enough to document the existence of individual species of fungi We also need to know a great deal more about fungal funcLon and community structure. Retrospectively, mycologists have had a difficult time keeping pace with other taxonomic disciplines in accomplishing
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Molecular Phylogenetic Studies in the Genus Amanita
    1170 Molecular phylogenetic studies in the genus Amanita I5ichael Weiß, Zhu-Liang Yang, and Franz Oberwinkler Abstracl A group of 49 Amanita species that had been thoroughly examined morphologically and amtomically was analyzed by DNA sequence compadson to estimate natural groups and phylogenetic rclationships within the genus. Nuclear DNA sequences coding for a part of the ribosomal large subunit were determined and evaluated using neighbor-joining with bootstrap analysis, parsimony analysis, conditional clustering, and maximum likelihood methods, Sections Amanita, Caesarea, Vaginatae, Validae, Phalloideae, and Amidella were substantially confirmed as monophyletic groups, while the monophyly of section Lepidell.t remained unclear. Branching topologies between and within sections could also pafiially be derived. Stbgenera Amanita an'd Lepidella were not supported. The Mappae group was included in section Validae. Grouping hypotheses obtained by DNA analyses are discussed in relation to the distribution of morphological and anatomical chamcters in the studied species. Key words: fungi, basidiomycetes phylogeny, Agarrcales, Amanita systematics, large subunit rDNA, 28S. R6sum6 : A partir d'un groupe de 49 esp,ces d'Amanita prdalablement examinees morphologiquement et anatomiquement, les auteurs ont utilisd la comparaison des s€quences d'ADN pour ddfinir les groupes naturels et les relations phylog6ndtiques de ce genre. Les sdquences de I'ADN nucl6aire codant pour une partie de la grande sous-unit6 ribosomale ont 6t6 ddterminEes et €valu6es en utilisant l'analyse par liaison en lacet avec le voisin (neighbor-joining with bootstrap), l'analyse en parcimonie, le rcgroupement conditionnel et les m€thodes de ressemblance maximale. Les rdsultats confirment substantiellement les sections Afiarira, Caesarea, Uaqinatae, Ualidae, Phalloideae et Amidella, comme groupes monophyldtiques, alors que la monophylie de la section Lepidella demerxe obscure.
    [Show full text]
  • Dark-Spored Agarics: III. Agaricus
    DARK-SPORED AGARICS-III Agaricus WILLIAM A. MURRILL In my last article Gomphidius and Stropharia were discussed. The genus Agaricus, as at present limited, differs from them both in having free lamellae. ACARICUSL. Sp. P1. 1171. I753 Pratella S. F. Gray, Nat. Arr. Brit. P1. I: 626. 1821. Psalliota Quel. Champ. Jura Vosg. 107. 1872. This genus, distinguished among brown-spored gill-fungi by a fleshy stipe, free lamellae, and the presence of an annulus, has received much attention because of the important edible species in it. The different species are usually not very well characterized, being much the same in shape and color and differing very little in spore characters. A number of new ones have been described from tropical America and from the Pacific coast. See MYCO- LOGIA for March, I9I8, and for November, 1912. Pileus white or yellowish or becoming so; tinged with lilac in A. variabilis and sometimes with rose in A. comtulus. Pileus 2-5 cm. broad. Pileus white, becoming yellowish. Stipe 4 mm. thick. I. A. cozmttluis. Stipe I o mm. thick. 2. A. alabamensis. Pileus yellow, becoming nearly white. 3. A. conttuliformis. Pileus larger, usually 5-15 cm. broad. Pileus white, unchanging. Surface squamose. 4. A. solidipes. Surface deeply rimose-areolate. 5. A. praerimosus. Surface smooth, glabrous or fibrillose. Pileus 7-12 cm. broad. 6. A. pilosporus. Pileus usually 5-7 cm. broad. Annulus cup-like. 7. A. chlamzydopus. Annulus not cup-like. 8. A. canipester. Pileus white, becoming yellowish; or tinged with yellow at the center. Pileus lilac-tinted when young, yel- lowish when older.
    [Show full text]
  • SOMA News March 2011
    VOLUME 23 ISSUE 7 March 2011 SOMA IS AN EDUCATIONAL ORGANIZATION DEDICATED TO MYCOLOGY. WE ENCOURAGE ENVIRONMENTAL AWARENESS BY SHARING OUR ENTHUSIASM THROUGH PUBLIC PARTICIPATION AND GUIDED FORAYS. WINTER/SPRING 2011 SPEAKER OF THE MONTH SEASON CALENDAR March Connie and Patrick March 17th » Meeting—7pm —“A Show and Tell”— Sonoma County Farm Bureau Speaker: Connie Green & Patrick March 17th—7pm Hamilton Foray March. 19th » Salt Point April April 21st » Meeting—7pm Sonoma County Farm Bureau Speaker: Langdon Cook Foray April 23rd » Salt Point May May 19th » Meeting—7pm Sonoma County Farm Bureau Speaker: Bob Cummings Foray May: Possible Morel Camping! eparated at birth but from the same litter Connie Green and Patrick Hamilton have S traveled (endured?) mushroom journeys together for almost two decades. They’ve been to the humid and hot jaguar jungles of Chiapas chasing tropical mushrooms and to EMERGENCY the cloud forests of the Sierra Madre for boletes and Indigo milky caps. In the cold and wet wilds of Alaska they hiked a spruce and hemlock forest trail to watch grizzly bears MUSHROOM tearing salmon bellies just a few yards away. POISONING IDENTIFICATION In the remote Queen Charlotte Islands their bush plane flew over “fields of golden chanterelles,” landed on the ocean, and then off into a zany Zodiac for a ride over a cold After seeking medical attention, contact and roiling sea alongside some low flying puffins to the World Heritage Site of Ninstints. Darvin DeShazer for identification at The two of them have gazed at glaciers and berry picked on muskeg bogs. More than a (707) 829-0596.
    [Show full text]
  • Pt Reyes Species As of 12-1-2017 Abortiporus Biennis Agaricus
    Pt Reyes Species as of 12-1-2017 Abortiporus biennis Agaricus augustus Agaricus bernardii Agaricus californicus Agaricus campestris Agaricus cupreobrunneus Agaricus diminutivus Agaricus hondensis Agaricus lilaceps Agaricus praeclaresquamosus Agaricus rutilescens Agaricus silvicola Agaricus subrutilescens Agaricus xanthodermus Agrocybe pediades Agrocybe praecox Alboleptonia sericella Aleuria aurantia Alnicola sp. Amanita aprica Amanita augusta Amanita breckonii Amanita calyptratoides Amanita constricta Amanita gemmata Amanita gemmata var. exannulata Amanita calyptraderma Amanita calyptraderma (white form) Amanita magniverrucata Amanita muscaria Amanita novinupta Amanita ocreata Amanita pachycolea Amanita pantherina Amanita phalloides Amanita porphyria Amanita protecta Amanita velosa Amanita smithiana Amaurodon sp. nova Amphinema byssoides gr. Annulohypoxylon thouarsianum Anthrocobia melaloma Antrodia heteromorpha Aphanobasidium pseudotsugae Armillaria gallica Armillaria mellea Armillaria nabsnona Arrhenia epichysium Pt Reyes Species as of 12-1-2017 Arrhenia retiruga Ascobolus sp. Ascocoryne sarcoides Astraeus hygrometricus Auricularia auricula Auriscalpium vulgare Baeospora myosura Balsamia cf. magnata Bisporella citrina Bjerkandera adusta Boidinia propinqua Bolbitius vitellinus Suillellus (Boletus) amygdalinus Rubroboleus (Boletus) eastwoodiae Boletus edulis Boletus fibrillosus Botryobasidium longisporum Botryobasidium sp. Botryobasidium vagum Bovista dermoxantha Bovista pila Bovista plumbea Bulgaria inquinans Byssocorticium californicum
    [Show full text]
  • Hymenomycetes from Multan District
    Pak. J. Bot., 39(2): 651-657, 2007. HYMENOMYCETES FROM MULTAN DISTRICT KISHWAR SULTANA, MISBAH GUL*, SYEDA SIDDIQA FIRDOUS* AND REHANA ASGHAR* Pakistan Museum of Natural History, Garden Avenue, Shakarparian, Islamabad, Pakistan. *Department of Botany, University of Arid Agriculture, Rawalpindi, Pakistan. Author for correspondence. E-mail: [email protected] Abstract Twenty samples of mushroom and toadstools (Hymenomycetes) were collected from Multan district during July-October 2003. Twelve species belonging to 8 genera of class Basidiomycetes were recorded for the 1st time from Multan: Albatrellus caeruleoporus (Peck.) Pauzar, Agaricus arvensis Sch., Agaricus semotus Fr., Agaricus silvaticus Schaef., Coprinus comatus (Muell. ex. Fr.), S.F. Gray, Hypholoma marginatum (Pers.) Schroet., Hypholoma radicosum Lange., Marasmiellus omphaloides (Berk.) Singer, Panaeolus fimicola (Pers. ex. Fr.) Quel., Psathyrella candolleana (Fr.) Maire, Psathyrella artemisiae (Pass.) K. M. and Podaxis pistilaris (L. ex. Pers.) Fr. Seven of these species are edible or of medicinal value. Introduction Multan lies between north latitude 29’-22’ and 30’-45’ and east longitude 71’-4’ and 72’ 4’55. It is located in a bend created by five confluent rivers. It is about 215 meters (740 feet) above sea level. The mean rainfall of the area surveyed is 125mm in the Southwest and 150 mm in the Northeast. The hottest months are May and June with the mean temperature ranging from 107°F to 109°F, while mean temperature of Multan from July to October is 104°F. The mean rainfall from July to October is 18 mm. The soils are moderately calcareous with pH ranging from 8.2 to 8.4.
    [Show full text]
  • Catalogue of Fungus Fair
    Oakland Museum, 14-15 December 2002 Mycological Society of San Francisco Catalogue of Fungus Fair Introduction ......................................................................................................................2 History ..............................................................................................................................3 Statistics ...........................................................................................................................4 Total collections (excluding "sp.") Numbers of species by multiplicity of collections (excluding "sp.") Numbers of taxa by genus (excluding "sp.") Common names ................................................................................................................5 Names not recently recorded ..........................................................................................6 Numbers of field labels from tables Species found - listed by name .......................................................................................7 Species found - listed by multiplicity ..........................................................................12 Forays ranked by numbers found and by measure of uniqueness............................14 Species found - by county and by foray ......................................................................15 Field and Display Label examples ................................................................................23 Print this page to make your own Field Labels ...........................................................24
    [Show full text]
  • Los Hongos Agaricales De Las Áreas De Encino Del Estado De Baja California, México Nahara Ayala-Sánchez Universidad Autónoma De Baja California
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Estudios en Biodiversidad Parasitology, Harold W. Manter Laboratory of 2015 Los hongos Agaricales de las áreas de encino del estado de Baja California, México Nahara Ayala-Sánchez Universidad Autónoma de Baja California Irma E. Soria-Mercado Universidad Autónoma de Baja California Leticia Romero-Bautista Universidad Autónoma del Estado de Hidalgo Maritza López-Herrera Universidad Autónoma del Estado de Hidalgo Roxana Rico-Mora Universidad Autónoma de Baja California See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/biodiversidad Part of the Biodiversity Commons, Botany Commons, and the Terrestrial and Aquatic Ecology Commons Ayala-Sánchez, Nahara; Soria-Mercado, Irma E.; Romero-Bautista, Leticia; López-Herrera, Maritza; Rico-Mora, Roxana; and Portillo- López, Amelia, "Los hongos Agaricales de las áreas de encino del estado de Baja California, México" (2015). Estudios en Biodiversidad. 19. http://digitalcommons.unl.edu/biodiversidad/19 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Estudios en Biodiversidad by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Nahara Ayala-Sánchez, Irma E. Soria-Mercado, Leticia Romero-Bautista, Maritza López-Herrera, Roxana Rico-Mora, and Amelia Portillo-López This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/biodiversidad/19 Los hongos Agaricales de las áreas de encino del estado de Baja California, México Nahara Ayala-Sánchez, Irma E. Soria-Mercado, Leticia Romero-Bautista, Maritza López-Herrera, Roxana Rico-Mora, y Amelia Portillo-López Resumen Se realizó una recopilación de las especies de hongos del orden Agaricales (regionalmente conocido como “agaricoides”) de los bosques Quercus spp.
    [Show full text]
  • Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya
    Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 8(2): 254–281 (2018) ISSN 2229-2225 www.creamjournal.org Article Doi 10.5943/cream/8/2/10 Copyright © Beijing Academy of Agriculture and Forestry Sciences Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya Njuguini SKM1, Nyawira MM1, Wachira PM 2, Okoth S2, Muchai SM3, Saado AH4 1 Botany Department, National Museums of Kenya, P.O. Box 40658-00100 2 School of Biological Studies, University of Nairobi, P.O. Box 30197-00100, Nairobi 3 Department of Clinical Studies, College of Agriculture & Veterinary Sciences, University of Nairobi. P.O. Box 30197- 00100 4 Department of Climate Change and Adaptation, Kenya Red Cross Society, P.O. Box 40712, Nairobi Njuguini SKM, Muchane MN, Wachira P, Okoth S, Muchane M, Saado H 2018 – Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya. Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 8(2), 254–281, Doi 10.5943/cream/8/2/10 Abstract Tropical forests are a haven of biodiversity hosting the richest macrofungi in the World. However, the rate of forest loss greatly exceeds the rate of species documentation and this increases the risk of losing macrofungi diversity to extinction. A field study was carried out in Kereita, Kikuyu Escarpment Forest, southern part of Aberdare range forest to determine effect of indigenous forest conversion to plantation forest on diversity of macrofungi. Macrofungi diversity was assessed in a 22 year old Pinus patula (Pine) plantation and a pristine indigenous forest during dry (short rains, December, 2014) and wet (long rains, May, 2015) seasons.
    [Show full text]
  • A Preliminary Checklist of Arizona Macrofungi
    A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona.
    [Show full text]
  • Species List for Arizona Mushroom Society White Mountains Foray August 11-13, 2016
    Species List for Arizona Mushroom Society White Mountains Foray August 11-13, 2016 **Agaricus sylvicola grp (woodland Agaricus, possibly A. chionodermus, slight yellowing, no bulb, almond odor) Agaricus semotus Albatrellus ovinus (orange brown frequently cracked cap, white pores) **Albatrellus sp. (smooth gray cap, tiny white pores) **Amanita muscaria supsp. flavivolvata (red cap with yellow warts) **Amanita muscaria var. guessowii aka Amanita chrysoblema (yellow cap with white warts) **Amanita “stannea” (tin cap grisette) **Amanita fulva grp.(tawny grisette, possibly A. “nishidae”) **Amanita gemmata grp. Amanita pantherina multisquamosa **Amanita rubescens grp. (all parts reddening) **Amanita section Amanita (ring and bulb, orange staining volval sac) Amanita section Caesare (prov. name Amanita cochiseana) Amanita section Lepidella (limbatulae) **Amanita section Vaginatae (golden grisette) Amanita umbrinolenta grp. (slender, ringed cap grisette) **Armillaria solidipes (honey mushroom) Artomyces pyxidatus (whitish coral on wood with crown tips) *Ascomycota (tiny, grayish/white granular cups on wood) **Auricularia Americana (wood ear) Auriscalpium vulgare Bisporella citrina (bright yellow cups on wood) Boletus barrowsii (white king bolete) Boletus edulis group Boletus rubriceps (red king bolete) Calyptella capula (white fairy lanterns on wood) **Cantharellus sp. (pink tinge to cap, possibly C. roseocanus) **Catathelesma imperiale Chalciporus piperatus Clavariadelphus ligula Clitocybe flavida aka Lepista flavida **Coltrichia sp. Coprinellus
    [Show full text]
  • A Floristic Study of the Genus Agaricus for the Southeastern United States
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-1977 A Floristic Study of the Genus Agaricus for the Southeastern United States Alice E. Hanson Freeman University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Botany Commons Recommended Citation Freeman, Alice E. Hanson, "A Floristic Study of the Genus Agaricus for the Southeastern United States. " PhD diss., University of Tennessee, 1977. https://trace.tennessee.edu/utk_graddiss/3633 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Alice E. Hanson Freeman entitled "A Floristic Study of the Genus Agaricus for the Southeastern United States." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Botany. Ronald H. Petersen, Major Professor We have read this dissertation and recommend its acceptance: Rodger Holton, James W. Hilty, Clifford C. Handsen, Orson K. Miller Jr. Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council : I am submitting he rewith a dissertation written by Alice E.
    [Show full text]