Isolation and Identification of Some Fungi and Bacteria in Soils Colonized by Edible Wild Mushroom Agaricus Silvaticus G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hymenomycetes from Multan District
Pak. J. Bot., 39(2): 651-657, 2007. HYMENOMYCETES FROM MULTAN DISTRICT KISHWAR SULTANA, MISBAH GUL*, SYEDA SIDDIQA FIRDOUS* AND REHANA ASGHAR* Pakistan Museum of Natural History, Garden Avenue, Shakarparian, Islamabad, Pakistan. *Department of Botany, University of Arid Agriculture, Rawalpindi, Pakistan. Author for correspondence. E-mail: [email protected] Abstract Twenty samples of mushroom and toadstools (Hymenomycetes) were collected from Multan district during July-October 2003. Twelve species belonging to 8 genera of class Basidiomycetes were recorded for the 1st time from Multan: Albatrellus caeruleoporus (Peck.) Pauzar, Agaricus arvensis Sch., Agaricus semotus Fr., Agaricus silvaticus Schaef., Coprinus comatus (Muell. ex. Fr.), S.F. Gray, Hypholoma marginatum (Pers.) Schroet., Hypholoma radicosum Lange., Marasmiellus omphaloides (Berk.) Singer, Panaeolus fimicola (Pers. ex. Fr.) Quel., Psathyrella candolleana (Fr.) Maire, Psathyrella artemisiae (Pass.) K. M. and Podaxis pistilaris (L. ex. Pers.) Fr. Seven of these species are edible or of medicinal value. Introduction Multan lies between north latitude 29’-22’ and 30’-45’ and east longitude 71’-4’ and 72’ 4’55. It is located in a bend created by five confluent rivers. It is about 215 meters (740 feet) above sea level. The mean rainfall of the area surveyed is 125mm in the Southwest and 150 mm in the Northeast. The hottest months are May and June with the mean temperature ranging from 107°F to 109°F, while mean temperature of Multan from July to October is 104°F. The mean rainfall from July to October is 18 mm. The soils are moderately calcareous with pH ranging from 8.2 to 8.4. -
Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya
Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 8(2): 254–281 (2018) ISSN 2229-2225 www.creamjournal.org Article Doi 10.5943/cream/8/2/10 Copyright © Beijing Academy of Agriculture and Forestry Sciences Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya Njuguini SKM1, Nyawira MM1, Wachira PM 2, Okoth S2, Muchai SM3, Saado AH4 1 Botany Department, National Museums of Kenya, P.O. Box 40658-00100 2 School of Biological Studies, University of Nairobi, P.O. Box 30197-00100, Nairobi 3 Department of Clinical Studies, College of Agriculture & Veterinary Sciences, University of Nairobi. P.O. Box 30197- 00100 4 Department of Climate Change and Adaptation, Kenya Red Cross Society, P.O. Box 40712, Nairobi Njuguini SKM, Muchane MN, Wachira P, Okoth S, Muchane M, Saado H 2018 – Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya. Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 8(2), 254–281, Doi 10.5943/cream/8/2/10 Abstract Tropical forests are a haven of biodiversity hosting the richest macrofungi in the World. However, the rate of forest loss greatly exceeds the rate of species documentation and this increases the risk of losing macrofungi diversity to extinction. A field study was carried out in Kereita, Kikuyu Escarpment Forest, southern part of Aberdare range forest to determine effect of indigenous forest conversion to plantation forest on diversity of macrofungi. Macrofungi diversity was assessed in a 22 year old Pinus patula (Pine) plantation and a pristine indigenous forest during dry (short rains, December, 2014) and wet (long rains, May, 2015) seasons. -
A Preliminary Checklist of Arizona Macrofungi
A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona. -
A Floristic Study of the Genus Agaricus for the Southeastern United States
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-1977 A Floristic Study of the Genus Agaricus for the Southeastern United States Alice E. Hanson Freeman University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Botany Commons Recommended Citation Freeman, Alice E. Hanson, "A Floristic Study of the Genus Agaricus for the Southeastern United States. " PhD diss., University of Tennessee, 1977. https://trace.tennessee.edu/utk_graddiss/3633 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Alice E. Hanson Freeman entitled "A Floristic Study of the Genus Agaricus for the Southeastern United States." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Botany. Ronald H. Petersen, Major Professor We have read this dissertation and recommend its acceptance: Rodger Holton, James W. Hilty, Clifford C. Handsen, Orson K. Miller Jr. Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council : I am submitting he rewith a dissertation written by Alice E. -
MORPHOLOGICAL and RESTRICTION ANALYSIS of THREE Supported by SPECIES of Agaricus Foung GROWING in NORTHERN GUINEA SAVANNA of NIGERIA
MORPHOLOGICAL AND RESTRICTION ANALYSIS OF THREE Supported by SPECIES OF Agaricus foung GROWING IN NORTHERN GUINEA SAVANNA OF NIGERIA H. Musa1*, P. A. Wuyep2 and T. T. Gbem3 1Department of Botany, Ahmadu Bello University, Zaria, Nigeria 2Department of Plant Science, University of Jos, Plateau State, Nigeria 3Department of Biological Sciences, Ahmadu Bello University, Zaria, Nigeria *Corresponding author: [email protected] Received: January 18, 2019 Accepted: March 26, 2019 Abstract: Mushrooms vary according to species, strain, environment and growth conditions. This research highlights the morphological and restriction analysis of three wild Agaricus species in Northern, Nigeria. A survey of mushrooms in Zaria, Nigeria was carried out within the months of May through October 2018. During the survey, Agaricus Silvicola, Agaricus alphitochrous and Agaricus diminitivus were encountered and their photographs were taken in their habitats using digital camera. Morphological descriptions and identifications of the three Agaricus species were carried out using mushroom field guides. Spore prints were collected and pure mycelia cultures were developed for genotyping. The genomic DNA of the Agaricus mushroom was extracted. Restriction digests using Mbo1, Saq 1 and Taq 1 showed different bandings patterns across the Agaricus species that revealed variation in the morphological characters of wild Agaricus species and this confirmed that the Agaricus species are new additions to the Nigerian mushroom biodiversity. Morphological and restriction digest of wild Agaricus have showed genetic relatedness that revealed taxonomic characters in the study that placed them in different species. The study may serve as baseline information for further studies on the taxonomy of other genera of mushrooms in Nigeria. -
Josiana Adelaide Vaz
Josiana Adelaide Vaz STUDY OF ANTIOXIDANT, ANTIPROLIFERATIVE AND APOPTOSIS-INDUCING PROPERTIES OF WILD MUSHROOMS FROM THE NORTHEAST OF PORTUGAL. ESTUDO DE PROPRIEDADES ANTIOXIDANTES, ANTIPROLIFERATIVAS E INDUTORAS DE APOPTOSE DE COGUMELOS SILVESTRES DO NORDESTE DE PORTUGAL. Tese do 3º Ciclo de Estudos Conducente ao Grau de Doutoramento em Ciências Farmacêuticas–Bioquímica, apresentada à Faculdade de Farmácia da Universidade do Porto. Orientadora: Isabel Cristina Fernandes Rodrigues Ferreira (Professora Adjunta c/ Agregação do Instituto Politécnico de Bragança) Co- Orientadoras: Maria Helena Vasconcelos Meehan (Professora Auxiliar da Faculdade de Farmácia da Universidade do Porto) Anabela Rodrigues Lourenço Martins (Professora Adjunta do Instituto Politécnico de Bragança) July, 2012 ACCORDING TO CURRENT LEGISLATION, ANY COPYING, PUBLICATION, OR USE OF THIS THESIS OR PARTS THEREOF SHALL NOT BE ALLOWED WITHOUT WRITTEN PERMISSION. ii FACULDADE DE FARMÁCIA DA UNIVERSIDADE DO PORTO STUDY OF ANTIOXIDANT, ANTIPROLIFERATIVE AND APOPTOSIS-INDUCING PROPERTIES OF WILD MUSHROOMS FROM THE NORTHEAST OF PORTUGAL. Josiana Adelaide Vaz iii The candidate performed the experimental work with a doctoral fellowship (SFRH/BD/43653/2008) supported by the Portuguese Foundation for Science and Technology (FCT), which also participated with grants to attend international meetings and for the graphical execution of this thesis. The Faculty of Pharmacy of the University of Porto (FFUP) (Portugal), Institute of Molecular Pathology and Immunology (IPATIMUP) (Portugal), Mountain Research Center (CIMO) (Portugal) and Center of Medicinal Chemistry- University of Porto (CEQUIMED-UP) provided the facilities and/or logistical supports. This work was also supported by the research project PTDC/AGR- ALI/110062/2009, financed by FCT and COMPETE/QREN/EU. Cover – photos kindly supplied by Juan Antonio Sanchez Rodríguez. -
Mushrooms of Southwestern BC Latin Name Comment Habitat Edibility
Mushrooms of Southwestern BC Latin name Comment Habitat Edibility L S 13 12 11 10 9 8 6 5 4 3 90 Abortiporus biennis Blushing rosette On ground from buried hardwood Unknown O06 O V Agaricus albolutescens Amber-staining Agaricus On ground in woods Choice, disagrees with some D06 N N Agaricus arvensis Horse mushroom In grassy places Choice, disagrees with some D06 N F FV V FV V V N Agaricus augustus The prince Under trees in disturbed soil Choice, disagrees with some D06 N V FV FV FV FV V V V FV N Agaricus bernardii Salt-loving Agaricus In sandy soil often near beaches Choice D06 N Agaricus bisporus Button mushroom, was A. brunnescens Cultivated, and as escapee Edible D06 N F N Agaricus bitorquis Sidewalk mushroom In hard packed, disturbed soil Edible D06 N F N Agaricus brunnescens (old name) now A. bisporus D06 F N Agaricus campestris Meadow mushroom In meadows, pastures Choice D06 N V FV F V F FV N Agaricus comtulus Small slender agaricus In grassy places Not recommended D06 N V FV N Agaricus diminutivus group Diminutive agariicus, many similar species On humus in woods Similar to poisonous species D06 O V V Agaricus dulcidulus Diminutive agaric, in diminitivus group On humus in woods Similar to poisonous species D06 O V V Agaricus hondensis Felt-ringed agaricus In needle duff and among twigs Poisonous to many D06 N V V F N Agaricus integer In grassy places often with moss Edible D06 N V Agaricus meleagris (old name) now A moelleri or A. -
Chemical and Biological Investigation of the Agaricus Silvaticus Schaeff Ex
p 92-97 Chemical and biological investigation of the Agaricus silvaticus Schaeff ex. Secr L.Munkhgerel1, N.Erdenechimeg1, M.Dumaa1, G.Zhang2, P.Odonmajig1, D.Regdel1 1 Institute of Chemistry and Chemical Technology, MAS, Mongolia 2 Chengdu Institute of Biology, CAS, China Abstract: Extract of Agaricus silvaticus Schaeff ex. Secr fungus have been known to have biological activities, including antibacterial, antiviral, anticancer, antioxidant, anticomplementary and immunostimulating effects. In this study we first time identified that Agaricus silvaticus Schaeff ex. Secr has interferon like activity. We first time isolated the four known compounds such as, mannitol (1), urea (2), ergosterol (3) and ergosterol peroxide (4) from 95% ethanol extracts of Agaricus silvaticus Schaeff ex. Secr in Mongolia. Their structures were elucidated on the basis of extensive analysis of spectral data and by comparison with authentic samples. Keywords: Agaricus silvaticus Schaeff ex. Secr., A.silvaticus, A.sylvaticus, IFN-like activity, luciferase, mannitol, urea, еrgosterol (ergosta-5,7,22-trien-3β-ol), ergosterol peroxide (5,8-epidioxy-5α,8α-ergosta-6,22E-dien-3β-ol) Introduction composition and oxidation potentials more ushrooms are considered positive than those of the standards (ascorbic nutraceuticals or functional foods and gallic acids). A. silvaticus was the most M by many clinicians and researchers, efficient species presenting the lowest EC a fact that has also stimulated the search by values in the chemical and biochemical assays Brazilian producers for more advanced and the highest antioxidant power in the production techniques along with introduction electrochemical assays [3]. of new species. According to Urben, there is Agaricus silvaticus is able to reduce great genetic variety of native Agaricus genus anemia and improve biochemical parameters mushrooms cultivated throughout the world in animals with cancer and has no adverse [1]. -
Los Hongos En Extremadura
Los hongos en Extremadura Los hongos en Extremadura EDITA Junta de Extremadura Consejería de Agricultura y Medio Ambiente COORDINADOR DE LA OBRA Eduardo Arrojo Martín Sociedad Micológica Extremeña (SME) POESÍAS Jacinto Galán Cano DIBUJOS África García García José Antonio Ferreiro Banderas Antonio Grajera Angel J. Calleja FOTOGRAFÍAS Celestino Gelpi Pena Fernando Durán Oliva Antonio Mateos Izquierdo Antonio Rodríguez Fernández Miguel Hermoso de Mendoza Salcedo Justo Muñoz Mohedano Gaspar Manzano Alonso Cristóbal Burgos Morilla Carlos Tovar Breña Eduardo Arrojo Martín DISEÑO E IMPRESIÓN Indugrafic, S.L. DEP. LEGAL BA-570-06 I.S.B.N. 84-690-1014-X CUBIERTA Entoloma lividum. FOTO: C. GELPI En las páginas donde se incluye dibujo y poesía puede darse el caso de que no describan la misma seta, pues prima lo estético sobre lo científico. Contenido PÁGINA Presentación .................................................................................................................................................................................... 9 José Luis Quintana Álvarez (Consejero de Agricultura y Medio Ambiente. Junta de Extremadura) Prólogo ................................................................................................................................................................................................ 11 Gabriel Moreno Horcajada (Catedrático de Botánica de la Universidad de Alcalá de Henares, Madrid) Los hongos en Extremadura ................................................................................................................................................. -
Diversity of Macrofungi from North Maharashtra-I
© 2019 JETIR March 2019, Volume 6, Issue 3 www.jetir.org (ISSN-2349-5162) Diversity of Macrofungi from North Maharashtra-I S. Y. Patil S. S. V. P. S. L. K. Dr. P. R. Ghogrey Science College, Dhule [email protected] ABSTRACT: Macrofungi (Mushrooms) are an important and integral component of the ecosystem. Mostly mushrooms are fleshy, sub fleshy or sometimes leathery, umbrella like sporophore, saprophytic in nature. The survey was conducted in rainy and winter season of 2015 in 3 different places which included Mountains, Grassland and Forest areas of North Maharashtra. A total number of fourteen species belonging to thirteen genera were recorded viz. Agaricus silvaticus, Agaricus xanthodermus, Artomyces pyxidata, Bolbitus titubans, Coprinus micaceus, Cyathus striatus, Dacryopinax spathularia, Geastrum triplex, Laccaria laccata, Lenzites betulina, Marasmius siccus, Mycena subcaaerulea, Polyporous umbellatus and Stereum hirsutum. Among those except Agaricus silvaticus and Agaricus xanthodermus reaming were found rarely. Keywords: Macrofungi, Pimpalner, North Maharashtra Introduction: Macro fungi are generally mushrooms, which possess fleshy, sub fleshy, leathery, umbrella like fruiting bodies, which bears spore producing gills. These macro fungi are edible or poisonous. Mushrooms are seasonal fungi with diverse importance in the forest ecosystem. Mushrooms have been extensively studied in most of the parts of India. Berkely (1852) described 15 species of mushrooms in his ‘Decades of Fungi’ from Darjiling. Latter on Murrill (1915), Saini and Atri (1981, 1982, and 1984), Natarajan and Raman (1980) made a major contribution in Boletaceae. Sathe and Deshpande (1979) discovered new genus Chlorolepiota of Agaricales from India Contribution to knowledge of Indian Aphyllophorales, Agaricales and Polyporales by Natrajan (1995), Natarajan et al (1980, 1985), Bakshi (1971), Vaidya and his colleagues (1987, 1990, 1991, 1993), Sharma (1995), Patil and Thite (1978), Patil et al. -
Macrofungi of the Columbia River Basin
Report on Macrofungi of the Columbia River Basin By: Dr. Steven i. Miller Department of Botany University of Wyoming November 9,1994 Interior Columbia Basin Ecosystem Management Project Science Integration Team - Terrestrial Staff S. L. Miller--Eastside Ecosystem Management Project--l, Biogeography of taxonomic group Macrofungi found within the boundaries of the Eastside Ecosystem Management Project (EEMP) include three major subdivisions--Basidiomycotina, Ascomycotma and Zygomycotina. The subdivision Basidiomycotina. commonly known as the “Basidiomycetes”, include approximately 15,000 or more species. Fungi such as mushrooms, puffballs and polypores are some of the more commonly known and observed forms. Other forms which include the jelly fungi, birds nest fungi, and tooth fungi are also members of the Basidiomycetes. The majority of the Basidiomycetes are either saprouophs on decaying wood and other dead plant material, or are symbiotic with the living cells of plant roots, forming mycorrhizal associations with trees and shrubs. Others are parasites on living plants or fungi. Basidiomycotina are distributed worldwide. The Ascomycotina is the largest subdivision of true fungi, comprised of over 2000 genera. The “Ascomycetes”, as they are commonly referred to, include a wide range of diverse organisms such as yeasts, powdery mildews, cup fungi and truffles. The Ascomycetes are primarily terrestrial, although many live in fresh or marine waters. The majority of these fungi are saprotrophs on decaying plant debris. lMany sapronophic Ascomycetes specialize in decomposing certain host species or even are restricted to a particular part of the host such as leaves or petioles. Other specialized saprouophic types include those fungi that fotrn kuiting structures only where a fire recently occurred or on the dung of certain animals Xlany other Ascomycetes are parasites on plants and less commonly on insects or other animals. -
Wild Mushrooms and Lichens Used As Human Food for Survival in War Conditions; Podrinje - Zepa Region (Bosnia and Herzegovina, W
34442_Text 12/22/10 1:12 PM Page 175 Research in Human Ecology Wild Mushrooms and Lichens used as Human Food for Survival in War Conditions; Podrinje - Zepa Region (Bosnia and Herzegovina, W. Balkan) Sulejman Redzic1 Center of Ecology and Natural Resources, Faculty of Science, University of Sarajevo, 33-35 Zmaja od Bosne St., Sarajevo, 71 000 Bosnia and Herzegovina Academy of Sciences and Arts of Bosnia and Herzegovina Bistrik 7, Sarajevo, 71 000 Bosnia and Herzegovina Senka Barudanovic Center of Ecology and Natural Resources, Faculty of Science University of Sarajevo, 33-35 Zmaja od Bosne St., Sarajevo, 71 000 Bosnia and Herzegovina Sasa Pilipovic Institute for Quality Control of Medicines 9 M.Tita St, Sarajevo, 71 000 Bosnia and Herzegovina Abstract Introduction During 2002-2005, research has been conducted within Besides chronic and acute hunger caused by different eastern Bosnia, on the use of mushrooms and lichens and economic and social issues (WHO 2000; FAO/WHO 2002; their effect on people’s survival in war shelters and on iso- Allen et al. 2006) in some countries, common causes of lated guerilla fighters in the area during the war in Bosnia hunger are war, exodus and ghettoes. Such patterns of human and Herzegovina (1992-95). 51 adults have been contacted interaction are, unfortunately, becoming more present. (Goto for this research, including former soldiers who were holed- et al. 1958; Guggenheim 1982; Smith Fawzi et al. 1997; Hux- up in the enclave during the siege between April 1992 and ley et al. 2000). One example of such an occurrence is the June 1995, when free territory was overtaken.