State of the Wild Cover:Cover.Qxd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Checklist of Argentine Agaricales 4
Checklist of the Argentine Agaricales 4. Tricholomataceae and Polyporaceae 1 2* N. NIVEIRO & E. ALBERTÓ 1Instituto de Botánica del Nordeste (UNNE-CONICET). Sargento Cabral 2131, CC 209 Corrientes Capital, CP 3400, Argentina 2Instituto de Investigaciones Biotecnológicas (UNSAM-CONICET) Intendente Marino Km 8.200, Chascomús, Buenos Aires, CP 7130, Argentina CORRESPONDENCE TO *: [email protected] ABSTRACT— A species checklist of 86 genera and 709 species belonging to the families Tricholomataceae and Polyporaceae occurring in Argentina, and including all the species previously published up to year 2011 is presented. KEY WORDS—Agaricomycetes, Marasmius, Mycena, Collybia, Clitocybe Introduction The aim of the Checklist of the Argentinean Agaricales is to establish a baseline of knowledge on the diversity of mushrooms species described in the literature from Argentina up to 2011. The families Amanitaceae, Pluteaceae, Hygrophoraceae, Coprinaceae, Strophariaceae, Bolbitaceae and Crepidotaceae were previoulsy compiled (Niveiro & Albertó 2012a-c). In this contribution, the families Tricholomataceae and Polyporaceae are presented. Materials & Methods Nomenclature and classification systems This checklist compiled data from the available literature on Tricholomataceae and Polyporaceae recorded for Argentina up to the year 2011. Nomenclature and classification systems followed Singer (1986) for families. The genera Pleurotus, Panus, Lentinus, and Schyzophyllum are included in the family Polyporaceae. The Tribe Polyporae (including the genera Polyporus, Pseudofavolus, and Mycobonia) is excluded. There were important rearrangements in the families Tricholomataceae and Polyporaceae according to Singer (1986) over time to present. Tricholomataceae was distributed in six families: Tricholomataceae, Marasmiaceae, Physalacriaceae, Lyophyllaceae, Mycenaceae, and Hydnaginaceae. Some genera belonging to this family were transferred to other orders, i.e. Rickenella (Rickenellaceae, Hymenochaetales), and Lentinellus (Auriscalpiaceae, Russulales). -
Diversity and Distribution of Lichen-Associated Fungi in the Ny-Ålesund Region (Svalbard, High Arctic) As Revealed by 454 Pyrosequencing
www.nature.com/scientificreports OPEN Diversity and distribution of lichen- associated fungi in the Ny-Ålesund Region (Svalbard, High Arctic) as Received: 31 March 2015 Accepted: 20 August 2015 revealed by 454 pyrosequencing Published: 14 October 2015 Tao Zhang1, Xin-Li Wei2, Yu-Qin Zhang1, Hong-Yu Liu1 & Li-Yan Yu1 This study assessed the diversity and distribution of fungal communities associated with seven lichen species in the Ny-Ålesund Region (Svalbard, High Arctic) using Roche 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Lichen-associated fungal communities showed high diversity, with a total of 42,259 reads belonging to 370 operational taxonomic units (OTUs) being found. Of these OTUs, 294 belonged to Ascomycota, 54 to Basidiomycota, 2 to Zygomycota, and 20 to unknown fungi. Leotiomycetes, Dothideomycetes, and Eurotiomycetes were the major classes, whereas the dominant orders were Helotiales, Capnodiales, and Chaetothyriales. Interestingly, most fungal OTUs were closely related to fungi from various habitats (e.g., soil, rock, plant tissues) in the Arctic, Antarctic and alpine regions, which suggests that living in association with lichen thalli may be a transient stage of life cycle for these fungi and that long-distance dispersal may be important to the fungi in the Arctic. In addition, host-related factors shaped the lichen-associated fungal communities in this region. Taken together, these results suggest that lichens thalli act as reservoirs of diverse fungi from various niches, which may improve our understanding of fungal evolution and ecology in the Arctic. The Arctic is one of the most pristine regions of the planet, and its environment exhibits extreme condi- tions (e.g., low temperature, strong winds, permafrost, and long periods of darkness and light) and offers unique opportunities to explore extremophiles. -
Diversity, Nutritional Composition and Medicinal Potential of Indian Mushrooms: a Review
Vol. 13(4), pp. 523-545, 22 January, 2014 DOI: 10.5897/AJB2013.13446 ISSN 1684-5315 ©2014 Academic Journals African Journal of Biotechnology http://www.academicjournals.org/AJB Review Diversity, nutritional composition and medicinal potential of Indian mushrooms: A review Hrudayanath Thatoi* and Sameer Kumar Singdevsachan Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Bhubaneswar-751003, Odisha, India. Accepted 2 January, 2014 Mushrooms are the higher fungi which have long been used for food and medicinal purposes. They have rich nutritional value with high protein content (up to 44.93%), vitamins, minerals, fibers, trace elements and low calories and lack cholesterol. There are 14,000 known species of mushrooms of which 2,000 are safe for human consumption and about 650 of these possess medicinal properties. Among the total known mushrooms, approximately 850 species are recorded from India. Many of them have been used in food and folk medicine for thousands of years. Mushrooms are also sources of bioactive substances including antibacterial, antifungal, antiviral, antioxidant, antiinflammatory, anticancer, antitumour, anti-HIV and antidiabetic activities. Nutriceuticals and medicinal mushrooms have been used in human health development in India as food, medicine, minerals among others. The present review aims to update the current status of mushrooms diversity in India with their nutritional and medicinal potential as well as ethnomedicinal uses for different future prospects in pharmaceutical application. Key words: Mushroom diversity, nutritional value, therapeutic potential, bioactive compound. INTRODUCTION Mushroom is a general term used mainly for the fruiting unexamined mushrooms will be only 5%, implies that body of macrofungi (Ascomycota and Basidiomycota) there are 7,000 yet undiscovered species, which if and represents only a short reproductive stage in their life discovered will be provided with the possible benefit to cycle (Das, 2010). -
Oxalic Acid Degradation by a Novel Fungal Oxalate Oxidase from Abortiporus Biennis Marcin Grąz1*, Kamila Rachwał2, Radosław Zan2 and Anna Jarosz-Wilkołazka1
Vol. 63, No 3/2016 595–600 http://dx.doi.org/10.18388/abp.2016_1282 Regular paper Oxalic acid degradation by a novel fungal oxalate oxidase from Abortiporus biennis Marcin Grąz1*, Kamila Rachwał2, Radosław Zan2 and Anna Jarosz-Wilkołazka1 1Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland; 2Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Lublin, Poland Oxalate oxidase was identified in mycelial extracts of a to formic acid and carbon dioxide (Mäkelä et al., 2002). basidiomycete Abortiporus biennis strain. Intracellular The degradation of oxalate via action of oxalate oxidase enzyme activity was detected only after prior lowering (EC 1.2.3.4), described in our study, is atypical for fun- of the pH value of the fungal cultures by using oxalic or gi and was found predominantly in higher plants. The hydrochloric acids. This enzyme was purified using size best characterised oxalate oxidase originates from cereal exclusion chromatography (Sephadex G-25) and ion-ex- plants (Dunwell, 2000). Currently, only three oxalate oxi- change chromatography (DEAE-Sepharose). This enzyme dases of basidiomycete fungi have been described - an exhibited optimum activity at pH 2 when incubated at enzyme from Tilletia contraversa (Vaisey et al., 1961), the 40°C, and the optimum temperature was established at best characterised so far enzyme from Ceriporiopsis subver- 60°C. Among the tested organic acids, this enzyme ex- mispora (Aguilar et al., 1999), and an enzyme produced by hibited specificity only towards oxalic acid. Molecular Abortiporus biennis (Grąz et al., 2009). The enzyme from mass was calculated as 58 kDa. The values of Km for oxa- C. -
1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families ⇑ Jolanta Miadlikowska A, , Frank Kauff B,1, Filip Högnabba C, Jeffrey C
Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10, Soili Stenroos c,10 a Department of Biology, Duke University, Durham, NC 27708-0338, USA b FB Biologie, Molecular Phylogenetics, 13/276, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany c Botanical Museum, Finnish Museum of Natural History, FI-00014 University of Helsinki, Finland d Department of Ecology and Evolutionary Biology, Yale University, 358 ESC, 21 Sachem Street, New Haven, CT 06511, USA e Institut für Botanik, Karl-Franzens-Universität, Holteigasse 6, A-8010 Graz, Austria f Department of Plant Taxonomy and Nature Conservation, University of Gdan´sk, ul. Wita Stwosza 59, 80-308 Gdan´sk, Poland g Science and Education, The Field Museum, 1400 S. -
Hymenomycetes from Multan District
Pak. J. Bot., 39(2): 651-657, 2007. HYMENOMYCETES FROM MULTAN DISTRICT KISHWAR SULTANA, MISBAH GUL*, SYEDA SIDDIQA FIRDOUS* AND REHANA ASGHAR* Pakistan Museum of Natural History, Garden Avenue, Shakarparian, Islamabad, Pakistan. *Department of Botany, University of Arid Agriculture, Rawalpindi, Pakistan. Author for correspondence. E-mail: [email protected] Abstract Twenty samples of mushroom and toadstools (Hymenomycetes) were collected from Multan district during July-October 2003. Twelve species belonging to 8 genera of class Basidiomycetes were recorded for the 1st time from Multan: Albatrellus caeruleoporus (Peck.) Pauzar, Agaricus arvensis Sch., Agaricus semotus Fr., Agaricus silvaticus Schaef., Coprinus comatus (Muell. ex. Fr.), S.F. Gray, Hypholoma marginatum (Pers.) Schroet., Hypholoma radicosum Lange., Marasmiellus omphaloides (Berk.) Singer, Panaeolus fimicola (Pers. ex. Fr.) Quel., Psathyrella candolleana (Fr.) Maire, Psathyrella artemisiae (Pass.) K. M. and Podaxis pistilaris (L. ex. Pers.) Fr. Seven of these species are edible or of medicinal value. Introduction Multan lies between north latitude 29’-22’ and 30’-45’ and east longitude 71’-4’ and 72’ 4’55. It is located in a bend created by five confluent rivers. It is about 215 meters (740 feet) above sea level. The mean rainfall of the area surveyed is 125mm in the Southwest and 150 mm in the Northeast. The hottest months are May and June with the mean temperature ranging from 107°F to 109°F, while mean temperature of Multan from July to October is 104°F. The mean rainfall from July to October is 18 mm. The soils are moderately calcareous with pH ranging from 8.2 to 8.4. -
Phylum Order Number of Species Number of Orders Family Genus Species Japanese Name Properties Phytopathogenicity Date Pref
Phylum Order Number of species Number of orders family genus species Japanese name properties phytopathogenicity date Pref. points R inhibition H inhibition R SD H SD Basidiomycota Polyporales 98 12 Meruliaceae Abortiporus Abortiporus biennis ニクウチワタケ saprobic "+" 2004-07-18 Kumamoto Haru, Kikuchi 40.4 -1.6 7.6 3.2 Basidiomycota Agaricales 171 1 Meruliaceae Abortiporus Abortiporus biennis ニクウチワタケ saprobic "+" 2004-07-16 Hokkaido Shari, Shari 74 39.3 2.8 4.3 Basidiomycota Agaricales 269 1 Agaricaceae Agaricus Agaricus arvensis シロオオハラタケ saprobic "-" 2000-09-25 Gunma Kawaba, Tone 87 49.1 2.4 2.3 Basidiomycota Polyporales 181 12 Agaricaceae Agaricus Agaricus bisporus ツクリタケ saprobic "-" 2004-04-16 Gunma Horosawa, Kiryu 36.2 -23 3.6 1.4 Basidiomycota Hymenochaetales 129 8 Agaricaceae Agaricus Agaricus moelleri ナカグロモリノカサ saprobic "-" 2003-07-15 Gunma Hirai, Kiryu 64.4 44.4 9.6 4.4 Basidiomycota Polyporales 105 12 Agaricaceae Agaricus Agaricus moelleri ナカグロモリノカサ saprobic "-" 2003-06-26 Nagano Minamiminowa, Kamiina 70.1 3.7 2.5 5.3 Basidiomycota Auriculariales 37 2 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 2001-08-20 Fukushima Showa 67.9 37.8 0.6 0.6 Basidiomycota Boletales 251 3 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 2000-09-25 Yamanashi Hakusyu, Hokuto 80.7 48.3 3.7 7.4 Basidiomycota Agaricales 9 1 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 85.9 68.1 1.9 3.1 Basidiomycota Hymenochaetales 129 8 Strophariaceae Agrocybe Agrocybe cylindracea ヤナギマツタケ saprobic "-" 2003-08-23 -
Forest Fungi in Ireland
FOREST FUNGI IN IRELAND PAUL DOWDING and LOUIS SMITH COFORD, National Council for Forest Research and Development Arena House Arena Road Sandyford Dublin 18 Ireland Tel: + 353 1 2130725 Fax: + 353 1 2130611 © COFORD 2008 First published in 2008 by COFORD, National Council for Forest Research and Development, Dublin, Ireland. All rights reserved. No part of this publication may be reproduced, or stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying recording or otherwise, without prior permission in writing from COFORD. All photographs and illustrations are the copyright of the authors unless otherwise indicated. ISBN 1 902696 62 X Title: Forest fungi in Ireland. Authors: Paul Dowding and Louis Smith Citation: Dowding, P. and Smith, L. 2008. Forest fungi in Ireland. COFORD, Dublin. The views and opinions expressed in this publication belong to the authors alone and do not necessarily reflect those of COFORD. i CONTENTS Foreword..................................................................................................................v Réamhfhocal...........................................................................................................vi Preface ....................................................................................................................vii Réamhrá................................................................................................................viii Acknowledgements...............................................................................................ix -
The Fungi of Slapton Ley National Nature Reserve and Environs
THE FUNGI OF SLAPTON LEY NATIONAL NATURE RESERVE AND ENVIRONS APRIL 2019 Image © Visit South Devon ASCOMYCOTA Order Family Name Abrothallales Abrothallaceae Abrothallus microspermus CY (IMI 164972 p.p., 296950), DM (IMI 279667, 279668, 362458), N4 (IMI 251260), Wood (IMI 400386), on thalli of Parmelia caperata and P. perlata. Mainly as the anamorph <it Abrothallus parmeliarum C, CY (IMI 164972), DM (IMI 159809, 159865), F1 (IMI 159892), 2, G2, H, I1 (IMI 188770), J2, N4 (IMI 166730), SV, on thalli of Parmelia carporrhizans, P Abrothallus parmotrematis DM, on Parmelia perlata, 1990, D.L. Hawksworth (IMI 400397, as Vouauxiomyces sp.) Abrothallus suecicus DM (IMI 194098); on apothecia of Ramalina fustigiata with st. conid. Phoma ranalinae Nordin; rare. (L2) Abrothallus usneae (as A. parmeliarum p.p.; L2) Acarosporales Acarosporaceae Acarospora fuscata H, on siliceous slabs (L1); CH, 1996, T. Chester. Polysporina simplex CH, 1996, T. Chester. Sarcogyne regularis CH, 1996, T. Chester; N4, on concrete posts; very rare (L1). Trimmatothelopsis B (IMI 152818), on granite memorial (L1) [EXTINCT] smaragdula Acrospermales Acrospermaceae Acrospermum compressum DM (IMI 194111), I1, S (IMI 18286a), on dead Urtica stems (L2); CY, on Urtica dioica stem, 1995, JLT. Acrospermum graminum I1, on Phragmites debris, 1990, M. Marsden (K). Amphisphaeriales Amphisphaeriaceae Beltraniella pirozynskii D1 (IMI 362071a), on Quercus ilex. Ceratosporium fuscescens I1 (IMI 188771c); J1 (IMI 362085), on dead Ulex stems. (L2) Ceriophora palustris F2 (IMI 186857); on dead Carex puniculata leaves. (L2) Lepteutypa cupressi SV (IMI 184280); on dying Thuja leaves. (L2) Monographella cucumerina (IMI 362759), on Myriophyllum spicatum; DM (IMI 192452); isol. ex vole dung. (L2); (IMI 360147, 360148, 361543, 361544, 361546). -
Lichens and Associated Fungi from Glacier Bay National Park, Alaska
The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O. -
Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya
Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 8(2): 254–281 (2018) ISSN 2229-2225 www.creamjournal.org Article Doi 10.5943/cream/8/2/10 Copyright © Beijing Academy of Agriculture and Forestry Sciences Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya Njuguini SKM1, Nyawira MM1, Wachira PM 2, Okoth S2, Muchai SM3, Saado AH4 1 Botany Department, National Museums of Kenya, P.O. Box 40658-00100 2 School of Biological Studies, University of Nairobi, P.O. Box 30197-00100, Nairobi 3 Department of Clinical Studies, College of Agriculture & Veterinary Sciences, University of Nairobi. P.O. Box 30197- 00100 4 Department of Climate Change and Adaptation, Kenya Red Cross Society, P.O. Box 40712, Nairobi Njuguini SKM, Muchane MN, Wachira P, Okoth S, Muchane M, Saado H 2018 – Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya. Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 8(2), 254–281, Doi 10.5943/cream/8/2/10 Abstract Tropical forests are a haven of biodiversity hosting the richest macrofungi in the World. However, the rate of forest loss greatly exceeds the rate of species documentation and this increases the risk of losing macrofungi diversity to extinction. A field study was carried out in Kereita, Kikuyu Escarpment Forest, southern part of Aberdare range forest to determine effect of indigenous forest conversion to plantation forest on diversity of macrofungi. Macrofungi diversity was assessed in a 22 year old Pinus patula (Pine) plantation and a pristine indigenous forest during dry (short rains, December, 2014) and wet (long rains, May, 2015) seasons. -
Biodiversity of Plasmodial Slime Moulds (Myxogastria): Measurement and Interpretation
Protistology 1 (4), 161–178 (2000) Protistology August, 2000 Biodiversity of plasmodial slime moulds (Myxogastria): measurement and interpretation Yuri K. Novozhilova, Martin Schnittlerb, InnaV. Zemlianskaiac and Konstantin A. Fefelovd a V.L.Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia, b Fairmont State College, Fairmont, West Virginia, U.S.A., c Volgograd Medical Academy, Department of Pharmacology and Botany, Volgograd, Russia, d Ural State University, Department of Botany, Yekaterinburg, Russia Summary For myxomycetes the understanding of their diversity and of their ecological function remains underdeveloped. Various problems in recording myxomycetes and analysis of their diversity are discussed by the examples taken from tundra, boreal, and arid areas of Russia and Kazakhstan. Recent advances in inventory of some regions of these areas are summarised. A rapid technique of moist chamber cultures can be used to obtain quantitative estimates of myxomycete species diversity and species abundance. Substrate sampling and species isolation by the moist chamber technique are indispensable for myxomycete inventory, measurement of species richness, and species abundance. General principles for the analysis of myxomycete diversity are discussed. Key words: slime moulds, Mycetozoa, Myxomycetes, biodiversity, ecology, distribu- tion, habitats Introduction decay (Madelin, 1984). The life cycle of myxomycetes includes two trophic stages: uninucleate myxoflagellates General patterns of community structure of terrestrial or amoebae, and a multi-nucleate plasmodium (Fig. 1). macro-organisms (plants, animals, and macrofungi) are The entire plasmodium turns almost all into fruit bodies, well known. Some mathematics methods are used for their called sporocarps (sporangia, aethalia, pseudoaethalia, or studying, from which the most popular are the quantita- plasmodiocarps).