Optimal Roof Coverage and Identification of Potential Roof Problems in Underground Coal Mines Using Led Lighting

Total Page:16

File Type:pdf, Size:1020Kb

Optimal Roof Coverage and Identification of Potential Roof Problems in Underground Coal Mines Using Led Lighting University of Kentucky UKnowledge Theses and Dissertations--Mining Engineering Mining Engineering 2016 Optimal Roof Coverage and Identification of otentialP Roof Problems in Underground Coal Mines Using LED Lighting James A. Samples University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/ETD.2016.513 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Samples, James A., "Optimal Roof Coverage and Identification of otentialP Roof Problems in Underground Coal Mines Using LED Lighting" (2016). Theses and Dissertations--Mining Engineering. 32. https://uknowledge.uky.edu/mng_etds/32 This Master's Thesis is brought to you for free and open access by the Mining Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Mining Engineering by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies. I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work. REVIEW, APPROVAL AND ACCEPTANCE The document mentioned above has been reviewed and accepted by the student’s advisor, on behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we verify that this is the final, approved version of the student’s thesis including all changes required by the advisory committee. The undersigned agree to abide by the statements above. James A. Samples, Student Dr. Kyle A. Perry, Major Professor Dr. Zacharias Agioutantis, Director of Graduate Studies OPTIMAL ROOF COVERAGE AND IDENTIFICATION OF POTENTIAL ROOF PROBLEMS IN UNDERGROUND COAL MINES USING LED LIGHTING _______________________________________________________________ THESIS _______________________________________________________________ A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mining Engineering in the College of Engineering at the University of Kentucky By: James Adam Samples Lexington, Kentucky Co-Directors: Dr. Kyle A. Perry, Assistant Professor of Mining Engineering and Dr. Jhon J. Silva-Castro, Assistant Professor of Mining Engineering Lexington, Kentucky 2016 Copyright © James Adam Samples 2016 ABSTRACT OF THESIS OPTIMAL ROOF COVERAGE AND IDENTIFICATION OF POTENTIAL ROOF PROBLEMS IN UNDERGROUND COAL MINES USING LED LIGHTING The popularity and implementation of light emitting diode (LED) lighting have increased drastically over recent years into both residential and industrial applications. However, due to MSHA permissibility requirements, LED lighting is not currently being fully utilized in underground coal mining. While previous research has focused on examining the benefits that LED lighting possesses over other common light sources, very few have been done to find the optimum configuration to illuminate underground excavations better for the safety of the miners. In this research, multiple experiments were conducted to evaluate the potential impacts LED lighting can have on underground mine safety. The optimal light setup that provided the most roof coverage was found to be between 5 and 7 feet of separation, which is similar to what is usually used on roof bolting machines. It was also determined that LED lighting performs well in terms of discontinuity identification compared to what is commonly used in underground coal mining. The results of this research will serve as a design parameter for lighting manufacturers to use. These tests were done to simulate possible lighting locations on a roof bolting machine, but the results can be employed for other underground equipment as well. KEYWORDS: Underground Coal, LED Lighting, Mine Safety, Light Distribution, Light Comparison James Adam Samples OPTIMAL ROOF COVERAGE AND IDENTIFICATION OF POTENTIAL ROOF PROBLEMS IN UNDERGROUND COAL MINES USING LED LIGHTING By James Adam Samples Dr. Kyle A. Perry Co- Director of thesis Dr. Jhon J. Silva-Castro Co- Director of thesis Dr. Zacharias Agioutantis Director of Graduate Studies ACKNOWLEDGEMENTS The author would like to thank: The National Institute of Occupational Safety and Health (NIOSH) for financial support of this work via the Capacity Building in Ground Control research grant program; Dr. Kyle Perry, primary thesis advisor and assistant professor of explosives engineering at the Missouri University of Science and Technology, for his advice, support, and encouragement, and for providing an environment that promotes independent learning among his students; Dr. Jhon Silva-Castro, thesis co-chair and assistant professor of mining engineering at the University of Kentucky, for accepting the role of advisor after the departure of Dr. Perry and for his input into the project; Dr. Thomas Novak, thesis committee member and professor of mining engineering at the University of Kentucky, for his participation and feedback; My fellow graduate students, Robert Eades and Abhinav Sharma, for their assistance during the data collection portions of the research. Ed Thompson, laboratory supervisor at the University of Kentucky department of mining engineering, for his encouragement and contributions to my education while pursuing my master’s degree. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................... iii TABLE OF CONTENTS ................................................................................................... iv LIST OF FIGURES ............................................................................................................ v LIST OF TABLES .............................................................................................................. x CHAPTER 1: INTRODUCTION ....................................................................................... 1 1.1: General ..................................................................................................................... 1 1.2: Scope of Work .......................................................................................................... 2 1.3: Organization of Work .............................................................................................. 3 CHAPTER 2: LITERATURE REVIEW ............................................................................ 4 2.1: Brief history of lighting ............................................................................................ 4 2.2: Popular sources of lighting today ............................................................................. 6 2.3: Brief history of underground mine lighting ............................................................. 8 2.4: Safety concerns of electric lamps ........................................................................... 10 2.5: Advancements in underground mine lighting ........................................................ 11 2.6: LED Research ........................................................................................................ 14 CHAPTER 3: MINE PANEL SIMULATION ................................................................. 32 3.1: Introduction ............................................................................................................ 32 3.2: Mine Panel Simulation Experimental Procedure ................................................... 32 3.3: Mine Panel Simulation Results .............................................................................. 38 3.4: Mine Panel Simulation Results Discussion ............................................................ 86 CHAPTER 4: DISCONTINUITY IDENTIFICATION ................................................... 89 4.1: Introduction ............................................................................................................ 89 4.2: Discontinuity Identification Experimental Procedure ............................................ 89 4.3: Discontinuity Identification Results ....................................................................... 93 4.3.1: Rock Setup One ............................................................................................... 93 4.3.2: Rock Setup Two ............................................................................................ 106 4.3.3: Rock Setup Three .......................................................................................... 120 4.4: Discontinuity Identification Discussion ..............................................................
Recommended publications
  • !History of Lightingv2.Qxd
    CONTENTS Introduction 3 The role of lighting in modern society 3 1. The oldest light sources 4 Before the advent of the lamp 4 The oldest lamps 4 Candles and torches 5 Further development of the oil lamp 6 2. Gaslight 9 Introduction 9 Early history 9 Gas production 10 Gaslight burners 10 The gas mantle 11 3. Electric lighting before the incandescent lamp 14 Introduction 14 Principle of the arc lamp 15 Further development of the arc lamp 16 Applications of the arc lamp 17 4. The incandescent lamp 20 The forerunners 20 The birth of the carbon-filament lamp 22 Further development of the carbon-filament lamp 25 Early metal-filament lamps 27 The Nernst lamp 28 The birth of the tungsten-filament lamp 29 Drawn tungsten filaments 30 Coiled filaments 30 The halogen incandescent lamp 31 5. Discharge lamps 32 Introduction 32 The beginning 32 High-voltage lamps 33 Early low-pressure mercury lamps 34 The fluorescent lamp 35 High-pressure mercury lamps 36 Sodium lamps 37 The xenon lamp 38 6. Electricity production and distribution 39 Introduction 39 Influence machines and batteries 39 Magneto-electric generators 40 Self-exciting generators 41 The oldest public electricity supply systems 41 The battle of systems 42 The advent of modern a.c. networks 43 The History of Light and Lighting While the lighting industry is generally recognized as being born in 1879 with the introduction of Thomas Alva Edison’s incandescent light bulb, the real story of light begins thousands of years earlier. This brochure was developed to provide an extensive look at one of the most important inventions in mankind’s history: artificial lighting.
    [Show full text]
  • Humphry Davy and the Arc Light
    REMAKING HISTORY By William Gurstelle Humphry Davy and the Arc Light » Thomas Edison did not invent the first electric BRILLIANT light.* More than 70 years before Edison’s 1879 MISTAKES: Humphry Davy, incandescent lamp patent, the English scientist chemist, inventor, Humphry Davy developed a technique for produc- and philosopher: ing controlled light from electricity. “I have learned Sir Humphry Davy (1778–1829) was one of the more from my failures than from giants of 19th-century science. A fellow of the my successes.” prestigious Royal Society, Davy is credited with discovering, and first isolating, elemental sodium, potassium, calcium, magnesium, boron, barium, and strontium. A pioneer in electrochemistry, he appeared between the electrode tips, Davy had to also developed the first medical use of nitrous oxide separate the carbon electrodes slightly and care- and invented the miner’s safety lamp. The safety fully in order to sustain the continuous, bright arc lamp alone is directly responsible for saving of electricity. Once that was accomplished, he found hundreds, if not thousands, of miners’ lives. the device could sustain the arc for long periods, But it is his invention of the arc lamp for which we even as the carbon rods were consumed in the heat remember him here. Davy’s artificial electric light of the process. consisted of two carbon rods, made from wood Davy’s arc lamp of 1807 was not economically charcoal, connected to the terminals of an enormous practical until the cost of producing a 50V-or-so collection of voltaic cells. (In Davy’s day, thousands power supply became reasonable.
    [Show full text]
  • Mine Illumination: a Historical and Technological Perspective
    Mine Illumination: A Historical and Technological Perspective John J. Sammarco, Ph.D. NIOSH, Pittsburgh, PA 15236 USA Jacob L. Carr NIOSH, Pittsburgh, PA 15236 USA ABSTRACT: Illumination plays a critical role in mining because miners depend on proper illumination to safely perform their work and to see various mine and machinery-related hazards. Open-flame lamps were used in the early days of mining, but these often caused disastrous mine explosions. During 1914, two engineers from the U.S. Bureau of Mines (USBM) formed a new company, Mine Safety Appliances, and initiated work with Thomas Edison for an electric cap lamp. This electric cap lamp was approved in 1915 by the USBM. The seminal works in mine illumination research were dominated by the USBM. They addressed many issues in permissibility, human factors, and researched new lighting technologies. The current mine regulations and test procedures for mine illumination are based on USBM research. Today, illumination technology is drastically changing with light emitting diodes (LEDs) that could revolutionize mine illumination just as was done by the 1915 electric cap lamp. Researchers at the National Institute for Occupational Safety and Health (NIOSH) are leading the way in the human factors and technological aspects of LED research for mine illumination to improve the safety of miners. INTRODUCTION Adequate illumination is crucial in underground coal and metal/nonmetal mine safety because miners depend most heavily on visual cues to detect hazards associated with falls of ground, slips/trips/falls (STFs), moving machinery, and other threats. For as long as underground mining has been performed, illumination has been critical to both safety and to the ability of the miners to perform their work.
    [Show full text]
  • (HMM) 05-01-05 Maintenance Truck Lighting
    Highway Maintenance Manual Bureau of Highway Operations Chapter 05 Traffic Services and Safety July 2015 Section 01 Truck Safety Subject 05 Maintenance Truck Lighting 1.0 Authority/Statutory Provisions/Administrative Code Rules The following state statutes and administrative codes contain laws and administrative rules related to highway maintenance truck lighting requirements. State Statute 347 - Equipment of Vehicles, Lighting Equipment 347.06 - When lighted lamps are required; 347.07 - Special restrictions on lamps and the use thereof; 347.09 - Headlamps on motor vehicles; 347.10 - Headlamps specifications for motor vehicles; 347.23 - Lamps on highway maintenance equipment; 347.26 - Restrictions on certain optional lighting equipment; 347.26(6) - Warning lamps on tow trucks and service vehicles; 347.26(7) - Warning lamps on certain highway vehicles; 347.26(11) - Flashing warning lamps. Administrative Rule Trans 305 - Standards for Vehicle Equipment Trans 305.075 - Auxiliary lamps; Trans 305.08 - Back up lamps; Trans 305.09 - Direction signal lamps; Trans 305.11 - Headlamps; Trans 305.48 - Subchapter IV-Heavy Trucks. Administrative Rule Trans 327 - Motor Carrier Safety Trans 327.03 - Federal regulations adopted - Federal Motor Carrier Safety Regulations, Volume I - Driver Regulations, 49CFR, Part 393 - Parts and Accessories Necessary for Safe Operation. 2.0 Definitions Auxiliary Lamp - means any lamp mounted on a maintenance truck with a bulb having wattage in excess of 10 watts and which is not required equipment under State Statute Ch. 347 or Trans 305, except a spotlight. Back Up Lamp - means any lamp designed to provide road illumination to the rear of a maintenance truck when the vehicle is in reverse gear.
    [Show full text]
  • Basic Concepts for Explosion Protection Basic Concepts for Explosion Protection
    Basic concepts for explosion protection Basic concepts for explosion protection This brochure was put together carefully in conformance to the current status of standards and regulations. The respective amended version of the technical and statutory rules is binding. Errors and misprints do not justify any claim for damages. All rights reserved, in particular the rights of duplication, distribution and translation. BARTEC brochure Basic concepts for explosion protection 14. revised edition - Version 2020 Authors: Dr.-Ing. Hans-Jürgen Linström Dipl.-Ing. Johannes Buhn Dipl.-Ing. Karel Neleman 2 Contents Technical development 6 - 8 Secondary 15 - 26 of explosion protection explosion protection Harmonization of explosion protection 8 Relevance and advantage of the area 15 classification in workplaces Explosion parameters 17 Explosion protection 9 - 14 Ignition temperature 17 Explosion 9 Equipment sub-groups 19 Basis for an explosion 9 for Gases/Vapours Protection principles 21 Three factors 10 Design standards and prevention 22 Explosion Range (limits) 13 of effective sources of ignition in devices Prevention of explosions 13 Standards for explosion protection 23 Primary explosion protection 14 Secondary explosion protection 14 Tertiary explosion protection 14 3 Basic concepts for explosion protection Types of protection 27-37 Marking 38-42 General requirements 27 Marking in accordance with Directive 38 2014/34/EU, the standards and the IECEx system Types of protection to 28 electrical equipment Marking in accordance with IECEx 39 Types of
    [Show full text]
  • Energy Efficient Landscape Lighting
    energy efficient landscape lighting OPTIONS FOR COMMERCIAL & RESIDENTIAL SITES June 2008. Casey Gates energy efficient landscape lighting OPTIONS FOR COMMERCIAL & RESIDENTIAL SITES June 2008. A Senior Project Presented to the Faculty of the Landscape Architecture Department University of California, Davis in Partial Fulfillment of the Requirement for the Degree of Bachelors of Science of Landscape Architecture Accepted and Approved by: __________________________ Faculty Committee Member, Byron McCulley _____________________________ Committee Member, Bart van der Zeeuw _____________________________ Committee Member, Jocelyn Brodeur _____________________________ Faculty Senior Project Advisor, Rob Thayer Casey Gates Acknowledgements THANK YOU Committee Members: Byron McCulley, Jocelyn Brodeur, Bart Van der zeeuw, Rob Thayer Thank you for guiding me through this process. You were so helpful in making sense of my ideas and putting it all together. You are great mentors. Family: Mom, Dad, Kelley, Rusty You inspire me every day. One of my LDA projects 2007 One of my LDA projects 2007, Walker Hall The family Acknowledgements Abstract ENERGY EFFICIENT LANDSCAPE LIGHTING IN COMMERCIAL AND LARGE SCALE RESIDENTIAL SITES Summary Landscape lighting in commercial and large scale residential sites is an important component to the landscape architecture industry. It is a concept that is not commonly covered in university courses but has a significant impact on the success of a site. This project examines the concepts of landscape lighting and suggests ideas to improve design standards while maintaining energy efficiency. This project will discuss methods and ideas of landscape lighting to improve energy efficiency. Designers should know lighting techniques and their energy efficient alternatives. This project demonstrates how design does not have to be compromised for the sake of energy efficiency.
    [Show full text]
  • Open Jcarr-Dissertation-Final.Pdf
    The Pennsylvania State University The Graduate School AN INVESTIGATION INTO THE FACTORS THAT GOVERN SUCCESS FOR NEW SAFETY AND HEALTH TECHNOLOGIES IN THE MINING INDUSTRY AND THE EFFICACY OF THOSE FACTORS TO PREDICT THE LIKELIHOOD OF SUCCESS FOR EMERGING TECHNOLOGIES A Dissertation in Energy and Mineral Engineering by Jacob L. Carr © 2019 Jacob L. Carr Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2019 The dissertation of Jacob L. Carr was reviewed and approved* by the following: Jeffrey L. Kohler Professor of Mining Engineering Undergraduate Program Chair of Mining Engineering Dissertation Adviser Chair of Committee Shimin Liu Associate Professor of Energy and Mineral Engineering Sekhar Battacharyya Associate Professor of Mining Engineering Michael Pate Nationwide Insurance Associate Professor of Agricultural Safety and Health Mort D. Webster Professor of Energy Engineering Co-Director Initiative for Sustainable Electric Power Systems Associate Department Head for Graduate Education *Signatures are on file in the Graduate School. ii Abstract The mining industry faces many safety and health challenges, and these challenges are often addressed by the introduction of new technologies, many of which are introduced through legislative or regulatory mandates requiring the technology’s use. Many such mandates have been enacted, causing dramatic changes to how work is conducted. Despite these mandates, there are cases in which the intended safety or health benefit of introducing a new technology was not achieved, or worse, cases in which some unintended negative consequence was created by the introduction of a new technology. Given the weighty consequences these mandates can have, both in terms of economic impacts as well as impacts on the safety and health of miners, it is increasingly critical to ensure that the technologies being mandated will achieve their intended benefit without introducing unintended negative consequences.
    [Show full text]
  • Gas Testing Refresher
    Passion to Inspire GAS TESTING REFRESHER GAS TESTING REFRESHER GAS TESTING REFRESHER Although there is a dispute to who invented the "first" miner's flame lamp that was safe to use in fiery mines. The success of the flame safety lamp was a culmination of the principles discovered by Dr. William R. Clanny, Sir Humphrey Davy, and George Stephenson. All three worked independently on the problem at about the same time, and all had some knowledge of the other's work. GAS TESTING REFRESHER The principle of isolating the flame of the lamp was evolved by Dr. Clanny in 1813. Clanny's first lamp designs involved enclosing the flame, and pressurizing the lamp via bellows that would use water reservoirs to isolate the flame. The lamp was rather clumsy, and saw no practical use in the mines. But the feature of a glass window would be later a common feature on safety lamps. GAS TESTING REFRESHER GAS TESTING REFRESHER Sir Humphrey Davy was performed several experiments of his own for the development of a safety lamp. In 1815, Davy discovered that if two vessels were filled with explosive gas, they might be connected together by a narrow tube, and the gas in one of the chambers could be exploded without transmitting the explosion to the adjoining chamber. This meant that a flame in a lamp, fed mine air through small orifices, would not ignite the surrounding air of the mine. GAS TESTING REFRESHER Davy's further experiments found that mesh-holes of fine metallic gauze acted the same way as narrow tubes.
    [Show full text]
  • REGISTER VOLUME 34 • NUMBER 208 Wednesday, October 29,1969 • Washington, D.C
    rFI? ii/iJiLKAL nTTD A T REGISTER VOLUME 34 • NUMBER 208 Wednesday, October 29,1969 • Washington, D.C. Pages 17415-17504 Part I (Part II begins on page 17477) Agencies in this issue—- The President Civil Aeronautics Board Coast Guard Comptroller of the Currency Consumer and Marketing Service Farmers Home Administration Federal Aviation Administration Federal Communications Commission Federal Deposit Insurance Corporation Federal Home Loan Bank Board Federal Maritime Commission Federal Power Commission Federal Reserve System Federal Trade Commission Fish and Wildlife Service Food and Drug Administration Hazardous Materials Regulations Board Interior Department Interstate Commerce Commission Land Management Bureau National Transportation Safety Board Public Health Service Securities and Exchange Com m ission Small Business Administration Social and Rehabilitation Servlee Tariff Commission Detailed list of Contents appears inside. Ho. 208—Pt. I---- 1 Latest Edition Guide to Record Retention Requirements [Revised as of January 1, 1969] This useful reference tool is designed them, and (3) how long they must be to keep businessmen and the general kept. Each digest carries a reference to public informed concerning the many the full text of the basic law or regulation published requirements in Federal laws providing for such retention. and regulations relating to record retention. The booklet’s index, numbering over 2,000 items, lists for ready reference The 86-page “Guide” contains over 900 the categories of persons, companies, digests which tell the user ( 1 ) what type and products affected by Federal records must be kept, (2) who must keep record retention requirements. Price: 75 cents Compiled by Office of the Federal Register, National Archives and Records Service, General Services Administration Order from Superintendent of Documents, U.S.
    [Show full text]
  • Atex Ex Flashlights Zones 1, 2, 21 and 22
    HAZARDOUS AREA SOLUTIONS [email protected] | www.atexdelvalle.com ATEX Ex Flashlights Zones 1, 2, 21 and 22 [email protected] | www.atexdelvalle.com v. 1.1/16 2 Delvalle, wide experience in manufacturing solutions for hazardous area WE PUT AT YOUR WHEREVER DISPOSAL YOU GO We offer over 40 years providing solutions We are committed to working closely with our customers, to demanding customers who require very specific providing them with exceptional service and offering characteristics and behaviour according to the an advanced and extensive range of products with very sector and their needs. competitive prices. CUSTOMIZE YOUR WIFI HIGH STANDARD OF SYSTEM - WIRELESS QUALITY AND SERVICES We only use materials provided by companies who offer the very highest quality, suitable and certified products. Our success is due to top quality assurance: ISO 9001, SGS, UL, TÜV, ISO 14000 and Ohsas 18001. ATEX , IECEx a nivel mundial. ALWAYS THINKING OUTSIDE THE BOX CONTACT US Confidentiality, reliability & quality [email protected] A team of professionals with high +34 945 601 381 experience and ability to solve all your queries. ALSO ONLINE 3 Atex Ex Pocket Led Lamp Zones 1, 2, 21 and 22 This explosion-proof high-power Delvalle LINTEx-10 consists of an impact. resistant and waterproof plastic casing (IP 68). The innovative: – length: 17 cm/weight: 167 g only – is the leader among comparable torches. The high-power 3 Watt-Cree-LED with a colour temperature of approx. 7000 Kelvin emits bright white light and reaches a large beam range. The brightness for a time of approx. 11 hours is made possible by 4 mignon batteries (AA).
    [Show full text]
  • A Lamp Assembly
    Europäisches Patentamt *EP001176363A2* (19) European Patent Office Office européen des brevets (11) EP 1 176 363 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: F21V 19/00 30.01.2002 Bulletin 2002/05 (21) Application number: 01306081.9 (22) Date of filing: 13.07.2001 (84) Designated Contracting States: (71) Applicant: Thomas & Betts International, Inc. AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU Sparks, Nevada 89434 (US) MC NL PT SE TR Designated Extension States: (72) Inventor: McKenna, John AL LT LV MK RO SI Lidcombe, New South Wales 2141 (AU) (30) Priority: 14.07.2000 AU PP879200 (74) Representative: Denmark, James Bailey, Walsh & Co. 5 York Place Leeds LS1 2SD Yorkshire (GB) (54) A lamp assembly (57) A lamp assembly for providing a safer means cathode fluorescent lamp is placed; and (iii) at least one for handling of cold cathode fluorescent lamps wherein end cap (3). In particular the present invention provides said lamp assembly comprises: (i) a cold cathode fluo- a lamp assembly for use with "EXIT" signage manufac- rescent lamp (1); (ii) a housing (2) into which said cold tured in accordance with recognised international codes or standards. EP 1 176 363 A2 Printed by Jouve, 75001 PARIS (FR) 1 EP 1 176 363 A2 2 Description (i) a Cold Cathode fluorescent lamp; (ii) a housing into which the Cold Cathode fluores- [0001] The present invention relates to a lamp assem- cent lamp is placed; and bly and in particular to Cold Cathode fluorescent lamps (iii) an end cap or caps.
    [Show full text]
  • EA to Be Your Link with the Engineering P
    1/09/2017 Teacher Development Program “Bringing Schools and Engineering Together” Preliminary Module – Engineered Products August 2017 Paul Reynolds • EA to be your link with the Engineering Profession / Industry • These forums to provide important networking opportunities with other teaching professionals • We want to assist in providing exciting ways of presenting concepts with real world examples and applications. • We encourage a link of support with exam assessors • We would like to make clear the pathways to engineering that exist for all students- Professional, Trades, VET • WE AIM TO BE A FACILITATOR IN SUPPORTING YOU. 1 1/09/2017 Invention vs Innovation INVENTION –is about creating something “new”. INNOVATION –is about the “use” of an idea or method. INVENTION is easier whilst INNOVATION is more difficult. Engineered Products – Design Method 1. Clarification of the need. Analyse the problem, listing all the restrictions and constraints. This typically follows on from some initial research of a problem and/or identification of design requirements 2. Conceptual design phase. Generate as many possible solutions to the design problem. From these possible solutions select a number of preferred options that have the greatest chance of achieving the desired objectives. 3. Embodiment/preliminary design phase. Thorough engineering techniques including modelling and analysis evaluated the preferred options against the design requirements in greater detail. 4. Detailed design phase. Comprehensive evaluation and optimisation of the preferred design solution through engineering techniques including prototyping and testing. 2 1/09/2017 Engineered Products – A matter of compromise Product design is in large part about making compromises and managing expectations as it often deals with a number of competing and conflicting requirements driven by: .
    [Show full text]