Molecular Structure of the Arsenate Mineral Chongite from Jáchymov – a Vibrational Spectroscopy Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
L. Jahnsite, Segelerite, and Robertsite, Three New Transition Metal Phosphate Species Ll. Redefinition of Overite, an Lsotype Of
American Mineralogist, Volume 59, pages 48-59, 1974 l. Jahnsite,Segelerite, and Robertsite,Three New TransitionMetal PhosphateSpecies ll. Redefinitionof Overite,an lsotypeof Segelerite Pnur BnnN Moone Thc Departmcntof the GeophysicalSciences, The Uniuersityof Chicago, Chicago,Illinois 60637 ilt. lsotypyof Robertsite,Mitridatite, and Arseniosiderite Peur BmaN Moonp With Two Chemical Analvsesbv JUN Iro Deryrtrnent of GeologicalSciences, Haraard Uniuersity, Cambridge, Massrchusetts 02 I 38 Abstract Three new species,-jahnsite, segelerite, and robertsite,-occur in moderate abundance as late stage products in corroded triphylite-heterosite-ferrisicklerite-rockbridgeite masses, associated with leucophosphite,hureaulite, collinsite, laueite, etc.Type specimensare from the Tip Top pegmatite, near Custer, South Dakota. Jahnsite, caMn2+Mgr(Hro)aFe3+z(oH)rlPC)oln,a 14.94(2),b 7.14(l), c 9.93(1)A, p 110.16(8)", P2/a, Z : 2, specific gavity 2.71, biaxial (-), 2V large, e 1.640,p 1.658,t l.6lo, occurs abundantly as striated short to long prismatic crystals, nut brown, yellow, yellow-orange to greenish-yellowin color.Formsarec{001},a{100},il2oll, jl2}ll,ft[iol],/tolll,nt110],andz{itt}. Segeierite,CaMg(HrO)rFes+(OH)[POdz, a 14.826{5),b 18.751(4),c7.30(1)A, Pcca, Z : 8, specific gaavity2.67, biaxial (-), 2Ylarge,a 1.618,p 1.6t5, z 1.650,occurs sparingly as striated yellow'green prismaticcrystals, with c[00], r{010}, nlll0l and qll2l } with perfect {010} cleavage'It is the Feg+-analogueofoverite; a restudy on type overite revealsthe spacegroup Pcca and the ideal formula CaMg(HrO)dl(OH)[POr]r. Robertsite,carMna+r(oH)o(Hro){Ponlr, a 17.36,b lg.53,c 11.30A,p 96.0o,A2/a, Z: 8, specific gravity3.l,T,cleavage[l00] good,biaxial(-) a1.775,8 *t - 1.82,2V-8o,pleochroismextreme (Y, Z = deep reddish brown; 17 : pale reddish-pink), @curs as fibrous massesand small wedge- shapedcrystals showing c[001 f , a{1@}, qt031}. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
New Mineral Names*,†
American Mineralogist, Volume 106, pages 1360–1364, 2021 New Mineral Names*,† Dmitriy I. Belakovskiy1, and Yulia Uvarova2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2CSIRO Mineral Resources, ARRC, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia In this issue This New Mineral Names has entries for 11 new species, including 7 minerals of jahnsite group: jahnsite- (NaMnMg), jahnsite-(NaMnMn), jahnsite-(CaMnZn), jahnsite-(MnMnFe), jahnsite-(MnMnMg), jahnsite- (MnMnZn), and whiteite-(MnMnMg); lasnierite, manganflurlite (with a new data for flurlite), tewite, and wumuite. Lasnierite* the LA-ICP-MS analysis, but their concentrations were below detec- B. Rondeau, B. Devouard, D. Jacob, P. Roussel, N. Stephant, C. Boulet, tion limits. The empirical formula is (Ca0.59Sr0.37)Ʃ0.96(Mg1.42Fe0.54)Ʃ1.96 V. Mollé, M. Corre, E. Fritsch, C. Ferraris, and G.C. Parodi (2019) Al0.87(P2.99Si0.01)Ʃ3.00(O11.41F0.59)Ʃ12 based on 12 (O+F) pfu. The strongest lines of the calculated powder X-ray diffraction pattern are [dcalc Å (I%calc; Lasnierite, (Ca,Sr)(Mg,Fe)2Al(PO4)3, a new phosphate accompany- ing lazulite from Mt. Ibity, Madagascar: an example of structural hkl)]: 4.421 (83; 040), 3.802 (63, 131), 3.706 (100; 022), 3.305 (99; 141), characterization from dynamic refinement of precession electron 2.890 (90; 211), 2.781 (69; 221), 2.772 (67; 061), 2.601 (97; 023). It diffraction data on submicrometer sample. European Journal of was not possible to perform powder nor single-crystal X-ray diffraction Mineralogy, 31(2), 379–388. -
Villyaellenite (Mn, Ca)Mn2(Aso3oh)2(Aso4)2(H2O)4
Villyaellenite (Mn, Ca)Mn2(AsO3OH)2(AsO4)2(H2O)4 Crystal Data: Monoclinic. Point Group: 2/m. Crystals tabular on {100}, to prismatic along [001], showing {100}, {110}, {011}, {010}, {101}, and {001}, to 4 cm; in rosettes and radial aggregates. Physical Properties: Cleavage: Good on {100}. Hardness = ∼4 D(meas.) = 3.20-3.69 D(calc.) = 3.339 Optical Properties: Transparent. Color: Pale rose-red, orange-pink, colorless; colorless in transmitted light. Streak: White. Luster: Vitreous. Optical Class: Biaxial (-). Pleochroism: Moderate; X = very pale orange-pink; Y = exceedingly pale orange-pink; Z = pale orange-pink. Orientation: X = b; Y ∧ c = 30°-40°. Absorption: Z >> X > Y. α = 1.660-1.713 β = 1.670-1.723 γ = 1.676-1.729 2V(meas.) = 70.5°-76° 2V(calc.) = 75°-75.6° Cell Data: Space Group: C2/c. a = 18.400(2) b = 9.4778(10) c = 9.9594(12) β = 96.587(3)° Z = 4 X-ray Powder Pattern: Sainte-Marie-aux-Mines, France. 3.297 (100), 8.476 (90), 3.132 (60), 4.606 (50), 4.761 (40), 3.811 (40), 3.025 (40) Chemistry: (1) (2) As2O5 52.99 50.6 FeO 0.1 MnO 22.40 36.2 ZnO 2.9 CaO 13.58 0.5 H2O 11.42 9.9 Total 100.39 100.2 (1) Sainte-Marie-aux-Mines, France; by electron microprobe, total Mn as MnO, H2O by TGA; 2+ reducing H2O to 10.7% by analogy to other group members, corresponds to (Mn 2.74Ca2.10)Σ=4.84 (H2O)4(AsO3OH)2.31(AsO4)1.69. -
1 Revision 2 1 2 Lavinskyite, K(Licu)Cu6(Si4o11)2(OH)4
1 Revision 2 2 3 Lavinskyite, K(LiCu)Cu6(Si4O11)2(OH)4, isotypic with planchéite, a new mineral 4 from the Wessels mine, Kalahari Manganese Fields, South Africa 5 6 Hexiong Yang1, Robert T. Downs1, Stanley H. Evans1, and William W. Pinch2 7 1Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, U.S.A. 8 219 Stonebridge Lane, Pittsford, New York 14534, U.S.A. 9 10 Corresponding author: [email protected] 11 12 Abstract 2+ 2+ 13 A new mineral species, lavinskyite, ideally K(LiCu )Cu 6(Si4O11)2(OH)4 (IMA 14 2012-028), has been found in the Wessels mine, Kalahari Manganese Fields, Northern 15 Cape Province, South Africa. Associated minerals include wesselsite, pectolite, richterite, 16 sugilite, and scottyite. Lavinskyite crystals are tabular [parallel to (010)]. The mineral is 17 light blue, transparent with very pale blue streak and vitreous luster. It is brittle and has a 18 Mohs hardness of ~5; cleavage is perfect on {010} and no parting was observed. The 19 measured and calculated densities are 3.61(3) and 3.62 g/cm3, respectively. Optically, 20 lavinskyite is biaxial (+), with α = 1.675(1), β = 1.686(1), γ = 1.715(1), 2Vmeas = 64(2)º. 21 An electron microprobe analysis produced an average composition (wt.%) of SiO2 22 42.85(10), CuO 46.13(23), K2O 4.16(2), MgO 1.53(17), Na2O 0.27(4), BaO 0.18(6), and 23 MnO 0.08(1), plus Li2O 1.38 from the LA-ICP-MS measurement and H2O 3.22 (added to 24 bring the analytical total close to 100%), yielding a total of 99.79 % and an empirical 25 chemical formula 26 (K0.99Ba0.01)Σ=1.00(Li1.04Cu0.93Na0.10)Σ=2.07(Cu5.57Mg0.43Mn0.01)Σ=6.01(Si4.00O11)2(OH)4. -
New Mineral Names*
American Mineralogist, Volume 97, pages 2064–2072, 2012 New Mineral Names* G. DIEGO GATTA,1 FERNANDO CÁMARA,2 KIMBERLY T. TAIT,3,† AND DMITRY BELAKOVSKIY4 1Dipartimento Scienze della Terra, Università degli Studi di Milano, Via Botticelli, 23-20133 Milano, Italy 2Dipartimento di Scienze della Terra, Università di degli Studi di Torino, Via Valperga Caluso, 35-10125 Torino, Italy 3Department of Natual History, Royal Ontario Museum, 100 Queens Park, Toronto, Ontario M5S 2C6, Canada 4Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia IN THIS ISSUE This New Mineral Names has entries for 12 new minerals, including: agardite-(Nd), ammineite, byzantievite, chibaite, ferroericssonite, fluor-dravite, fluorocronite, litochlebite, magnesioneptunite, manitobaite, orlovite, and tashelgite. These new minerals come from several different journals: Canadian Mineralogist, European Journal of Mineralogy, Journal of Geosciences, Mineralogical Magazine, Nature Communications, Novye dannye o mineralakh (New data on minerals), and Zap. Ross. Mineral. Obshch. We also include seven entries of new data. AGARDITE-(ND)* clusters up to 2 mm across. Agardite-(Nd) is transparent, light I.V. Pekov, N.V. Chukanov, A.E. Zadov, P. Voudouris, A. bluish green (turquoise-colored) in aggregates to almost color- Magganas, and A. Katerinopoulos (2011) Agardite-(Nd), less in separate thin needles or fibers. Streak is white. Luster is vitreous in relatively thick crystals and silky in aggregates. Mohs NdCu6(AsO4)3(OH)6·3H2O, from the Hilarion Mine, Lavrion, Greece: mineral description and chemical relations with other hardness is <3. Crystals are brittle, cleavage nor parting were members of the agardite–zálesíite solid-solution system. observed, fracture is uneven. Density could not be measured Journal of Geosciences, 57, 249–255. -
259 XLL-Chemical Researches on Some New and Rare Corn.Ish
259 XLL-Chemical Researches on some new and rare Corn.ish Miwrals. By A. H. CHURCH,M.A., Professor of Chemistry, Royal Agricultural College, Cirencester. I. Hydrated Cerous Phosphate. THEhydrous phosphate which forms the subject of the present commnnication, occurs as a thin crust closely investing a quartzose matrix. This crust is made up of very minute crystals, generally occurring in fan-like aggregations of single rows of prisms. The faces of union of these groups are parallel to the larger lateral prismatic planes. Occasionally the structure is almost columnar, or in radiating groups, presenting a drusy surface and a general appearance somewhat resemlding that of mavellite. The mode of attachment of the crystals is such that only one of the end-faces of the prisms can be studied fully. It would appear that the crystals belong to the oblique system, and are prismatically deve- loped forms. The end-face, 001, presents the aspect of an unmodi- fied rhomboid ; occasionally, however, its diagonally opposite acute angles are replaced. Whether the appearances then presented by the crystal are due to a truncation of the solid acute angle, OF to a bevelling of the acute prismatic edge, it is difficult to say, owing to the microscopic siee of the crystals, and their parallel mode of aggregation. The plane of cleavage most easily obtained is parallel to the end- face 001; this cleavage is very perfect. Other cleavages are obtainable; one parallel to the plane previously referred to as replaciug the acute solid angles or acute prismatic edges of the crystal, the other parallel to the larger lateral prismatic planes. -
Minerals Found in Michigan Listed by County
Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee, -
STRONG and WEAK INTERLAYER INTERACTIONS of TWO-DIMENSIONAL MATERIALS and THEIR ASSEMBLIES Tyler William Farnsworth a Dissertati
STRONG AND WEAK INTERLAYER INTERACTIONS OF TWO-DIMENSIONAL MATERIALS AND THEIR ASSEMBLIES Tyler William Farnsworth A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry. Chapel Hill 2018 Approved by: Scott C. Warren James F. Cahoon Wei You Joanna M. Atkin Matthew K. Brennaman © 2018 Tyler William Farnsworth ALL RIGHTS RESERVED ii ABSTRACT Tyler William Farnsworth: Strong and weak interlayer interactions of two-dimensional materials and their assemblies (Under the direction of Scott C. Warren) The ability to control the properties of a macroscopic material through systematic modification of its component parts is a central theme in materials science. This concept is exemplified by the assembly of quantum dots into 3D solids, but the application of similar design principles to other quantum-confined systems, namely 2D materials, remains largely unexplored. Here I demonstrate that solution-processed 2D semiconductors retain their quantum-confined properties even when assembled into electrically conductive, thick films. Structural investigations show how this behavior is caused by turbostratic disorder and interlayer adsorbates, which weaken interlayer interactions and allow access to a quantum- confined but electronically coupled state. I generalize these findings to use a variety of 2D building blocks to create electrically conductive 3D solids with virtually any band gap. I next introduce a strategy for discovering new 2D materials. Previous efforts to identify novel 2D materials were limited to van der Waals layered materials, but I demonstrate that layered crystals with strong interlayer interactions can be exfoliated into few-layer or monolayer materials. -
The Crystal Structure of a Mineral Related to Paulkerrite
Zeitschrift fUr Kristallographie 208, 57 -71 (1993) @ by R. Oldenbourg Verlag, Munchen 1993 ~ 0044-2968/93 $ 3.00+ 0.00 The crystal structure of a mineral related to paulkerrite F. Demartin Istituto di Chimica Strutturistica Inorganica, Universita degli Studi, via Vcnczian 21,1-20133 Milano, Italy T. Pilati CNR, Centro per 10 Studio delle Relazioni tra Struttura e Reattivita Chimica, via Goigi 19, 1-20133 Milano, Italy H. D. Gay Departamento de Geologia, Universidad Nacional de Cordoba, Cordoba, Argentina and C. M. Gramaccioli Dipartimento di Scienze della Terra, Sezione di Mineralogia, Universita degli Studi, via Botticelli 23, 1-20133 Milano, Italy Received: July 24,1992; accepted December 21,1992 Phosphates / Paulkerrite / Mantienneite / Benyacarite / Crystal structure Abstract. An apparently new phosphate mineral (named "benyacarite") showing evident relationships with paulkerrite and mantienneite, but richer in Mn + 2, was found in granitic pegmatites in Argentina (Cerro Blanco, Tanti, Cordoba) where it is associated with other phosphates such as tri- plite etc., and fluorides such as pachnolite. The unit-cell parameters are: ao = 10.561(5) A, bo = 20.585(8) A, CO= 12.516(2) A, orthorhombic, space group Pbca, Z = 4, Dx = 2.37 gcm - 3. The crystal structure has been refined to R(unweighted) = 0.034 and R(weighted) = 0.040 using 1023 independent reflections. It contains layers perpendicular to [010] of two kinds of octahedra, M(2)Os(0,F) and TiOs(O,F), the first essentially centered by Fe+3 atoms, with some Ti+4; the fluorine atom shares vertices of both octahedra. On both sides of these layers there are P04 tetrahedra, with one face approximately parallel to the layers; the three corners of this face are shared with octahedra centered on Ti and M(2), whereas the remaining one is shared with another M(1)06 octahedron centered by 58 F. -
Talmessite from the Uriya Deposit at the Kiura Mining Area, Oita Prefecture, Japan
116 Journal ofM. Mineralogical Ohnishi, N. Shimobayashi, and Petrological S. Kishi, Sciences, M. Tanabe Volume and 108, S. pageKobayashi 116─ 120, 2013 LETTER Talmessite from the Uriya deposit at the Kiura mining area, Oita Prefecture, Japan * ** *** Masayuki OHNISHI , Norimasa SHIMOBAYASHI , Shigetomo KISHI , † § Mitsuo TANABE and Shoichi KOBAYASHI * 12-43 Takehana Ougi-cho, Yamashina-ku, Kyoto 607-8082, Japan **Department of Geology and Mineralogy, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan *** Kamisaibara Junior High School, 1320 Kamisaibara, Kagamino-cho, Tomada-gun, Okayama 708-0601, Japan † 2058-3 Niimi, Niimi, Okayama 718-0011, Japan § Department of Applied Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan Talmessite was found in veinlets (approximately 1 mm wide) cutting into massive limonite in the oxidized zone of the Uriya deposit, Kiura mining area, Oita Prefecture, Japan. It occurs as aggregates of granular crystals up to 10 μm in diameter and as botryoidal aggregates up to 0.5 mm in diameter, in association with arseniosiderite, and aragonite. The talmessite is white to colorless, transparent, and has a vitreous luster. The unit-cell parame- ters refined from powder X-ray diffraction patterns are a = 5.905(3), b = 6.989(3), c = 5.567(4) Å, α = 96.99(3), β = 108.97(4), γ = 108.15(4)°, and Z = 1. Electron microprobe analyses gave the empirical formula Ca2.15(Mg0.84 Mn0.05Zn0.02Fe0.01Co0.01Ni0.01)∑0.94(AsO4)1.91·2H2O on the basis of total cations = 5 apfu (water content calculated as 2 H2O pfu). -
A Specific Gravity Index for Minerats
A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).