The Context of Public Acceptance of Hydraulic Fracturing: Is Louisiana

Total Page:16

File Type:pdf, Size:1020Kb

The Context of Public Acceptance of Hydraulic Fracturing: Is Louisiana Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2012 The context of public acceptance of hydraulic fracturing: is Louisiana unique? Crawford White Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Environmental Sciences Commons Recommended Citation White, Crawford, "The onc text of public acceptance of hydraulic fracturing: is Louisiana unique?" (2012). LSU Master's Theses. 3956. https://digitalcommons.lsu.edu/gradschool_theses/3956 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. THE CONTEXT OF PUBLIC ACCEPTANCE OF HYDRAULIC FRACTURING: IS LOUISIANA UNIQUE? A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Environmental Sciences by Crawford White B.S. Georgia Southern University, 2010 August 2012 Dedication This thesis is dedicated to the memory of three of the most important people in my life, all of whom passed on during my time here. Arthur Earl White 4.05.1919 – 5.28.2011 Berniece Baker White 4.19.1920 – 4.23.2011 and Richard Edward McClary 4.29.1982 – 9.13.2010 ii Acknowledgements I would like to thank my committee first of all: Dr. Margaret Reams, my advisor, for her unending and enthusiastic support for this project; Professor Mike Wascom, for his wit and legal expertise in hunting down various laws and regulations; and Maud Walsh for the perspective and clarity she brought this project. I would like to thank Keith Mauck for his assistance with my second survey, and all of the members of Gohaynesvilleshale.com as well. Finally, I would like to thank Shannon Ferguson, my fiancé and biggest fan, for her unending encouragement, love, and advice. iii Table of Contents Dedication ................................................................................................................................................................... ii Acknowledgements................................................................................................................................................iii Abstract ....................................................................................................................................................................... vi Chapter One: Introduction, Problem Statement, and Methods............................................................ 1 1.1: Introduction.............................................................................................................................................. 1 1.2: Objectives................................................................................................................................................... 4 1.3: Methods ...................................................................................................................................................... 4 1.3.1: Survey Methodology.................................................................................................................... 5 1.3.2: Mixed-Methods Profile ............................................................................................................... 6 1.4: Rationale for Selected Comparisons .............................................................................................. 7 1.5: Hypotheses................................................................................................................................................ 9 1.6: Significance ............................................................................................................................................... 9 Chapter Two: Hydraulic Fracturing Overview..........................................................................................11 2.1 The Nature of Hydrocarbons ............................................................................................................11 2.2: Reservoirs and Reservoir Quality..................................................................................................13 2.2.1: Source Rock...................................................................................................................................13 2.2.2: Reservoir Rock.............................................................................................................................14 2.2.3: Trapping Mechanisms...............................................................................................................14 2.3: Oil and Gas Exploration and Production ....................................................................................15 2.3.1: Improving Well Recovery........................................................................................................16 2.4: Hydraulic Fracturing Comes of Age..............................................................................................17 2.4.1 Causes for Concern and Points of Failure..........................................................................21 Chapter Three: History of the Industry........................................................................................................23 3.1: Pre-1800 History ..................................................................................................................................23 3.2: 1800-1901: Genesis of the Industry.............................................................................................25 3.2.1: World Stage and Technological Developments .............................................................25 3.2.2: North America Catches Up......................................................................................................26 3.3: 1950-1973: The Booming Industry and Birth of OPEC........................................................27 3.4: Crises of 1973 and 1979: OPEC Changes The Market ..........................................................28 3.5: Oil Demand Through 2012 and Growth of the Natural Gas Industry............................29 3.5.1: The Gulf War and The War on Terror................................................................................29 3.5.2: Rise of the US Natural Gas Industry....................................................................................30 3.5.3: Demand for Oil and Gas Post-2003 .....................................................................................31 3.5.4 Hydraulic Fracturing Changes the Market ........................................................................32 3.6: Louisiana’s Unique Place in History.............................................................................................33 Chapter Four: Regulatory Constructs............................................................................................................37 4.1: Federal Regulations.............................................................................................................................38 4.2 State Regulations ...................................................................................................................................40 4.2.1: Louisiana.........................................................................................................................................40 iv 4.2.2: Pennsylvania.................................................................................................................................43 4.2.3: Texas.................................................................................................................................................44 Chapter Five: Relevant Recent Hydraulic Fracturing Studies of Public Opinion........................46 5.1: Louisiana: Goidel and Climek (2012) ..........................................................................................46 5.2: Pennsylvania: Civil Society Institute (2010) ............................................................................47 5.3: Texas: Groat and Grimshaw (2012) .............................................................................................48 Chapter Six: Results ..............................................................................................................................................50 6.1: Surveys......................................................................................................................................................50 6.1.1: Survey of Louisiana Legislators, Energy Company Employees, and Prominent Stakeholders..............................................................................................................................................50 6.1.2: Survey of GoHaynesvilleShale.com Forum Members..................................................52 6.2: Mixed Methods Profile of Louisiana, Pennsylvania, and Texas........................................55 6.2.1: Geographic Comparisons.........................................................................................................55 6.2.2: Socioeconomic Comparisons .................................................................................................58 6.2.3: Environmental Damage Comparisons ...............................................................................62
Recommended publications
  • Unconventional Gas and Hydraulic Fracturing Issue Briefing
    Unconventional gas and hydraulic fracturing Issue briefing bp.com/sustainability Unconventional gas and hydraulic fracturing Issue briefing 2 How we operate At BP, we recognize that we need to produce energy responsibly – minimizing impacts to people, communities and the environment. We operate in around 80 countries, and our systems of governance, management and operation are designed to help us conduct our business while respecting safety, environmental, social and financial considerations. Across all BP operations, established practices support the management of potential environmental and social impacts from the pre-appraisal stage through to the operational stage and beyond – reflecting BP’s values, responsibilities and local regulatory requirements. BP’s operating management system integrates BP requirements on health, safety, security, social, environment and operational reliability, as well as maintenance, contractor relations, compliance and organizational learning into a common system. BP participates in a number of joint venture operations, such as in Algeria and Indonesia, to extract unconventional gas. Some of these are under our direct operational control, while others not. When participating in a joint venture not under BP control, we encourage the operator of the joint venture, through dialogue and constructive engagement, to adopt our practices. For more information bp.com/aboutbp bp.com/oms Cover image BP’s gas well drilling site in, Wamsutter, Wyoming, US. The BP Annual Report and Form 20-F may be downloaded from bp.com/annualreport. No material in this document forms any part of those documents. No part of this document constitutes, or shall be taken to constitute, an invitation or inducement to invest in BP p.l.c.
    [Show full text]
  • The Power of Problem Solvers
    the power of problem solvers Chevron’s greatest asset – our people – are focused on making energy... more aordable more reliable ever-cleaner We believe life depends on energy and we’ve taken steps to improve lives through innovation since our founding. California Star Oil Works, a Chevron predecessor, hits pay dirt in Pico Canyon and gives birth to the California oil industry. Steam-powered technology utilized by California Star Oil Works takes the place of primitive solutions like saplings and 1876 rudimentary drill bits, leading to California’s first commercially productive well. After months of hard work, technical diculties and budget constraints, the Texas oil boom kicks o when Captain Anthony Lucas strikes a close to 1901 100,000-barrel-a-day gusher at Spindletop. Standard Oil develops Red Crown aviation gasoline, the first gasoline in the U.S. specifically designed for aviation use. Red Crown powers the aircraft that Charles Lindbergh flies 1917 across the Atlantic. After three years of unsuccessful drilling and mechanical problems in Saudi Arabia, Geologist Max Steineke urges his team to persevere – and it finally pays off on March 3. With the Arab Zone providing the 1938 main source of Saudi Arabia’s oil still today, Steineke’s discovery has enormous implications for the Middle Eastern oil market. Gulf Oil Corp. and Texaco Inc. work as a part of a consortium of U.S. oil companies. Researchers develop a 3D seismic data-processing method, an innovation which helps vet prospective oil fields as well as rejuvenate existing fields. In the following decades, Chevron continues to use 3D 1978 visualization technology, reducing the risk of dry wells and drilling unnecessary wells, minimizing our environmental impact.
    [Show full text]
  • Black Gold: Texas Oil
    Black Gold: Texas Oil The discovery and development of Texas oil and natural gas fields was a continuing economic boon to Texas. It allowed economic diversification, establishing a Texas industrial base with the construction of oil fields, pipelines, refineries, railroads, port facilities, and their attendant support industries. The Texas “oil boom” also wove itself indelibly into the fabric of Texas culture and myth. https://education.texashistory.unt.edu Black Gold: Texas Oil Spindletop Spindletop: The Lucas Gusher, January 10, 1901 Oil “black gold” erupted 150 feet in the air from the Lucas Gusher near Beaumont, Texas. The well was not capped for nine days and lost an estimated 850,000 barrels of oil. It produced an estimated 75,000 barrels of oil a day. Peak annual production was 17.5 million barrels in 1902. The Lucas Gusher, 1901. Photograph 11.25 in. x 14 in. University of Texas at Arlington Libraries, 1901. https://education.texashistory.unt.edu Permalink: http://texashistory.unt.edu/permalink/meta-pth-41398 Black Gold: Texas Oil Oilmen in the field Oilmen at the Orangefield during the 1910s. Oilmen posing in front of a wooden oil derrick surrounded by pipes and tools. “Men with Oil Derrick.” Photograph B&W: 5.25in. X 3.5 in. Heritage House Museum. https://education.texashistory.unt.edu Permalink: http://texashistory.unt.edu/permalink/meta-pth-37097 Black Gold: Texas Oil the Humble oil well Humble oil well in Orange, Texas in 1920 Oil flowing from the Humble well to storage facilities. Note the rather crude pipe and sluice design used to funnel oil from the well to holding facilities.
    [Show full text]
  • Untested Waters: the Rise of Hydraulic Fracturing in Oil and Gas Production and the Need to Revisit Regulation
    Fordham Environmental Law Review Volume 20, Number 1 2009 Article 3 Untested Waters: The Rise of Hydraulic Fracturing in Oil and Gas Production and the Need to Revisit Regulation Hannah Wiseman∗ ∗University of Texas School of Law Copyright c 2009 by the authors. Fordham Environmental Law Review is produced by The Berkeley Electronic Press (bepress). http://ir.lawnet.fordham.edu/elr UNTESTED WATERS: THE RISE OF HYDRAULIC FRACTURING IN OIL AND GAS PRODUCTION AND THE NEED TO REVISIT REGULATION Hannah Wiseman * I. INTRODUCTION As conventional sources of oil and gas become less productive and energy prices rise, production companies are developing creative extraction methods to tap sources like oil shales and tar sands that were previously not worth drilling. Companies are also using new technologies to wring more oil or gas from existing conventional wells. This article argues that as the hunt for these resources ramps up, more extraction is occurring closer to human populations - in north Texas' Barnett Shale and the Marcellus Shale in New York and Pennsylvania. And much of this extraction is occurring through a well-established and increasingly popular method of wringing re- sources from stubborn underground formations called hydraulic frac- turing, which is alternately described as hydrofracturing or "fracing," wherein fluids are pumped at high pressure underground to force out oil or natural gas. Coastal Oil and Gas Corp. v. Garza Energy Trust,1 a recent Texas case addressing disputes over fracing in Hidalgo County, Texas, ex- emplifies the human conflicts that are likely to accompany such creative extraction efforts. One conflict is trespass: whether extend- ing fractures onto adjacent property and sending fluids and agents into the fractures to keep them open constitutes a common law tres- pass.
    [Show full text]
  • UCS TIGHT OIL.Indd
    The Truth about Tight Oil Don Anair Amine Mahmassani Methane from Unconventional Oil Extraction Poses Significant Climate Risks July 2013 Since 2010, “tight oil”—oil extracted from hard- to-access deposits using horizontal drilling and hydraulic fracturing (fracking)—has dramatically changed the US oil industry, reversing decades of declining domestic oil production and reducing US oil imports (EIA 2015a). In 2015, tight oil comprised more than half of US oil produc- 10,000 feet to reach sedimentary rock and then sideways or tion, bringing total production close to 10 million barrels per horizontally for a mile or more. Next, a mixture of water, day—a peak not seen since the 1970s (see Figure 1). But this sand, and chemicals is pumped at high pressure into the wells sudden expansion has also led to an increase of global warm- to create fractures in the rocks, which frees the oil and gas ing emissions due, in large part, to methane—an extremely potent heat-trapping gas that is found in larger concentra- tions in tight oil regions. Although most of the emissions associated with the con- sumption of oil are a result of burning the finished fuel (for example, in a car or truck), the emissions from extracting, transporting, and refining oil add, on average, 35 percent to a fuel’s life cycle emissions. These “upstream” emissions can- not be overlooked when seeking to mitigate emissions from oil use overall. Recent scientific evidence highlights major gaps in our knowledge of these large and rising sources of global warming pollution (Caulton et al.
    [Show full text]
  • Advancing Understanding of Resource Recovery and Environmental Impacts Via Field Laboratories
    Advancing Understanding of Resource Recovery and Environmental Impacts via Field Laboratories Jared Ciferno – Oil and Gas Technology Manager, NETL Upstream Workshop Houston, TX February 14, 2018 The National Laboratory System Idaho National Lab National Energy Technology Laboratory Pacific Northwest Ames Lab Argonne National Lab National Lab Fermilab Brookhaven National Lab Berkeley Lab Princeton Plasma Physics Lab SLAC National Accelerator Thomas Jefferson National Accelerator Lawrence Livermore National Lab Oak Ridge National Lab Sandia National Lab Savannah River National Lab Office of Science National Nuclear Security Administration Environmental Management Fossil Energy Nuclear Energy National Renewable Energy Efficiency & Renewable Energy Los Alamos Energy Lab National Lab 2 Why Field Laboratories? • Demonstrate and test new technologies in the field in a scientifically objective manner • Gather and publish comprehensive, integrated well site data sets that can be shared by researchers across technology categories (drilling and completion, production, environmental) and stakeholder groups (producers, service companies, academia, regulators) • Catalyze industry/academic research collaboration and facilitate data sharing for mutual benefit 3 Past DOE Field Laboratories Piceance Basin • Multi-well Experiment (MWX) and M-Site project sites in the Piceance Basin where tight gas sand research was done by DOE and GRI in the 1980s • Data and analysis provided an extraordinary view of reservoir complexities and “… played a significant role
    [Show full text]
  • Water Management
    SHALE FACTS Water management Conserving and protecting water resources Statoil is committed to using water responsibly during the life cycle of our development and operating activities. PROTECTING Water used in oil and gas production is sourced from rivers, creeks and GROUNDWATER lakes. This is done in compliance with regulations and permits. The amount of water used during hydraulic fracturing varies according We conduct baseline to geological characteristics. For example, a typical Marcellus horizontal deep shale gas well requires an average of 20.8 million litres (5.5 million assessments to evaluate the gallons) of water per well. The volume needed decreases as technology quality of the groundwater to and methods improve. ensure that our activities are not negatively affecting the freshwater sources in the area. Hydraulic fracturing in the Bakken, United States Freshwater impoundment, Marcellus, United States Statoil is piloting the use how THE water IS USED of returned (produced) Drilling water for hydraulic Drilling fluids (water combined with additives) are used during the drilling fracturing purposes, with process to transport drill cuttings to the surface, stabilise the formation around the wellbore, and clean, cool and lubricate the drillbit. the aim of reducing overall water consumption. Hydraulic fracturing Water is the main component of fracturing fluid; it is pumped into the well at high pressure to fracture the rock. Fracturing fluid is comprised of approximately 99.5% water and proppant (sand or ceramic pellets), and 0.5% chemical additives. Returned water After being injected into the well, a portion of the fracturing fluid will be produced back (returned) to the surface.
    [Show full text]
  • Approach Optimizes Well Geosteering
    SEPTEMBER 2018 The “Better Business” Publication Serving the Exploration / Drilling / Production Industry Approach Optimizes Well Geosteering By Christopher Viens When a change in total gamma is not based 3-D geosteering solution rather and Mark Tomlinson associated with an up or down movement than conventional 2-D geosteering soft- through stratigraphy, it indicates faulting, ware. By integrating multiple well and HOUSTON–Geosteering in horizontal a depositional anomaly, heterogeneity, or seismic surface inputs, this approach wells involves correlating logging data bedding that is not laterally continuous gives the geosteering geologist the infor- to a type log from a nearby offset well to or stratified. Because the fundamental mation to confidently resolve abrupt bed characterize the zone of interest. Corre- basis of geosteering is correlating to dip changes, identify faults, identify areas lating against a type log requires the bed- marker beds that have lateral continuity, of lateral continuity/discontinuity, identify ding thickness and gamma character of in situations where lateral continuity is stratified/unstratified zones and understand the target well to be close to that of the absent, only a low level of interpretation formation-related directional drilling tra- type log, which can be offset by miles in confidence can be achieved using tradi- jectory phenomena, etc. some cases. If not, the resulting geosteering tional correlation methods. interpretation will have unreasonable bed To maximize the benefits of azimuthal Laterally Continuous Bedding dips that do not accurately reflect the gamma imaging, a protocol has been de- In areas with laterally continuous target lithology being drilled, leaving the veloped to identify and handle challenging strata, the gamma character in the type geosteering geologist running multiple geosteering situations using a model- well typically will be present at the simultaneous interpretations in the hope that one will start to make sense as new data come in during drilling.
    [Show full text]
  • Vast Energy Resources Wasting Away in the Texas Permian Basin a Special Report on Natural Gas Flaring FLARING REPORT 2
    Vast energy resources wasting away in the Texas Permian Basin A special report on natural gas flaring FLARING REPORT 2 I Introduction 3 II Trends in the Texas Permian 5 III Regulatory solutions 7 IV On-site gas capture opportunities 8 V Conclusion 10 Table of contents FLARING REPORT 3 I. Introduction A new Texas oil boom is in full swing. Oil isn’t the only resource in abundant The United States Geological Survey supply. There’s also ample natural gas (USGS) estimates 20 billion barrels of (known as associated gas), freed from untapped oil reserves in one single area underground shale during hydraulic of the Permian, an oil and gas basin fracturing, the process of pumping contained largely by the western part of millions of gallons of chemicals, sand and Texas and extending into southeastern water down a well to break apart rock and New Mexico 1. release the fuel. A rush to produce higher Earlier this year 2, the Energy value oil, however, has some Permian Information Administration (EIA) drillers simply throwing away the gas. predicted the Permian Basin would Lack of access to gas pipelines, low gas experience the country’s highest growth prices, and outmoded regulations are in oil production, and in August EIA driving this waste. reported the Permian has more operating A new analysis of the amount of Texas rigs than any other basin in the nation, Permian gas lost due to intentional with oil production exceeding 2.5 million releases (venting) and burning of the gas barrels per day 3. Meanwhile, companies (flaring) by the top 15 producers in recent including ExxonMobil are investing billions boom years reveals a wide performance in leases 4, and oilfield services giant gap.
    [Show full text]
  • Focus on Hydraulic Fracturing
    INTRODUCTION Focus on Hydraulic Fracturing We have been hydraulically fracturing, or fracking, wells to stimulate the production of natural gas and crude oil for decades. Our Health, Safety and Environment (HSE) Policy and Code of Business Ethics and Conduct mandate that wherever we operate, we will conduct our business with respect and care for the local environment and systematically manage local, regional and global risks to drive sustainable business growth. Our Hydraulic Fracturing Operations Our global governance structures, supported by proprietary policies, standards, practices and guidelines, are subject to performance assurance audits from the business unit and corporate levels. Action plans to outline commitments and support process improvements have been part Montney of our risk management process since 2009. This B R I T I S H COLUMBIA system allows us to effectively address the risks and opportunities related to our development operations through solutions that reduce emissions Bakken and land footprint, manage water sustainably and create value for our stakeholders. Wells MONTANA NORTH We are managing over 2,100 unconventional wells in our DAKOTA portfolio as of June 30, 2018. Niobrara Q2/2018 COLORADO Eagle Ford N E W MEXICO Eagle Ford Bakken Delaware Delaware Niobrara Montney TEXAS ConocoPhillips FOCUS ON HYDRAULIC FRACTURING 1 INTRODUCTION Global Social and Environmental Risk Management Standards and Practices Identify, assess and manage operational risks to the business, employees, contractors, HSE stakeholders and environment. Standard 15 HSE elements Identify, understand, document and address potential risks and liabilities related to health, safety, Due Diligence environment and other social issues prior to binding business transactions. Standard Due diligence risk assessment requirements Minimum, mandatory requirements for management of projects and Capital unconventional programs.
    [Show full text]
  • Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources
    EPA Hydraulic Fracturing Study Plan November 2011 EPA/600/R-11/122 November 2011 Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources Office of Research and Development US Environmental Protection Agency Washington, D.C. November 2011 EPA Hydraulic Fracturing Study Plan November 2011 Mention of trade names or commercial products does not constitute endorsement or recommendation for use. EPA Hydraulic Fracturing Study Plan November 2011 TABLE OF CONTENTS List of Figures .................................................................................................................................... vi List of Tables ..................................................................................................................................... vi List of Acronyms and Abbreviations .................................................................................................. vii Executive Summary ......................................................................................................................... viii 1 Introduction and Purpose of Study ..............................................................................................1 2 Process for Study Plan Development ...........................................................................................3 2.1 Stakeholder Input ............................................................................................................................................ 3 2.2 Science Advisory Board Involvement .............................................................................................................
    [Show full text]
  • Value Creation with Multi-Criteria Decision Making in Geosteering Operations
    International Journal of Petroleum Technology, 2016, 3, 15-31 15 Value Creation with Multi-Criteria Decision Making in Geosteering Operations K. Kullawan1,*, R. B. Bratvold1 and J. E. Bickel2 1University of Stavanger, Department of Petroleum Engineering, 4036 Stavanger Norway 2Graduate Program in Operations Research, 1 University Station, C2200, The University of Texas at Austin, Austin, Texas, 78712-0292, USA Abstract: Due to escalated drilling costs, the petroleum industry has been attempting to access the largest possible hydrocarbon resources with the lowest achievable costs. Multiple well objectives are set prior to the start of drilling. Then, a geosteering approach is implemented to help operators achieve these objectives. A comprehensive literature survey has been performed on geosteering case histories, including many cases with multiple objectives. We found that the listed objectives are often conflicting and expressed in different measures. Furthermore, none of the cases from the reviewed literature has discussed a systematic approach for dealing with multiple objectives in geosteering contexts. Without implementing a well-structured approach, decision makers are likely to make judgments about the relative importance of each objective based on previous experiences or on approximate methods. Research shows that such decision-making approaches are unlikely to identify optimal courses of action. In this paper, we propose a systematic method for making multi-criteria decisions in geosteering context. The method is constructed such that it is applicable for real-time operations. Results show that different decision criteria can have significant impact on well success as measured by its trajectory, future production, cost, and operational efficiency. Keywords: Geosteering, real-time well placement, geosteering decision, multi-objective decision, decision making.
    [Show full text]