Advancing Understanding of Resource Recovery and Environmental Impacts Via Field Laboratories

Total Page:16

File Type:pdf, Size:1020Kb

Advancing Understanding of Resource Recovery and Environmental Impacts Via Field Laboratories Advancing Understanding of Resource Recovery and Environmental Impacts via Field Laboratories Jared Ciferno – Oil and Gas Technology Manager, NETL Upstream Workshop Houston, TX February 14, 2018 The National Laboratory System Idaho National Lab National Energy Technology Laboratory Pacific Northwest Ames Lab Argonne National Lab National Lab Fermilab Brookhaven National Lab Berkeley Lab Princeton Plasma Physics Lab SLAC National Accelerator Thomas Jefferson National Accelerator Lawrence Livermore National Lab Oak Ridge National Lab Sandia National Lab Savannah River National Lab Office of Science National Nuclear Security Administration Environmental Management Fossil Energy Nuclear Energy National Renewable Energy Efficiency & Renewable Energy Los Alamos Energy Lab National Lab 2 Why Field Laboratories? • Demonstrate and test new technologies in the field in a scientifically objective manner • Gather and publish comprehensive, integrated well site data sets that can be shared by researchers across technology categories (drilling and completion, production, environmental) and stakeholder groups (producers, service companies, academia, regulators) • Catalyze industry/academic research collaboration and facilitate data sharing for mutual benefit 3 Past DOE Field Laboratories Piceance Basin • Multi-well Experiment (MWX) and M-Site project sites in the Piceance Basin where tight gas sand research was done by DOE and GRI in the 1980s • Data and analysis provided an extraordinary view of reservoir complexities and “… played a significant role in altering the conventional procedures, techniques, and methodology in the development of tight reservoirs.” – Paul Branagan, SPE Distinguished MWX site, Piceance Basin in 1980s Lecturer* *Branagan, P., 2009, “An Accurate Physical Model: Essential for the Economic Development of Complex Reservoirs,” SPE Distinguished Lecture Series 4 Past DOE Field Observatories Appalachian Basin • Multiple well experiments carried out by DOE as part of the Eastern Gas Shales Program (EGSP) in the 1970s and 1980s • EGSP Appalachian Basin “firsts” include: • First nitrogen foam fracturing • First oriented coring • First high-angle shale directional wells • First air-drilled horizontal shale well • First large volume hydraulic fracturing • First CO2/Sand fracturing 5 FY14 DOE-FE Field Laboratory Initiative • Solicited in FY14 to advance UOG R&D objectives: reduce development intensity and fresh water use, enhance wellbore integrity, assess air and water impacts and investigate induced seismicity • Long-term access to shale development sites is required for long-term, multi-disciplinary, integrated, science-based research • Industry partnerships to obtain site and wellbore access can be a challenge to develop because: • DOE cannot accept liability for risks with field projects • Research can delay production and increase risks • Industry economics can hinder collaborative opportunities 6 Two Current Field Laboratories • Dedicated science wells; instrumented production wells • Baseline and real-time observation/monitoring • New technology testing and demonstration • Public and international training and outreach Marcellus Shale Energy and • Broad collaborative Environment Laboratory opportunities Hydraulic Fracture Test Site Marcellus/Dry Gas Liquid Rich West Virginia Univ. Gas Tech. Institute 7 Marcellus Shale Energy and Environmental Laboratory (MSEEL) Key Features of Site: • Partners: DOE-NETL, WVU, Northeast Natural Energy (operator), Schlumberger, Ohio State • Well-documented baseline of production and environmental data from two previous wells drilled at location • A dedicated vertical observation well to collect detailed subsurface data and to monitor hydraulic fracturing of project well 3H • Multiple events over the course of the five-year project, separated by periods sufficient to analyze data 8 Marcellus Shale Energy and Environmental Laboratory (MSEEL) Drilling Fracturing Location of horizontal wells and science well 9 MSEEL Project Elements • NNE drilled two wells (MIP 3H & 5H) in 2015 and obtained 111 feet of 4” whole core through the Marcellus and 50+ sidewall cores in the 3H well. • The 3H well was instrumented with fiber optic cable for distributed acoustic and temperature measurements throughout the full lateral length. • A dedicated vertical science well, situated between the two horizontal production wells, was drilled and logged with ~150 sidewall cores obtained. • The science well was instrumented with borehole microseismic sensors to gather data during the 3H well hydraulic fracture stimulation. • A surface seismic array was also used to monitor the stimulation. • Baseline noise, air and surface water data were collected before, during, and after operations. 10 MSEEL Subsurface Science MSEEL Project Team Additional Science (enabled by NETL/MSEEL) Geochemistry (Sharma, Weislogel, Donovan - WVU; Cole, Darrah - OSU) From NETL-ORD • Rock – Kerogen; TOC; C/N/S; XRD; FIB/SM; cryo-laser ablation; Hg porosimetry • Crandall (NETL): multi-scale CT imaging/micro-scale structure; MSCL • Fluids/Gases – Continuous monitoring S/C/O/H isotopes, organics, DOC, NORM, • Hakala (NETL): Sr/Li isotopes; major cation/anion/trace elements noble gases • Hammack (NETL): surface micro-science array; fracturing and relaxation • Soeder (NETL): SRA/TOC Microbiology (Mouser, Wrighton - OSU; Sharma - WVU) • Biomass; microbial lipids, metagenomics • Boyle (NETL): fracture modeling (FMI) ,# Petrophysics/Geomechanics (Aminian, Wang, Siriwardane – WVU) From Existing National Laboratory Contributors* • Steady-state permeability (in situ P/T); porosity; pore-size; adsorption dynamic • Xu (LANL): XRD, XRF, DSC/TG, SEM, TEM characterization and LBM modeling; SANS petrophysics f(P); vertical/lateral heterogeneity. hydrocarbon phase and flow behavior • Mechanical strength measurements (laboratory and well-log) • Carey (LANL): tri-axial core-flood w/tracers & AE in situ fracture formation and permeability; X-ray • FIB/SEM: pore and mineralogical structure tomography apertures and conductivity. • Log to core calibration; comparison to industry standard methods; • Wang (SNL): thermodynamics of CH4-CO2-H2O under nano-pore confinement; Hi T/P sorption • Real-time, actionable data for HF operations; comparative geometric (5H) and measurement methods. engineered (3H) completions • Moridis (LBNL): thermodynamic; X-Ray CT production strategies • natural fracture imaging; fiber-optics monitoring Multi-scale (nano-scale to SRV) numerical simulation. From Collaborating Federal Agencies • Orem (USGS): contaminants in drill cuttings – wastewater evaluations Geophysics (Wilson – WVU) • Borehole microseismic – SRV characterization in multi-well context From Shale Gas Cooperative Agreement Contributors*,+ • Zhu (TAMU): fracture conductivity • Daigle (UT-A): tri-axial compressive strength; ultrasonic velocity; NMR during fracture; SEM and FIB • Jessen (USC): shale-rock interactions • Puckett (Ok. St.): petrophysical protocols: shale-fluid interaction 11 MSEEL Findings (Water and Waste) • While produced water recycle rate is high (85%), there is still a need for efficient brine treatment/management • Secondary containment/casing integrity are effective in preventing off site contamination by produced water spills • Radium trends > 20,000 pCi/L several months into the produced water cycle • Ra precipitates as tank/pond precipitates-radioactive but low volume • Drill cuttings should be subject to TCLP testing and if pass, then handle as non- hazardous to save landfill space and cost. • Strong evidence that green drilling fluids can produce non hazardous drill cuttings that may be neither hazardous (per RCRA) nor radioactive (per WV policy) 12 MSEEL Findings (Well Completions) • Engineered completion design results in ~20% increase in production compared to standard NNE completion techniques based on data obtained at MSEEL. • EUR for future wells could be ~10-20% greater if we can exploit the technologic advantages observed at MSEEL in a cost-effective fashion. • DAS and DTS fiber-optic data can be used to better understand hydraulic fracture propagation. • At the MSEEL site, completion efficiency along the lateral is affected by preexisting fractures oriented at an angle to existing principal stresses and strongly influence hydraulic fracture propagation. • An Unconventional Fracture Model (UFM) approach appears to more accurately simulate hydraulic fractures. This approach combines geomechanics with natural fracture interactions for hydraulic fracture geometry estimation. 13 MSEEL Data Distribution • Interactive website has been operating since project launch • Physical samples distributed to 12 universities, 5 national labs, and USGS • Well over 100 publications and presentations to date • Hundreds of visitors and students have toured the field lab • Data on restricted portal being moved to publically accessible system on MSEEL.ORG and NETL-EDX • Core archived at NETL Morgantown 14 MSEEL Next Steps • Maintain MSEEL web application and data portal online at mseel.org • Continue air, surface water, and production monitoring activities • Publish results of portfolio of analyses • Plan and execute additional data gathering and experimental activities as appropriate 15 Permian Basin Hydraulic Fracturing Test Site (HFTS) Key Features of Site: • Partners: DOE-NETL, GTI, Laredo Petroleum (operator), seven other producers, Halliburton, CoreLabs, University of Texas at Austin, BEG • Location in Permian’s Reagan Co. is well characterized (87 nearby
Recommended publications
  • Unconventional Gas and Hydraulic Fracturing Issue Briefing
    Unconventional gas and hydraulic fracturing Issue briefing bp.com/sustainability Unconventional gas and hydraulic fracturing Issue briefing 2 How we operate At BP, we recognize that we need to produce energy responsibly – minimizing impacts to people, communities and the environment. We operate in around 80 countries, and our systems of governance, management and operation are designed to help us conduct our business while respecting safety, environmental, social and financial considerations. Across all BP operations, established practices support the management of potential environmental and social impacts from the pre-appraisal stage through to the operational stage and beyond – reflecting BP’s values, responsibilities and local regulatory requirements. BP’s operating management system integrates BP requirements on health, safety, security, social, environment and operational reliability, as well as maintenance, contractor relations, compliance and organizational learning into a common system. BP participates in a number of joint venture operations, such as in Algeria and Indonesia, to extract unconventional gas. Some of these are under our direct operational control, while others not. When participating in a joint venture not under BP control, we encourage the operator of the joint venture, through dialogue and constructive engagement, to adopt our practices. For more information bp.com/aboutbp bp.com/oms Cover image BP’s gas well drilling site in, Wamsutter, Wyoming, US. The BP Annual Report and Form 20-F may be downloaded from bp.com/annualreport. No material in this document forms any part of those documents. No part of this document constitutes, or shall be taken to constitute, an invitation or inducement to invest in BP p.l.c.
    [Show full text]
  • The Context of Public Acceptance of Hydraulic Fracturing: Is Louisiana
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2012 The context of public acceptance of hydraulic fracturing: is Louisiana unique? Crawford White Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Environmental Sciences Commons Recommended Citation White, Crawford, "The onc text of public acceptance of hydraulic fracturing: is Louisiana unique?" (2012). LSU Master's Theses. 3956. https://digitalcommons.lsu.edu/gradschool_theses/3956 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. THE CONTEXT OF PUBLIC ACCEPTANCE OF HYDRAULIC FRACTURING: IS LOUISIANA UNIQUE? A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Environmental Sciences by Crawford White B.S. Georgia Southern University, 2010 August 2012 Dedication This thesis is dedicated to the memory of three of the most important people in my life, all of whom passed on during my time here. Arthur Earl White 4.05.1919 – 5.28.2011 Berniece Baker White 4.19.1920 – 4.23.2011 and Richard Edward McClary 4.29.1982 – 9.13.2010 ii Acknowledgements I would like to thank my committee first of all: Dr. Margaret Reams, my advisor, for her unending and enthusiastic support for this project; Professor Mike Wascom, for his wit and legal expertise in hunting down various laws and regulations; and Maud Walsh for the perspective and clarity she brought this project.
    [Show full text]
  • Untested Waters: the Rise of Hydraulic Fracturing in Oil and Gas Production and the Need to Revisit Regulation
    Fordham Environmental Law Review Volume 20, Number 1 2009 Article 3 Untested Waters: The Rise of Hydraulic Fracturing in Oil and Gas Production and the Need to Revisit Regulation Hannah Wiseman∗ ∗University of Texas School of Law Copyright c 2009 by the authors. Fordham Environmental Law Review is produced by The Berkeley Electronic Press (bepress). http://ir.lawnet.fordham.edu/elr UNTESTED WATERS: THE RISE OF HYDRAULIC FRACTURING IN OIL AND GAS PRODUCTION AND THE NEED TO REVISIT REGULATION Hannah Wiseman * I. INTRODUCTION As conventional sources of oil and gas become less productive and energy prices rise, production companies are developing creative extraction methods to tap sources like oil shales and tar sands that were previously not worth drilling. Companies are also using new technologies to wring more oil or gas from existing conventional wells. This article argues that as the hunt for these resources ramps up, more extraction is occurring closer to human populations - in north Texas' Barnett Shale and the Marcellus Shale in New York and Pennsylvania. And much of this extraction is occurring through a well-established and increasingly popular method of wringing re- sources from stubborn underground formations called hydraulic frac- turing, which is alternately described as hydrofracturing or "fracing," wherein fluids are pumped at high pressure underground to force out oil or natural gas. Coastal Oil and Gas Corp. v. Garza Energy Trust,1 a recent Texas case addressing disputes over fracing in Hidalgo County, Texas, ex- emplifies the human conflicts that are likely to accompany such creative extraction efforts. One conflict is trespass: whether extend- ing fractures onto adjacent property and sending fluids and agents into the fractures to keep them open constitutes a common law tres- pass.
    [Show full text]
  • UCS TIGHT OIL.Indd
    The Truth about Tight Oil Don Anair Amine Mahmassani Methane from Unconventional Oil Extraction Poses Significant Climate Risks July 2013 Since 2010, “tight oil”—oil extracted from hard- to-access deposits using horizontal drilling and hydraulic fracturing (fracking)—has dramatically changed the US oil industry, reversing decades of declining domestic oil production and reducing US oil imports (EIA 2015a). In 2015, tight oil comprised more than half of US oil produc- 10,000 feet to reach sedimentary rock and then sideways or tion, bringing total production close to 10 million barrels per horizontally for a mile or more. Next, a mixture of water, day—a peak not seen since the 1970s (see Figure 1). But this sand, and chemicals is pumped at high pressure into the wells sudden expansion has also led to an increase of global warm- to create fractures in the rocks, which frees the oil and gas ing emissions due, in large part, to methane—an extremely potent heat-trapping gas that is found in larger concentra- tions in tight oil regions. Although most of the emissions associated with the con- sumption of oil are a result of burning the finished fuel (for example, in a car or truck), the emissions from extracting, transporting, and refining oil add, on average, 35 percent to a fuel’s life cycle emissions. These “upstream” emissions can- not be overlooked when seeking to mitigate emissions from oil use overall. Recent scientific evidence highlights major gaps in our knowledge of these large and rising sources of global warming pollution (Caulton et al.
    [Show full text]
  • Water Management
    SHALE FACTS Water management Conserving and protecting water resources Statoil is committed to using water responsibly during the life cycle of our development and operating activities. PROTECTING Water used in oil and gas production is sourced from rivers, creeks and GROUNDWATER lakes. This is done in compliance with regulations and permits. The amount of water used during hydraulic fracturing varies according We conduct baseline to geological characteristics. For example, a typical Marcellus horizontal deep shale gas well requires an average of 20.8 million litres (5.5 million assessments to evaluate the gallons) of water per well. The volume needed decreases as technology quality of the groundwater to and methods improve. ensure that our activities are not negatively affecting the freshwater sources in the area. Hydraulic fracturing in the Bakken, United States Freshwater impoundment, Marcellus, United States Statoil is piloting the use how THE water IS USED of returned (produced) Drilling water for hydraulic Drilling fluids (water combined with additives) are used during the drilling fracturing purposes, with process to transport drill cuttings to the surface, stabilise the formation around the wellbore, and clean, cool and lubricate the drillbit. the aim of reducing overall water consumption. Hydraulic fracturing Water is the main component of fracturing fluid; it is pumped into the well at high pressure to fracture the rock. Fracturing fluid is comprised of approximately 99.5% water and proppant (sand or ceramic pellets), and 0.5% chemical additives. Returned water After being injected into the well, a portion of the fracturing fluid will be produced back (returned) to the surface.
    [Show full text]
  • Approach Optimizes Well Geosteering
    SEPTEMBER 2018 The “Better Business” Publication Serving the Exploration / Drilling / Production Industry Approach Optimizes Well Geosteering By Christopher Viens When a change in total gamma is not based 3-D geosteering solution rather and Mark Tomlinson associated with an up or down movement than conventional 2-D geosteering soft- through stratigraphy, it indicates faulting, ware. By integrating multiple well and HOUSTON–Geosteering in horizontal a depositional anomaly, heterogeneity, or seismic surface inputs, this approach wells involves correlating logging data bedding that is not laterally continuous gives the geosteering geologist the infor- to a type log from a nearby offset well to or stratified. Because the fundamental mation to confidently resolve abrupt bed characterize the zone of interest. Corre- basis of geosteering is correlating to dip changes, identify faults, identify areas lating against a type log requires the bed- marker beds that have lateral continuity, of lateral continuity/discontinuity, identify ding thickness and gamma character of in situations where lateral continuity is stratified/unstratified zones and understand the target well to be close to that of the absent, only a low level of interpretation formation-related directional drilling tra- type log, which can be offset by miles in confidence can be achieved using tradi- jectory phenomena, etc. some cases. If not, the resulting geosteering tional correlation methods. interpretation will have unreasonable bed To maximize the benefits of azimuthal Laterally Continuous Bedding dips that do not accurately reflect the gamma imaging, a protocol has been de- In areas with laterally continuous target lithology being drilled, leaving the veloped to identify and handle challenging strata, the gamma character in the type geosteering geologist running multiple geosteering situations using a model- well typically will be present at the simultaneous interpretations in the hope that one will start to make sense as new data come in during drilling.
    [Show full text]
  • Focus on Hydraulic Fracturing
    INTRODUCTION Focus on Hydraulic Fracturing We have been hydraulically fracturing, or fracking, wells to stimulate the production of natural gas and crude oil for decades. Our Health, Safety and Environment (HSE) Policy and Code of Business Ethics and Conduct mandate that wherever we operate, we will conduct our business with respect and care for the local environment and systematically manage local, regional and global risks to drive sustainable business growth. Our Hydraulic Fracturing Operations Our global governance structures, supported by proprietary policies, standards, practices and guidelines, are subject to performance assurance audits from the business unit and corporate levels. Action plans to outline commitments and support process improvements have been part Montney of our risk management process since 2009. This B R I T I S H COLUMBIA system allows us to effectively address the risks and opportunities related to our development operations through solutions that reduce emissions Bakken and land footprint, manage water sustainably and create value for our stakeholders. Wells MONTANA NORTH We are managing over 2,100 unconventional wells in our DAKOTA portfolio as of June 30, 2018. Niobrara Q2/2018 COLORADO Eagle Ford N E W MEXICO Eagle Ford Bakken Delaware Delaware Niobrara Montney TEXAS ConocoPhillips FOCUS ON HYDRAULIC FRACTURING 1 INTRODUCTION Global Social and Environmental Risk Management Standards and Practices Identify, assess and manage operational risks to the business, employees, contractors, HSE stakeholders and environment. Standard 15 HSE elements Identify, understand, document and address potential risks and liabilities related to health, safety, Due Diligence environment and other social issues prior to binding business transactions. Standard Due diligence risk assessment requirements Minimum, mandatory requirements for management of projects and Capital unconventional programs.
    [Show full text]
  • Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources
    EPA Hydraulic Fracturing Study Plan November 2011 EPA/600/R-11/122 November 2011 Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources Office of Research and Development US Environmental Protection Agency Washington, D.C. November 2011 EPA Hydraulic Fracturing Study Plan November 2011 Mention of trade names or commercial products does not constitute endorsement or recommendation for use. EPA Hydraulic Fracturing Study Plan November 2011 TABLE OF CONTENTS List of Figures .................................................................................................................................... vi List of Tables ..................................................................................................................................... vi List of Acronyms and Abbreviations .................................................................................................. vii Executive Summary ......................................................................................................................... viii 1 Introduction and Purpose of Study ..............................................................................................1 2 Process for Study Plan Development ...........................................................................................3 2.1 Stakeholder Input ............................................................................................................................................ 3 2.2 Science Advisory Board Involvement .............................................................................................................
    [Show full text]
  • Value Creation with Multi-Criteria Decision Making in Geosteering Operations
    International Journal of Petroleum Technology, 2016, 3, 15-31 15 Value Creation with Multi-Criteria Decision Making in Geosteering Operations K. Kullawan1,*, R. B. Bratvold1 and J. E. Bickel2 1University of Stavanger, Department of Petroleum Engineering, 4036 Stavanger Norway 2Graduate Program in Operations Research, 1 University Station, C2200, The University of Texas at Austin, Austin, Texas, 78712-0292, USA Abstract: Due to escalated drilling costs, the petroleum industry has been attempting to access the largest possible hydrocarbon resources with the lowest achievable costs. Multiple well objectives are set prior to the start of drilling. Then, a geosteering approach is implemented to help operators achieve these objectives. A comprehensive literature survey has been performed on geosteering case histories, including many cases with multiple objectives. We found that the listed objectives are often conflicting and expressed in different measures. Furthermore, none of the cases from the reviewed literature has discussed a systematic approach for dealing with multiple objectives in geosteering contexts. Without implementing a well-structured approach, decision makers are likely to make judgments about the relative importance of each objective based on previous experiences or on approximate methods. Research shows that such decision-making approaches are unlikely to identify optimal courses of action. In this paper, we propose a systematic method for making multi-criteria decisions in geosteering context. The method is constructed such that it is applicable for real-time operations. Results show that different decision criteria can have significant impact on well success as measured by its trajectory, future production, cost, and operational efficiency. Keywords: Geosteering, real-time well placement, geosteering decision, multi-objective decision, decision making.
    [Show full text]
  • Findings Statement for Final SGEIS on Regulatory Program for Horizontal
    FINAL SUPPLEMENTAL GENERIC ENVIRONMENTAL IMPACT STATEMENT ON THE OIL, GAS AND SOLUTION MINING REGULATORY PROGRAM Regulatory Program for Horizontal Drilling and High-Volume Hydraulic Fracturing to Develop the Marcellus Shale and Other Low-Permeability Gas Reservoirs FINDINGS STATEMENT June 2015 LEAD AGENCY: NYSDEC LEAD AGENCY CONTACT: EUGENE J. LEFF Deputy Commissioner of Remediation & Materials Management NYSDEC, 625 Broadway, 14th Floor Albany, NY 12233 P: (518) 402-8044 www.dec.ny.gov Pursuant to Article 8 of the Environmental Conservation Law, the State Environmental Quality Review Act (SEQRA), and its implementing regulations set forth at 6 NYCRR Part 617, the New York State Department of Environmental Conservation makes the following findings: Lead Agency: New York State Department of Environmental Conservation Address: Central Office, 625 Broadway, Albany, NY 12233 Name of Action: Regulatory Program for Horizontal Drilling and High-Volume Hydraulic Fracturing to Develop the Marcellus Shale and Other Low-Permeability Gas Reservoirs Description of Action: High-volume hydraulic fracturing, which is often used in conjunction with horizontal drilling and multi-well pad development, is an approach to extracting natural gas that raises new and significant adverse impacts not studied in 1992 in the NYSDEC’s previous Generic Environmental Impact Statement on the Oil, Gas and Solution Mining Regulatory Program (GEIS). DEC prepared a Supplemental Generic Environmental Impact Statement (SGEIS) to satisfy the requirements of SEQRA by studying the high-volume hydraulic fracturing technique, identifying significant adverse impacts for these anticipated operations that were not identified in the GEIS, and identifying mitigation measures to minimize adverse environmental impacts. The SGEIS was therefore used in considering if and under what conditions high-volume hydraulic fracturing should be allowed in New York State.
    [Show full text]
  • The Shale Oil and Gas Revolution, Hydraulic Fracturing, and Water Contamination: a Regulatory Strategy
    Article The Shale Oil and Gas Revolution, Hydraulic Fracturing, and Water Contamination: A Regulatory Strategy Thomas W. Merrill & David M. Schizer† Introduction ................................................................................ 147 I. Hydraulic Fracturing: A Technological Leap in Drilling for Shale Oil and Gas ............................................................ 152 II. Economic, National Security, and Environmental Benefits from Fracturing ..................................................... 157 A. Economic Growth ...................................................... 157 B. Energy Independence and National Security ......... 161 C. Environmental Benefits: Air Quality and Climate Change ........................................................ 164 1. Cleaner Air from Using Gas Instead of Coal .... 164 2. Climate Change: Reduced Greenhouse Gas Emissions from Burning Gas Instead of Coal ... 165 3. Climate Change: Offsetting Effects of Fugitive Methane Emissions .............................. 166 III. Familiar Risks That Are Not Unique to Fracturing ........ 170 A. Economic Competition for Solar, Wind, and Other Renewables ..................................................... 170 B. Air Pollution .............................................................. 172 C. Congestion and Pressure on Local Communities ... 176 D. Water Usage .............................................................. 177 † The authors are, respectively, Charles Evans Hughes Professor, Co- lumbia Law School, and Dean and the Lucy G. Moses
    [Show full text]
  • Geosteering Improves Bakken Results
    JANUARY 2012 The “Better Business” Publication Serving the Exploration / Drilling / Production Industry Geosteering Improves Bakken Results By Kevin O’Connell, NPE is drilling and developing two blocks, in Divide, Williams and McKenzie coun- David Skari, aggregating approximately 50,000 net acres ties. Wells are being drilled to target zones Aaron J. Wheeler in the heart of the Bakken Shale in Divide, located between 9,000 and 11,000 feet and Allan Rennie Williams, Dunn and McKenzie counties, true vertical depth. The horizontal pro- N.D. (Figure 1). Led by a highly experienced, ducing sections of the wells average 8,000 DENVER–Developing tight oil and technologically focused management team, feet of lateral, which is cased, perforated gas-bearing formations often requires a the company prides itself on customizing its and fractured in multiple stages. The two dense pattern of wells with long lateral drilling and completion methods to the primary intervals targeted within the oil sections. To produce such fields econom- unique geological and geophysical charac- reservoir are a clean dolomite member of ically, producing sections of wells must teristics of its core project blocks. the Three Forks formation and a 15-foot be positioned accurately within the targeted zone below a tight limestone within the Drilling History intervals, while drilling costs are kept to Bakken Middle Member. a minimum. Since early in 2010, Ensign Rigs Nos. Initially, the horizontal production wells A cost-effective solution has been de- 89 and 118 have been working for NPE required drilling a vertical pilot hole that veloped that includes predrill modeling was sidetracked, deviated from vertical of logging-while-drilling measurements FIGURE 1 to build the curve, then drilled laterally along the trajectory of a planned well to North Plains Energy LLC Area of within the producing zone.
    [Show full text]