UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS

DEPARTAMENTO DE CIENCIAS BIOLÓGICAS

PIPER FOSSIL FROM A NEOTROPICAL FOREST OF THE LATE CRETACEOUS OF COLOMBIA :

INFERRED AGES OF ORIGIN AND PATTERNS OF DIVERSIFICATION OF THE GENUS

CAMILA MARTÍNEZ AGUILLÓN

BOGOTÁ , D.C. 2011

UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS

DEPARTAMENTO DE CIENCIAS BIOLÓGICAS

PIPER FOSSIL FROM A NEOTROPICAL FOREST OF THE LATE CRETACEOUS OF COLOMBIA :

INFERRED AGES OF ORIGIN AND PATTERNS OF DIVERSIFICATION OF THE GENUS

CAMILA MARTÍNEZ AGUILLÓN

TESIS DE POSGRADO PARA OPTAR AL TÍTULO DE MAGÍSTER EN CIENCIAS BIOLÓGICAS

DIRECTOR : SANTIAGO MADRIÑÁN (U NIANDES )

CODIRECTOR : CARLOS JARAMILLO (STRI)

BOGOTÁ , D.C. 2011

ABSTRACT

• Premise of study: The description of the new fossil Chavicoides schilleriphyllum

from the late Cretaceous of Colombia is not only the first record associated with

Piperaceae, but one of the oldest angiosperm macrofossils from the Neotropics. The

study of C. schilleriphyllum within a phylogenetic framework allows an approach to

understand the evolutionary history of Piper .

• Methods: Leaf architecture characters of the fossil were compared to extant

angiosperms. The phylogenetic position of C. schilleriphyllum was established based

on a combined analysis of a molecular topology and a morphological matrix in order

to make an internal calibration of the phylogeny of extant species.

• Key Results: The dated phylogeny estimates that the genus Piper was originated in

the Early Cretaceous. The diversification events started since the Late Cretaceous and

continued gradually increasing until end of the Paleogene when the diversification

rates turned exponential.

• Conclusions : Chavicoides schilleriphyllum suggest that the habitat of Piper in the

Late Cretaceous was an understory of a warm and wet forest. The genus seems to

have originated in the Early Cretaceous and its actual distribution, may be a result of

vicariance events. The incredible number of Piper species can be explained by a long

history that is intensified during the end of the Paleogene when the uplift of the

Andes together with development of the Amazon forest caused exponential rates of

diversification. MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 2

Key words: Colombia; dated phylogeny; fossil leaves; fossil record; Guaduas

Formation; Late Cretaceous; Maastrichtian; paleobotany; Piper; ..

AKNOWLEDGMENTS

I would like to thank to Drs. S. Madriñán and C. Jaramillo for their help as advisors of this work; Dr. R. Callejas for valuable commentaries along the study; M. Gutierrez who collected the fossils from the Guaduas Formation, for allow me to work with them; the herbaria US, HUA, COL for let me visit the collection; the Paleobotanical Collection from the United States National Museum of Natural History for let me visit the collection; the herbarium HUA for provide me cuticle samples. This project was supported by the Cuatrecasas Fellowship Award from the Smithsonian Institution; the

University of Missouri Columbia through the collaboration of Dr. A. Jaramillo; and the

Universidad de los Andes through the Proyecto Semilla.

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 3

INTRODUCTION

The tropical rainforest can be documented in the fossil record based on reliable and accessible characteristics that fall into three broad categories, climatic indicators, taxonomic lineage indicators, physiognomic features of leaves and multistratification

(Burnham and Johnson, 2004). The climatic conditions are defined as an annual rainfall of 1800 mm or greater, and a mean annual temperature (MAT) between 18ºC and 28ºC.

The taxonomic indicators are principally the dominance of angiosperms, where more than

80% of individuals belong to the palm family or dicotyledonous angiosperm families.

The physiognomy of leaves is characterized by the presence of entire margins, drip tips and large leaf size (Burnham and Johnson, 2004). The multistratification of the forest refers to tree crowns forming different strata that react different to light and other factors

(Grubb et al., 1963; Morley, 2000). The earliest record of a Neotropical rainforest has recently been documented from the Paleocene of Colombia (Doria et al., 2008; Herrera et al., 2008; Gomez-Navarro et al., 2009). The similar family-level flora composition of

Paleocene and modern Neotropical rainforests suggests that these groups have dominated the tropics for a long time (Doria et al., 2008; Herrera et al., 2008; Gomez-

Navarro et al., 2009; Wing et al., 2009). Pre-Paleocene evidence for an angiosperm- biomass dominated, multistratified rainforest in South America is neither supported nor rejected by the scant data available (Jaramillo et al., 2010b). Almost no macrofossils from tropical floras of Cretaceous age have been placed in modern angiosperm orders

(Burnham and Johnson, 2004). A recently found fossil flora, from the Guaduas

Formation, a Maastrichtian (Late Cretaceous) assemblage from the central Andes of

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 4

Colombia represents a good opportunity to explore the tropical forests of the Cretaceous

(Gutierrez and Jaramillo, 2007). Preliminary analyses show that leaf physiognomy of

Guaduas fossils was dominated by mesophyll-macrophyll leaf sizes with brochidodromous-eucamptodromous venation and entire margins, suggesting a warm and wet palaeoclimate, as is seen in today’s tropical rainforest (Jaramillo et al., 2010b).

However, the Guaduas flora lacks key floristic elements that are present in modern

Neotropical floras (e.g., Fabaceae, Menispermaceae, Moraceae) (Jaramillo et al., 2010b).

Estimations of leaf margin and leaf area, for paleoprecipitation and paleotemperature based on Wilf equations (1997), indicate that this locality presented a MAT of 22 ± 3.4ºC and a mean annual precipitation (MAP) of 2400 mm/year (range 1800–3500 mm) that falls within the modern ranges of tropical rainforests (Gutierrez and Jaramillo, 2007).

Nevertheless, is worth noting that new insights into paleo-estimations of MAT and MAP based on that multivariate and phylogenetic approaches are more accurate and precise

(Little et al., 2010; Pepper et al., 2011).

The Eastern Cordillera of Colombia, where the Guaduas Formation is located, is the easternmost branch of a retroarc fold- and- thrust belt related to the Late Cretaceous–

Cenozoic shortening, resulting from the interaction between the Nazca, Caribbean and

South American plates (e.g. Cooper et al., 1995; Gomez et al., 2009; Parra et al., 2009;

Parra et al., 2010). The Guaduas Formation is a mudstone succession, with sand and coal levels accumulated in different depositional environments that ranges from a supratidal zone to a coastal floodplains and swamps (Sarmiento-Rojas et al., 2006; Amaya et al.,

2010). The Guaduas Flora contains approximately 1200 specimens and 45 morphotypes.

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 5

Although the taxonomic affinities of all the morphotypes has not been yet established, is known that, angiosperms dominated the floodplain environment, with 32 morphotypes described as dicotyledonous, 10 as monocotyledonous, and only two as ferns (pers. comm. Mauricio Gutierrez, 2009). Rhamnaceae has been documented in this flora, based on well preserved leaves and fruits (Correa et al., 2010). Other possible families like

Araceae, Arecaceae, Lauraceae, Zingiberaceae, Fabaceae, Moraceae, and

Menispermaceae are absent. This study describes one of the most abundant morphotypes of the Guaduas flora, the morphotype GD5, which resembles the genus Piper

(Piperaceae) based on leaf megafossil impressions and compressions.

The Piperaceae are an emblematic family of tropical rainforests. Piper is one of the most diverse genera within the angiosperms, with approximately 2,000 species distributed pantropically (Fig. 1) (Jaramillo and Manos, 2001; Quijano-Abril et al., 2006).

Piper reaches its highest diversity in the lowlands of the Neotropics, is often a dominant element in the understory and has been found as one of the five most species-rich genera in Neotropical forests (Gentry, 1990). The elevation range for the genus is 0–2500 m, with a few species occurring above 3000 m. The abundance and morphological diversity of Piper have been proposed as a model of evolution of Neotropical secondary vegetation

(Gomez-Pompa, 1971). Piper species have been considered key species on the basis of its relation with frugivorous bats (Fleming, 1985; Bizerril and Raw, 1998; Jaramillo and

Manos, 2001). Synapomorphies of Piper are their swollen nodes and perianthless flowers arranged in condensed terminal spikes (Jaramillo et al., 2008). Growth habits ranges from mid-size shrubs to treelets and vines (Jaramillo and Callejas, 2004). Small shrubs are

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 6 more associated to the understory of very wet lowlands in the Neotropical forest suggesting more tolerance to shade conditions, while the other habits mentioned are more characteristic of dryer and exposed conditions (Jaramillo and Callejas, 2004). Leaf architecture characters, which are of great importance in this study, present high variation along the genus. Flower presentation may be correlated with their pollination system

(Jaramillo and Manos, 2001) that has been identified as ambophilous (wind and small insects) (De Figueiredo and Sazima, 2000).

Recent molecular phylogenetic studies of Piperaceae have described Piper as monophyletic and sister to Peperomia (Jaramillo and Manos, 2001; Wanke et al., 2006;

Wanke et al., 2007; Jaramillo et al., 2008; Smith et al., 2008). Within Piper three wide geographical clades have been defined (Fig. 1), Neotropical (1300 spp), Tropical Asian

(600 spp) and South Pacific (10 spp), and within the Neotropical group eight additional clades have been described (Quijano-Abril et al., 2006; Jaramillo et al., 2008). Despite the high species diversity and wide geographical representation, together with the recent phylogenetic studies of the genus Piper , its origin and evolution is still not well understood.

The genus also has a scant fossil record. Some leaf fossils have been associated to

Piper , and have been described as Piperites Goeppert (Goeppert, 1854) (Table 1).

Nonetheless, their identity is not entirely trustable: most of the references date from the beginning of the XX century, ages of the outcrops are hard to corroborate, localities are not described in detail, the specimens that could be observed at the Smithsonian paleobotanical collection are not well preserved, and the majority of the descriptions are

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 7 based only in one specimen. On exception is a seed from the Pleistocene deposits of the

Tequendama Lake (Wijninga, 1996) in the eastern cordillera of the Andes of Colombia that seems to be related to the extant species Piper bartilingium (pers. comm. Ricardo

Callejas, 2011).

Phylogenies for Piperaceae have estimated that the family originated during the

Cretaceous. Smith et al (2008) used the phylogenetic topology of and the fossil record of Lactoris (Lactoridaceae) to establish a minimum stem age for

Piperaceae/Saururaceae of 91.2 Ma, with the crown group of Piper at 71.75 Ma and

Peperomia at 88.89 Ma. Other studies using a molecular clock calibrated with various fossils, estimated that the minimum age for Piperales is ~ 135 Ma (Wikstrom et al., 2004;

Moore et al., 2007; Bell et al., 2010). Recent molecular analyses also indicate that

Piperales are a relatively early divergent angiosperm lineage (Qiu et al., 1999; Doyle,

2000; Soltis et al., 2000; Zanis et al., 2002; Jaramillo and Kramer, 2007).

The comparison of leaf architecture patterns of the morphotype GD5 with extant species permitted a parsimony association of this fossil with extant members of the genus

Piper . Placement of this fossil in a molecular phylogeny of Piper , allows inference of ages of origin of this important pantropical genus, as well as elucidates the biogeographic patterns and processes that have led to its large diversification.

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 8

MATERIALS AND METHODS

Fossil locality and description

Guaduas Formation–– Fossil leaves were collected from two localities (0501 and 0502) in the middle part of the Guaduas Formation, at The Montecristo Ubaté coal mine, located on the central part of the eastern Cordillera of Colombia (5º14’08.5”N,

73º48’15.2”W) (Fig. 1 and 2).

Fossil material–– Forty-two specimens were associated to the morphotype named GD5; five specimens from the locality 0501 and 37 from 0502. The leaves were described following the parameters of the Leaf Manual Architecture (Ellis et al., 2009). All specimens were analyzed at the Smithsonian Tropical Research Institute using a stereoscope and photographed using a Nikon D90s with varied low-angle lighting to reveal venation details. All specimens were draw using a camera lucida. Cuticles were prepared using a modified Schulze method (Upchurch, 2009). Fluorecense Microscope

(Carl Zeiss CME) and the Scanning Electron Microscope (JSM-6490LV) were also used to observe the cuticles. The fossil material is stored at the paleontological collection of the Museo de Historia Natural of the Universidad de los Andes, in Bogotá, Colombia

(ANDES-Paleo).

Fossil and extant leaves comparison

The comparison of extant and fossil leaves was performed at the National Museum of

Natural History (NMNH) in Washington, DC, USA. The first step was an exhaustive

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 9 comparison using the collection of cleared leaves housed in the Paleobotanical

Collection. Leaf architecture of eight angiosperm families were examined:

Aristolochiaceae, Ericaceae, Euphorbiaceae, Fabaceae, Menispermaceae, Piperaceae,

Saururaceae and Smilacaceae. Subsequently, a more detailed revision of the order

Piperales was done at the United States National Herbarium (US) and finally a revision of the genus Piper was performed from herbarium collections at US, Herbario Nacional

Colombiano (COL) and Herbario de la Universidad de Antioquia (HUA), and direct observation of species in the field. The species selected for the revision of the genus were chosen based on the most recent phylogeny of the genus Piper (Jaramillo et al., 2008). In total 255 species of Piperaceae were evaluated, 243 species of Piper, nine species of

Peperomia , two species of Manekia and one species from Zippelia, were included in the analysis to evaluate the overall leaf morphological variation of the genus. All herbarium specimens and cleared leaves were also described following the Manual of Leaf

Architecture (Ellis et al., 2009). A total of 40 characters of leaf architecture were scored in a matrix of 255 species . Peperomia characters were score partially based on morphological descriptions of Samain and collaborators (2009) and direct observation of herbarium specimens at US.

Phylogenetic analyses

The first phylogenetic analysis was done in order to obtain enough material to perform the next morphological analysis that aims to elucidate the phylogenetic position of the fossil Chavicoides schilleriphyllum. The obtained material was a topology of the genus

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 10

Piper that included an outgroup and high sampling without repeated species.

Additionally, the obtained branch lengths were useful to analyze diversification patterns.

A total of 572 sequences of internal transcribed spacer (ITS) were obtained from

Genbank, according to the accession numbers published by Jaramillo and collaborators

(2008) (Appendix 1). Additionally, 19 species of Peperomia were added to the analysis

(Appendix 1). The alignment of the sequences was performed using Muscle 3.6 (Edgar,

2004). Maximum parsimony (MP) and Bayesian inference (BI) methods were used for the phylogenetic analyses implementing PAUP* 4.0b10 (Swofford, 2003) and MrBayes

3.1.2 (Huelsenbeck and Ronquist, 2001). For the MP analysis, a heuristic search was carried out using unweighted characters with 1000 replicates of random taxon addition sequence and tree-bisection-reconnection (TBR) branch swapping on best trees only, with a MaxTrees value of 3000 and other standard settings. Bootstrap support values were estimated in PAUP* by running 1000 replicates under MP. The analysis provided enough information to discard 236 sequences that corresponded to individuals from the same species that occurred in the same phylogenetic position and species whose position was incongruent along the phylogeny after the Adams consensus.

The new set of data that contained 336 sequences was aligned again using MUSCLE

3.6 (Edgar, 2004). The best-fit model was selected using MrModeltest 2.2 following the

Akaike Information Criterion (AIC) (Nylander, 2004). The model chosen for the entire region of ITS was GTR+I+G. Two simultaneous Bayesian analyses were run with four

Metropolis-Coupled Markov Monte Carlo Chains (MCMC), for 5 million generations, sampled every 100 generations. The output of the diagnostic analysis of the MCMC was

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 11 evaluated in Tracer v1.5 (Rambaut and Drummond, 2007). Then 4000 samplings were discarded as the burn-in parameter, after checking for stability on the log-likelihood curves, and the remaining trees from the independent runs (16,000 trees) were combined to build a 50% majority rule consensus tree. An additional analysis excluding the outgroup (Peperomia ) was performed under the same parameters mentioned above.

Placement of the fossil within the phylogeny

The obtained Bayesian tree that included the outgroup was pruned and its polytomies were resolved, using the package APE (Paradis et al., 2004) in R 2.12.2 Gui 1.36 (Team,

2004). The pruning was done in order to exclude the species that did not have morphological information associated. The polytomies showed in the last analysis were resolved for the next analysis, collapsing the nodes that presented a posterior probability lower than 0.5. Subsequently, the tree was used as a phylogenetic scaffold to place the fossil within the phylogeny using a parsimonious method implemented by Manos and collaborators (2007). The matrix representation parsimony function of PAUP* was used to produce a matrix of node data by taxon of the Bayesian tree (DNA-MPR). Separately, forty characters (ordered and unordered) were use to construct a morphological matrix, but two of them were discarded because they were not parsimony-informative. Both matrices were then combined, namely, the DNA-MPR with the morphological data. The matrix contained, 223 species of Piper , nine of Peperomia and the fossil Chavicoides schilleriphyllum. The outgroup that was obtained since the previous bayesian analysis, was necessary to perform the parsimonious analysis and give a polarity to the

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 12 morphological characters. The morphological characters were coded as order and unordered depending on their information, however, all were equally weighted (Table 2).

On the contrary the DNA-MPR characters were all unordered but weighted based on the posterior probability value of each node. Specifically, values under 0.6 were equivalent to

1, from 0.61–0.7=2, from 0.71–0.8=3, from 0.81–0.9=4, and from 0.91–1=5. The fossil was coded as missing for the remaining cells of the matrix representing the molecular topology.

Divergence Time Estimation

To test if sequences evolved in a clocklike manner, we extracted the single Maximum

Likelihood (ML) tree using the software RaxML-HPC BlackBox (Stamatakis, 2006). The outgroup, Peperomia glabaratum, was selected giving the shortest value observed in a matrix of genetic distances constructed under the method of neighbor-joining and the model Tamura-Nei, that included 22 outgroup taxa using Geneious v4.8.5 (Drummond

A.J, 2010). The analysis was run under a GTR+G+I model and other default settings using the Cipres portal (Miller, 2009). The tree was uploaded in PAUP* and likelihood scores were computed with and without enforcing a molecular clock, in order to calculate the likelihood ratio (Raven and Axelrod). The results of LR indicate that the strict clock model should be rejected (p < 0.0001).

The calibration was performed for a third alignment of 316 sequences that excluded the outgroup in BEAST 1.6.1 (Drummond and Rambaut, 2007). The new scores generated in MrModelTest 2.2 were used to establish the evolutionary model, the

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 13 substitution parameters, the gamma shape parameter and the proportion of invariant sites in BEAUti v1.5.4. To obtain divergence times, we used the new fossil Chavicoides schilleriphyllum from the Maastrichtian to calibrate the tree given the results of the last analysis, namely, within the Schilleria clade. The age was set also as a prior with a lognormal distribution, an offset of 67 Ma and a standard deviation equal to one.

Additionally, the maximal age of origin of the genus was set to 135 Ma also with a lognormal distribution and a standard deviation equal to one, based on previous publications (Wikstrom et al., 2004; Moore et al., 2007; Bell et al., 2010). Two independent runs of 10 million generations each were run using an uncorrelated lognormal relaxed-clock model and a Yule process as a tree prior. The output log files were then evaluated in Tracer v1.5. The resultant trees were merged using LogCombiner v1.6.1. A maximum-clade credibility tree was computed and 95% confidence intervals of ages were calculated with a burn-in of 25% using TreeAnnotator v1.6.1. Finally, the dated phylogeny was uploaded in R and using the APE package, the lineages were plotted through time.

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 14

RESULTS

Systematic description

Family—Piperaceae

Morphogenus—Chavicoides Martínez, gen. nov.

Genus diagnosis–– Petioles long and striate; petiolar attachment marginal or peltate very eccentric. Lamina ovate, mesophyllous with medial and basal symmetry; laminar length/width proportion 1.5:1; base shape cordate or rounded; apex shape straight or slightly acuminate. Primary venation pinnate; agrophic veins simple; major secondary venation simple brochidodromous, irregular spacing; first basal ~4(5) secondary veins alternate and nested close to the base followed by a space, next secondary veins arise above the 1/3 part of the blade; intersecondary veins weak; epimedial tertiaries mostly sinuous opposite; quaternary and quinternary veins irregular polygonal reticulate; areolation shows poor development; veinlets one branched with free-ending mostly with tracheoid idioblast terminations.

Genus derivatio nominis: The genus refers to Chavica Miq. a name that was synonymized Piper L.

Type species—Chavicoides schilleriphyllum Martínez sp. nov.

Species diagnosis––Chavicoides schilleriphyllum Martínez sp. nov. Petioles long and striate; petiolar attachment marginal or peltate very eccentric. Lamina ovate, mesophyllous with medial and basal symmetry; laminar length/width proportion 1.5:1; base shape cordate or rounded; apex shape straight or slightly acuminate. Primary

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 15 venation pinnate; agrophic veins simple; major secondary venation simple brochidodromous, irregular spacing; first basal ~4(5) secondary veins alternate and nested close to the base followed by a space, next secondary veins arise above the 1/3 part of the blade; intersecondary veins weak; epimedial tertiaries mostly sinuous opposite; quaternary and quinternary veins irregular polygonal reticulate; areolation shows poor development; veinlets one branched with free-ending mostly with tracheoid idioblast terminations.

Holotype–– ANDES-Paleo-0001, Fig. 3.

Paratypes–– ANDES-Paleo-0002, ANDES-Paleo-0003, Fig. 3.

Repository––Paleontological collection. Museo de Historia Natural, Universidad de los

Andes. (ANDES-Paleo)

Type locality—Guaduas Formation, locality 0502, coal mine, Ubaté Mina Montecrito,

Llanos basin, Cundinamarca, eastern cordillera, located at 5° 14 ′ N, 73° 48 ′ W (WGS 84).

Tunnel level four.

Species derivatio nominis —The speci fic epithet refers to the Piper clade that is more related to the fossil.

Studied material—AND-Paleo–0501: 20900, 20901, 20950, 21278, 21279 and AND-

Paleo–0502: 20275, 20899, 20902, 20907, 20909, 20910, 20916, 20924, 20927, 20931,

20934, 20935, 20936, 20939, 20943, 20944, 20952, 20957, 20958, 20960, 20962, 20963,

20964, 20969, 20972, 20977, 20979, 20981, 20982, 20984, 20985, 21199, 21280, 21282,

21284, 21285, 21286

Species description—Petioles long and striate (~3 cm); petiolar attachment marginal or

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 16 peltate very eccentric. Lamina ovate, mesophyllous with medial and basal symmetry; laminar length/width proportion 1.5:1; base shape cordate or rounded, base angle wide obtuse or obtuse; apex shape straight or slightly acuminate, apex angle acute. Venation primary pinnate; agrophic veins simple; major secondary venation simple brochidodromous with the angles smoothly decreasing toward base, irregular spacing; first basal ~4(5) secondary veins alternate and nested close to the base followed by a space, next secondary veins arise above the 1/3 part of the blade, secondary veins mostly with decurrent attachment to the midvein; intersecondary veins weak, length <50% of subjacent secondary, proximal course parallel to subjacent major secondary, distal course reticulating; epimedial tertiaries mostly sinuous opposite percurrent with proximal course perpendicular to the midvein and distal course parallel to intercostal tertiary; quaternary and quinternary veins irregular polygonal reticulate; areolation shows poor development; veinlets one branched with free-ending mostly with tracheoid idioblast terminations; marginal ultimate venation looped.

After several tries of SEM preparation and observation of the cuticles, is possible to conclude that the cuticles were not preserved in Chavicoides schilleriphyllum.

Comparison––Leaves with ovate shape, cordate base and straight to acuminate apex are present in Aristolochiaceae, Ericaceae, Euphorbiaceae, Fabaceae, Menispermaceae,

Piperaceae, Saururaceae and Smilacaceae. However, Piperaceae and specifically the genus Piper is the only group that shares with the fossil Chavicoides schilleriphyllum the following characters: mesophyll size, idioblasts along the lamina, pinnate primary venation, first basal ~4(5) secondary veins are alternate and nested close to the base,

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 17 secondary veins with decurrent attachment to the midvein, irregular spacing between next secondary veins and weak intersecondary veins. Differences between Chavicoides schilleriphyllum and the other families revised are listed below. Aristolochiaceae presents naked veins, Ericaceae are mostly notophyll, Euphorbiaceae and Fabaceae present opposite secondaries, Smilacaceae and Saururaceae have actinodromous or acrodomous primary venation and Menispermaceae lacks idioblasts. Within Piperaceae, the following genera were discarded due to certain character differences: Zippelia and Manekia present acrodromous venation; Verhuellia has leaves with microphyll and nanophyll size; and

Peperomia has leaves that are predominantly microphyll or notophyll, and when pinnate venation is present, secondary veins are opposite.

Phylogenetic analyses

The consensus trees derived from the 50% majority-rule calculated under BI including and excluding the outgroup are shown in Figure 4 and 5 respectively (complete trees in

Appendix 2 and 3). The figures display a phylogram with the posterior probability value for the principal nodes. The first consensus tree showed congruent results with Jaramillo et al. (2008), however, less resolution was obtained for the basal node. The second consensus tree that excluded the outgroup showed more resolution for the main polytomies of the last analysis, and the new topology was congruent with Jaramillo et al.

(2008). The shortest length branches were present in the more diverse clades of the genus, Radula and Macrostachys . In contrast, the Asian clade presented longer branches

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 18 than the rest of the genus. The support for the ten clades given by the posterior probability values observed in the second tree is high (Fig. 5).

Placement of the fossil within the phylogeny

A morphological matrix with 38 characters for 254 taxa was codified based on the leaf architecture characters observed (Table 2 and Appendix 3). The Adams consensus tree calculated from the combined analysis of the matrix topology (DNA-MPR) and the morphological data shows that the fossil is nested within the Neotropical clade Schilleria

(Fig. 6). The support for this clade is 0.7 and it is given by the past bayesian analysis, however, the internal node, that excludes 5 species (P. subcustatum , P. piluleferum , P. sternii , P. scutilimbum and P. urophyllum ) forms an internal monophyletic group that has a Bayesian support of one. Specifically, the fossil is located as a sister taxa of the mentioned group.

Divergence Time Estimation

The maximum-clade credibility tree obtained is shown in Figure 7. The topology is congruent with Jaramillo et al. (2008), where the three geographical clades: Neotropical,

Asian Tropics and South Pacific are well defined. Inside the Neotropical clade, there are two main monophyletic groups. The first contains the clades Schilleria, Ottonia and

Enckea, and presents lineages originated since the Late Cretaceous. The second comprises the clades Pothomorphe, Peltobryon, Macrostachys and Radula , the last three of them are the most species rich of the genus and the majority of the species have been

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 19 originated recently, during the Neogene. The secondary calibration point that was based on previous molecular estimations, was included to set a bound for a maximal age at

~135 Ma. Otherwise the origin of the genus would predate know ages of the origin of the order Piperales.

When both calibration points (the possible origin of Piperales and the fossil

Chavicoides schilleriphyllum ) were included, the estimated age of origin of Piper was approximately 139.5 Ma (135–148 Ma). The result is older than the age found by Smith et al. (2008) 71.75 Ma. The ages of the principal diversification events started during the

Late Cretaceous and continued throughout the Paleogene and the Neogene (Fig. 7 and 8).

The plot of lineages through time (LTT) showed that a few lineages were originated since the Early Cretaceous, before the splitting of South America and Africa (Fig. 8). Then from the Late Cretaceous until the end of the Paleogene, Piper showed a gradual increase of lineages. Finally, the Neogene showed a curve inflection, turning to exponential the number of new lineages.

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 20

DISCUSSION

The flora of the Guaduas Formation of Colombia corresponds to the first Pre-

Paleocene evidence of a tropical forest dominated by angiosperms. The description and phylogenetic placement of Chavicoides schilleriphyllum within Piperaceae, is also one of the first macrofossil records from a Tropical flora associated to a modern angiosperm order. The Guaduas Formation, a coal-bearing, swampy and coastal plain environment, suggests that the paleoclimate was warm and wet (Gutierrez and Jaramillo, 2007). The

Schilleria clade, hypothesized as the group to which the fossil C. schilleriphyllum belongs, is composed of species that generally prefer well-drained soils (commonly composed of gravel on the banks of streams), and live under partial shade (never fully exposed) in areas of medium disturbance (pers. comm. Ricardo Callejas, 2011). On the basis of the leaf physiognomy of C. schilleriphyllum , its association to the Schilleria clade and the paleoclimate estimation of the Guaduas Formation, it is possible to suggest that the environment at that time was a humid megathermal closed forest. Specifically, the shape and size of C. schilleriphyllum , together with the habitat conditions of modern species of Schilleria, and many other species of Piper (Gentry, 1990; Jaramillo and

Manos, 2001), may indicate that the fossil belongs to the understory of a multistratified forest. Nevertheless, although the angiosperms started to diversify rapidly during the

Mid-Cretaceous (Wing and Boucher, 1998; Morley, 2000; Bell et al., 2010), it is still controversial whether the canopy was composed of ferns, gymnosperms or angiosperms.

The floristic composition of the Guaduas Flora, with 95% angiosperm representation, may indicate that the possible canopy was mostly composed by angiosperms. A well-

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 21 studied flora found in a mid-Maastrichtian volcanic ash in Central Wyoming, USA, Big

Cedar Ridge, has shown that in northern to mid-latitudes the landscape was not dominated by angiosperms, but by gymnosperms and ferns. Angiosperms were dominant only in floodplains (Wing et al., 1993). The Guaduas Flora, which occurred on low latitudes and was accumulated in floodplains, is a useful site to compare it with the Cedar

Ridge flora of similar age.

The association of Chavicoides schilleriphyllum to the genus Piper allowed an approach to study the evolutionary history of Piper. The phylogenetic analyses that were conducted to estimate ages of origin and patterns of diversification, led to interesting scenarios of evolutionary history. The method used to place the fossil within the phylogeny produced consistent results with previous morphological observations. The combined analysis of leaf architectural characters and a topology matrix product of the

Bayesian tree, allowed for an objective placement of the fossil on the molecular phylogenetic hypothesis. Other methods like the combined analysis of the raw DNA sequences and morphological data (Manos et al., 2007; Wiens et al., 2010) were not useful for this purpose, due to the prevalence molecular characters (991), and a comparatively low number of morphological characters (40). Instead, a scaffold topology that will no change through the analysis, together with the assessment of all the informative morphological characters, allowed the abstraction of the relevant morphological information to place the fossil within the phylogeny (Fig. 6).

High sequence variation between species of Piper and its sister group Peperomia may be a consequence of a long history of independent divergence compared to their brief

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 22 shared history (Fig. 4). Low sequence variation within species-rich clades in Piper , such as Radula, Macrostachys and Peltobryon, may be a result of recent events of diversification producing the majority of the species richness of the genus (Fig. 5).

The exclusion of the outgroup in the calibration analysis was necessary in order to determine more precisely the ages of the nodes and the natural relation between species, since Peperomia was highly divergent from its sister group Piper (Fig. 4). Moreover, the sample size of Peperomia was not comparable to the sample size of Piper and this could produce noise and reduce the accuracy of the age estimation.

Jaramillo and Manos (2001) and Ricardo Callejas (pers. comm. 2011) concur in that

Piper was originated in Gondwana and its actual distribution was probably a result of a vicariance event rather than dispersal. This hypothesis is consistent with the obtained topology of Piper , where the principal clades (Neotropical, South Pacific and Asian

Tropics) are clearly defined by geographic regions, except for the tropical African Piper

(~3 species) whose distribution seems to be a consequence of two separate dispersal events (Jaramillo et al., 2008). Furthermore, the evidence from the dated phylogeny shows that the age of origin of the genus (~139.5 Ma) predates the splitting of Gondwana

(~95 Ma ± 5) (Graham, 2011) into Africa and South America (Fig. 7 and 8). Is worth mentioning that at that time the fossil record for angiosperms is almost absent, the oldest fossil angiosperm found date from ~136 Ma (Friis et al., 2006). However, molecular analysis have converged on estimates for the origin of the angiosperms between 180–140

Ma (Bell et al., 2010) and have indicated that Piperales is an early lineage (Qiu et al.,

1999; Doyle, 2000; Soltis et al., 2000; Zanis et al., 2002; Jaramillo and Kramer, 2007;

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 23

Bell et al., 2010). New morphological approaches, moreover, suggest that seed ferns from the Mesozoic could be the closest relatives of angiosperms (Doyle, 2006; Taylor and

Taylor, 2009). Therefore, as Wing and Bouncher (Wing and Boucher) suggest, it is possible that by the Late Cretaceous all the angiosperm families have originated and thus the age of origin of Piper is consistent we these hypothesis.

Since the majority of the diversity of Piper is centered in the Neotropics and most of the number of diversification events occurred there, the following discussion will be centered in the species that belong to the Neotropical clade.

The LTT curve (Fig. 8) displays two inflection points in the slope derivate, one at ~90

Ma and other at ~28 Ma. The first inflection point could indicate that Piper, during the

Mid-Cretaceous, started to diversify rapidly as many others the angiosperms did (Wing and Boucher, 1998; Morley, 2000; Bell et al., 2010). Particularly, the clades Peltobryon,

Ottonia and Schilleria present the first diversification events at this time. Later on, the increase on the number of lineages is gradual until the end of the Paleogene. The drastic temperature changes that occurred during this time, like the Paleocene-Eocene Thermal

Maximum (PETM) that has been strongly correlated with an increase in floral diversity in the Neotropics (Jaramillo et al., 2010a), did not strongly affect diversification events in

Piper. The second inflection point (~28 Ma) in which the rate of new lineages turns exponential seems to be highly correlated with the uplift of the Andes cordillera. Recent evidence have hypothesized that the modern Amazon is closely related with the development of the Andes (Mora et al., 2010). Thus, to understand the possible patterns of diversification at this age is important to know the distribution of the Neotropical

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 24 clades (Table 3). In the table 3 is observed that the more diverse clades Radula,

Macrostachys and Peltobryon, are widely distributed and associated to Amazon and

Andean forests. Whereas the older clades, Enckea, Ottonia and Schilleria , are somewhat less diverse and its distribution is less associated with Andean landscapes. Therefore, it seems that the phenomenon that was driving the independent events of diversification in the different Neotropical Piper clades during the Neogene was the uplift of the Andes cordillera together with the correlated development of the Amazon forest. The hypothesis is congruent with the assumption of Smith et al. (2008) who suggested that the raising of the Andes should have had an enormous effect on the speciation of Piper.

The integration of the fossil record with morphological and molecular data of extant species of Piper provided information to infer possible paleo-habitats of the genus, ages of origin and patterns of diversification. The fossil Chavicoides schilleriphyllum suggest that the habitat of the genus in the Late Cretaceous was an understory of a warm and wet forest. The genus seems to be originated in the Early Cretaceous and its actual distribution, may be a result of a vicariance event. The incredible number of species of the genus Piper can be explained by a long history of diversification that started since the

Mid-Cretaceous and continued gradually increasing until end of the Paleogene when the uplift of the Andes together with development of the Amazon forest caused exponential rates of diversification. Today Piper species could be as old as the Cretaceous or could belong to recent diversification events.

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 25

REFERENCES

AMAYA , E., J. MARIÑO , and C. JARAMILLO . 2010. Litofacies y ambientes de acumulación de la Formación Guaduas en la parte central de la cordillera oriental – Implicaciones paleogeográficas. Boletín de Geología. 32: 13–25.

BELL , C. D., D. E. SOLTIS , and P. S. SOLTIS . 2010. The age and diversification of the angiosperms re-revisited. American Journal of Botany 97: 1296-1303.

BIZERRIL , M. X. A., and A. R AW . 1998. Feeding behaviour of bats and the dispersal of Piper arboereum seeds in Brazil. Journal of Tropical Ecology 14: 109-114.

BURNHAM , R. J., and K. R. JOHNSON . 2004. South American palaeobotany and the origins of neotropical rainforests. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359: 1595.

COOPER , M., F. A DDISON , R. ALVAREZ , M. CORAL , R. GRAHAM , A. HAYWARD , S. HOWE , et al. 1995. Basin development and tectonic history of the Llanos basin, Eastern Cordillera, and Middle Magdalena Valley, Colombia. AAPG bulletin 79: 1421-1421.

CORREA , E., C. A. J ARAMILLO , S. MANCHESTER , and M. GUTIERREZ . 2010. A fruit and leaves of Rhamnaceous affinities from the late Cretaceous (Maastrichtian) of Colombia. American Journal of Botany 97: 71-79.

DE FIGUEIREDO , R. A. Ô., and M. SAZIMA . 2000. Pollination biology of Piperaceae species in southeastern Brazil. Annals of Botany 85: 455.

DORIA , G., C. A. J ARAMILLO , and F. HERRERA . 2008. Menispermaceae from the Cerrejon Formation, middle to late Paleocene, Colombia. American Journal of Botany 95: 954-973.

DOYLE , J. 2006. Seed ferns and the origin of angiosperms. The Journal of the Torrey Botanical Society 133: 169-209.

DOYLE , J. A. E., P. K. 2000. Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. International Journal of Plant Sciences 161: 121–153.

DRUMMOND A.J, A. B., B UXTON S, CHEUNG M, COOPER A, HELED J, KEARSE M, MOIR R, STONES -HAVAS S, STURROCK S, THIERER T, WILSON A. 2010. Geneious v4.8.5.

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 26

DRUMMOND , A. J., and A. R AMBAUT . 2007. BEAST: Bayesian evolutionary analysis by sampling trees. Bmc Evolutionary Biology 7: 214.

EDGAR , R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797.

ELLIS , B., D. C. DALY , L. J. H ICKEY , K. R. JOHNSON , J. D. MITCHELL , P. WILF , and S. L. WING . 2009. Manual of Leaf Architecture. Cornell University Press, Ithaca, NY, USA.

FLEMING , T. H. 1985. Coexistence of five sympatric Piper (Piperaceae) species in a tropical dry forest. Ecology 66: 688-700.

FRIIS , E. M., K. R. P EDERSEN , and P. R. CRANE . 2006. Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeography, Palaeoclimatology, Palaeoecology 232: 251-293.

GENTRY , A. H. 1990. Floristic similarities and differences between southern Central America and upper Central Amazonia. In Y. U. Press [ed.], Four Neotropical rain forests., 141–157, New Haven, CT, USA.

GOEPPERT , H. R. 1854. Die Tertiärflora Auf Der Insel Java, 45–46. C.W. Mieling, Gravenhage, Netherlands.

GOMEZ , A. A., C. A. J ARAMILLO , M. PARRA , and A. MORA . 2009. Huesser Horizon: a lake and a marine incursion in northwestern South America during the early Miocene. PALAIOS 24: 199.

GOMEZ -NAVARRO , C., C. A. JARAMILLO , F. HERRERA , S. WING, and R. C ALLEJAS . 2009. Palms (Arecaceae) from a Paleocene rainforest of northern Colombia. American Journal of Botany 96: 1300.

GOMEZ -POMPA , A. 1971. Posible papel de la vegetación secundaria en la evolución de la flora tropical. Biotropica 3: 125-135.

GRAHAM , A. 2011. The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time. American Journal of Botany 98: 336.

GRUBB , P., J. L LOYD , T. PENNINGTON , and T. WHITMORE . 1963. A comparison of montane and lowland rain forest in Ecuador I. The forest structure, physiognomy, and floristics. Journal of Ecology 51: 567-601.

GUTIERREZ , M., and C. J ARAMILLO . 2007. Maastrichtian paleotempera- ture and paleoprecipitation from the Guaduas Formation, Colombia. Palynology 32.

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 27

HERRERA , F., C. A. J ARAMILLO , D. DILCHER , S. WING, and C. G OMEZ -N. 2008. Fossil Araceae from a Paleocene neotropical rainforest in Colombia. American Journal of Botany 95: 1569.

HUELSENBECK , J. P., and F. R ONQUIST . 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.

JARAMILLO , C., D. OCHOA , L. CONTRERAS , M. PAGANI , H. CARVAJAL -ORTIZ , L. M. PRATT , S. KRISHNAN , et al. 2010a. Effects of Rapid Global Warming at the Paleocene-Eocene Boundary on Neotropical Vegetation. Science 330: 957-961.

JARAMILLO , C. A., C. HOORN , S. SILVA , F. LEITE , F. HERRERA , L. QUIROZ , R. DINO , et al. 2010b. The origin of the modern Amazon rainforest: implications of the palynological and palaeobotanical record.

JARAMILLO , M., and P. M ANOS . 2001. Phylogeny and patterns of floral diversity in the genus Piper (Piperaceae). American Journal of Botany 88: 706.

JARAMILLO , M., R. C ALLEJAS , C. DAVIDSON , J. SMITH , A. STEVENS , and E. TEPE . 2008. A Phylogeny of the Tropical Genus Piper Using Its and the Chloroplast Intron psbJ–petA. Systematic Botany 33: 647-660.

JARAMILLO , M. A., and R. C ALLEJAS . 2004. Current perspectives on the clasification and phylogenetics of the genus Piper ., Piper: A model genus for studies of chmistry, ecology, and evolution, 179–198. Kluwer Academic, Boston, USA.

JARAMILLO , M. A., and E. M. K RAMER . 2007. Molecular evolution of the petal and stamen identity genes, APETALA3 and PISTILLATA, after petal loss in the Piperales. Molecular phylogenetics and evolution 44: 598-609.

LITTLE , S. A., S. W. K EMBEL , and P. WILF . 2010. Paleotemperature Proxies from Leaf Fossils Reinterpreted in Light of Evolutionary History. PLoS One 5: 5161.

MANOS , P. S., P. S. S OLTIS , D. E. SOLTIS , S. R. MANCHESTER , S. H. OH, C. D. BELL , D. L. D ILCHER , et al. 2007. Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets. Systematic Biology 56: 412.

MILLER , M. H., MT; VOS , R; MIDFORD , PE; LIEBOWITZ ,T; CHAN , L.; HOOVER , P; WARNOW , T. 2009. The CIPRES Portals Website http://www.phylo.org/sub_sections/portal [accessed 08-04 2009].

MOORE , M., C. B ELL , and P. S. SOLTIS . 2007. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proceedings of the … .

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 28

MORA , A., P. B ABY , M. RODDAZ , M. PARRA , S. BRUSSET , W. HERMOZA , and N. ESPURT . 2010. Tectonic history of the Andes and sub-Andean zones: implications for the development of the Amazon drainage basin. In C. Hoorn AND F. P. Wesselingh [eds.], Amazonia: Landscape and species evolution: a look into the past, 38–60.

MORLEY , R. J. 2000. Origin and evolution of tropical rain forests. Wiley Chichester (United Kingdom).

NYLANDER , J. 2004. MrModeltest v2. 2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University .

PARADIS , E., J. C LAUDE , and K. STRIMMER . 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289.

PARRA , M., A. M ORA , C. JARAMILLO , V. TORRES , G. ZEILINGER , and M. R. STRECKER . 2010. Tectonic controls on Cenozoic foreland basin development in the north- eastern Andes, Colombia. Basin Research : 1-30.

PARRA , M., A. M ORA , C. A. JARAMILLO , M. STRECKER , E. SOBEL , L. QUIROZ , M. RUEDA , et al. 2009. Orogenic wedge advance in the northern Andes: Evidence from the Oligocene-Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia. Bulletin of the Geological Society of America 121: 780.

PEPPE , D., J. ROYER , D. L., CARIGLINO , B., OLIVER , S. Y., NEWMAN , S., LEIGHT , E., ENIKOLOPOV , G., FERNANDEZ BURGOS , M., HERRERA , F. and ADAMS , J. M. 2011. Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 190: 724-739.

QIU , Y. L., J. L EE , F. BERNASCONI -QUADRONI , D. E. SOLTIS , P. S. SOLTIS , M. ZANIS , E. A. Z IMMER , et al. 1999. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402: 404-407.

QUIJANO -ABRIL , M., R. C ALLEJAS -POSADA , and D. MIRANDA -ESQUIVEL . 2006. Areas of endemism and distribution patterns for Neotropical Piper species (Piperaceae). Journal of Biogeography 33: 1266-1278.

RAMBAUT , A., and A. D RUMMOND . 2007. Tracer. Version 1.5. Distributed by authors .

RAVEN , P. H., and D. I. A XELROD . 1974. Angiosperm biogeography and past continental movements. Annals of the Missouri Botanical Garden 61: 539-673.

SAMAIN , M., L. V ANDERSCHAEVE , P. CHAERLE , P. GOETGHEBEUR , C. NEINHUIS , and S. WANKE . 2009. Is morphology telling the truth about the evolution of the species rich genus Peperomia (Piperaceae)? Plant Systematics and Evolution 278: 1-21.

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 29

SARMIENTO -ROJAS , L. F., J. D. V AN WESS , and S. CLOETINGH . 2006. Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Journal of South American Earth Sciences 21: 383-411.

SMITH , J. F., A. C. S TEVENS , E. J. TEPE , and C. DAVIDSON . 2008. Placing the origin of two species-rich genera in the late cretaceous with later species divergence in the tertiary: a phylogenetic, biogeographic and molecular dating analysis of Piper and Peperomia (Piperaceae). Plant Systematics and Evolution 275: 9-30.

SOLTIS , D. E., P. S. S OLTIS , M. W. CHASE , M. E. MORT , D. C. ALBACH , M. ZANIS , V. SAVOLAINEN , et al. 2000. Angiosperm phylogeny inferred from 18S rDNA, vbcL, and atpB sequences. Botanical Journal of the Linnean Society 133: 381-461.

STAMATAKIS , A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688- 2690.

SWOFFORD , D. L. 2003. {PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4.}.

TAYLOR , E. L., and T. N. T AYLOR . 2009. Seed ferns from the late Paleozoic and Mesozoic: Any angiosperm ancestors lurking there? American Journal of Botany 96: 237-251.

TEAM , R. D. C. 2004. R: a language and environment for statistical computing. R foundation for Statistical Computing .

UPCHURCH , G. 2009. Improved Techniques for the Preparation of Cuticle from Angiosperm Leaf Megafossils and Extant Angiosperm Leaves. Texas State University, San Marcos, TX, USA.

WANKE , S., M. S AMAIN , L. VANDERSCHAEVE , G. MATHIEU , P. GOETGHEBEUR , and C. NEINHUIS . 2006. Phylogeny of the genus Peperomia (Piperaceae) inferred from the trnK/matK region (cpDNA). Plant Biology 8: 93-102.

WANKE , S., M. J ARAMILLO , T. BORSCH , M. SAMAIN , D. QUANDT , and C. NEINHUIS . 2007. Evolution of Piperales--matK gene and trnK intron sequence data reveal lineage specific resolution contrast. Molecular phylogenetics and evolution 42: 477-497.

WIENS , J. J., C. A. K UCZYNSKI , T. TOWNSEND , T. W. REEDER , D. G. MULCAHY , and J. W. S ITES . 2010. Combining Phylogenomics and Fossils in Higher-Level Squamate Reptile Phylogeny: Molecular Data Change the Placement of Fossil Taxa. Systematic Biology 59: 674-688.

MARTÍNEZ , C. –– Piper fossil record from the Late Cretaceous 30

WIJNINGA , V. M. 1996. Neogene ecology of the Salto de Tequendama site (2475 m altitude, Cordillera Oriental, Colombia): the paleobotanical record of montane and lowland forests. Review of Palaeobotany and Palynology 92: 97-156.

WIKSTROM , N., V. S AVOLAINEN , and M. CHASE . 2004. Angiosperm divergence times: congruence and incongruence between fossils and sequence divergence estimates. In P. C. J. Donoghue AND M. P. Smith [eds.], Telling the evolutionary time: molecular clocks and the fossil record, 142–165. CRC Press, New York, USA.

WILF , P. 1997. When are Leaves Good Thermometers? A New Case for Leaf Margin Analysis: 1-19.

WING , S., F. H ERRERA , C. A. JARAMILLO , C. GÓMEZ -NAVARRO , P. WILF , and C. LABANDEIRA . 2009. Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest. Proceedings of the National Academy of Sciences 106: 18627.

WING , S. L., and L. D. B OUCHER . 1998. Ecological Aspects of the Cretaceous Radiation. Annual Review of Earth and Planetary Sciences 26: 379-421.

WING , S. L., L. J. H ICKEY , and C. C. SWISHER . 1993. Implications of an exceptional fossil flora for Late Cretaceous vegetation. Nature 363: 342-344.

ZANIS , M. J., D. E. S OLTIS , P. S. SOLTIS , S. MATHEWS , and M. J. DONOGHUE . 2002. The root of the angiosperms revisited. Proceedings of the National Academy of Sciences 99: 6848-6853.

Images

Fig. 1 Pantropical distribution of the genus Piper. The leaf symbol represents the location of the Guaduas Formation in Colombia. Map modified from Paleogeographic Atlas from Scotese (2001). Distribution of Piper taken from Jaramillo & Manos (2001).

Fig. 2. Location of Mina Montecristo in Cundinamarca, Colombia (green arrow). Yellow indicates the Guaduas Formation. Modified from Gutiérrez (2006).

Fig. 3. Comparison of the fossil Piperites guaduaensis and extant Piper species. A, B. Holotype: ANDES-Paleo-0001 Piperites guaduaensis Martínez, Madriñán & Jaramillo sp. nov. C. Piper solmsianum C. DC.: US-3076763 D. ANDES-Paleo-0005 E. ANDES-Paleo-0007 F. ANDES-Paleo-0002 G. Piper schiedeanum Steud.: US: 1709233 Paleotropics

Piper (Ασια) (∼ 300 σππ)

Macropiper (Σουτη Παχι�ιχ) (∼ 10 σππ)

Radula (∼ 450 σππ)

Neotropics

Macrostachys (200�250 σππ)

Pothomorphe (∼ 10 σππ)

Peltobryon (80�100 σππ)

Enckea (∼ 120 σππ)

Ottonia (∼ 50 σππ) Cinereum/Sanctum (2 σππ) Schilleria (∼ 200 σππ)

Outgroup

Fig. 4. Summary consensus tree of Piper including the outgroup Peperomia. The tree was calculated from the 50% majority-rule under bayesian inference. The figure displays a phylogram with the posterior probability value for the principal nodes.

Radula (∼ 450 σππ)

Neotropics

Macrostachys (200�250 σππ)

Pothomorphe (∼ 10 σππ)

Peltobryon (80�100 σππ)

Enckea (∼ 120 σππ)

Ottonia (∼ 50 σππ) Cinereum/Sanctum (2 σππ) Schilleria (∼ 200 σππ)

Paleotropics

Piper (Ασια) (∼ 300 σππ)

Macropiper (Σουτη Παχι�ιχ) (∼ 10 σππ)

Fig. 5. Summary consensus tree of Piper excluding the outgroup Peperomia. The tree was calculated from the 50% majority-rule under bayesian inference. The figure displays a phylogram with the posterior probability value for the principal nodes.

Radula

P. cubataonum P. goesii P. lepturum P. sprengelianum P. hirtellipetiolum P. grande P. callosum P. sampaioi P. solmsianum P. glanduligerum P. xylostoides Macrostachys P. carrilloanum P. riparense P. mourai P. aequale P. perlasense Piperites guaduaensis Pothomorphe P. subscutatum P. piluliferum P. sternii P. scutilimbum Peltobryon P. urophyllum Schilleria

Enckea

Ottonia Cinereum/Sanctum

Piper (Asia)

Macropiper (Σουτη Παχι�ιχ)

Schilleria

Outgroup

Fig. 6. Parsimonious placement of the fossil Piperites guaduaensis within the bayesian topology. The red branch corresponds to the phylogenetic position of P guaduaensis. The square on the left presents in detail the position of the fossil.

Fig. 7. The maximum-clade credibility tree obtained in the calibration analysis. A. Represents the maximum age of origin of the genus set to ~135 Ma. B. Represents the calibration point given by the fossil Piperites guaduaensis within the clade Schilleria.

Gondwana separation Splitting of South K/T PETM Uplift of the Andes America and Africa Number of Number lineages 0 50 100 150 200 250 300

-140 -120 -100 -80 -60 -40 -20 0

Time (Ma)

Fig. 8. Lineages trough time plot based on the dated phylogeny of Piper. Age of splitting of Gondwana from Graham (2011). PETM: Paleocene-Eocene Thermal Maximum (Jaramillo et al., 2011). Uplift of the Andes cordillera (Gregory-Wodzicki, 2000).

Tables

Age Area Locality References Cretaceous North America Alaska: Yukon river, N. bank Hollick. 1936 Upper Cenozoic North America Alaska: Eska Creek Hollick. 1936 North America Alaska: Yakutat-Copper River region Hollick. 1936 North America Alaska: Matanuska coal field Hollick. 1936 North America Alaska: Lower Chignik Lake Hollick. 1936 Australia New South Wales: New England Ettingshausen, 1888 Paleogene Asia Japan: Shinsaka, Tsushime Islands Hidekuni, M. 1971 Europe Germany: Hesse, Messel bei Darmstadt Engelhardt, 1922 Eocene Europe Switzerland: Neues Jahrb Goeppert, 1853, 1854 North America USA:Colorado, Golden Lesquereux, 1888, 1930 Australia New South Wales: New England Ettingshausen, 1886 Asia Sumatra: Sangkarewang River Heer, 1880, 1881, 1887 Neogene Miocene South America Costa Rica: Northeast Talamanca Valley Berry, 1921* South America Venezuela: Betijoque, Trujillo Berry, 1936 South America Trinidad: Forest Sand Berry, 1925* Pliocene New Zealand Canterbury: Erewhon station Pleistocene Africa Africa: Ndekoea Medel, 1920 Africa Africa: Dibundja Schumann, 1920 South America Costa Rica: Near La Selva Biological Horn et al., 2003 Station

Table 1. Fossil records (leaves and woods) previously associated to Piper . *Specimens observed at the Paleobotanical Collection of the Smithsonian Institution.

Table 2 . List of leaf morphological characters and character states

# # Characters 0 1 2 3 4 5 6 1 Unor. Leaf attachment alternate basal rosette 2 Unor. Petiole features striations surcus sheath Other 3 Order. Petiole size absent short mid size long 4 Unor. Petiolar attachment marginal peltate-eccentric peltate-central 5 Unor. Laminar size nanophyll microphyll notophyll mesophyll macrophyll megap. 6 Order. L:W ratio 1:1 1.5:1 2:1 3:1 7 Order. Laminar shape elliptic ovate oblong obovate 8 Unor. Medial Symmetrical Symmetrical Asymmetrical 9 Unor. Base symmetry Symmetrical Asymmetrical 10 Unor. Lobation Unlobed trilobed 11 Unor. Apex angle Acute Obtuse 12 Unor. Apex shape Acuminate Straight Rounded Convex 13 Unor. Base angle Acute Obtuse Wide obtuse 14 Unor. Base shape Cordate Rounded Lobate Convex Sagittate Truncat. 15 Unor. Surface texture Pubescent Bullate smooth coriaceous succulent 16 Unor. Surface glands Absent Laminar 17 Unor. 1º venation Pinnate Basal acrodromous Basal actinodromous Suprab. Acrodro. Suprab. acti. 18 Unor. Naked basal veins Absent Present but weak 19 Order. # basal veins <3 4-6 >7 20 Unor. Agrophic veins none simple compound 21 Unor. 2º venation brochidodromous festooned brochidodromo. (supra)basal acrodromous Eucamptodromo. 22 Unor. 2º vein spacing increasing to. base irregular decreasing toward base uniform not applic. 23 Unor. 2º attachment decurrent excurrent proximal 2 decurrent 24 Unor. Inter2º veins absent present 25 Unor. Proximal course not applicable parallel to major 2º perpendicular to midvein 26 Unor. Distal course not applicable reticulating parallel to subjacent 2º per. to sub 2º basiflexed 27 Unor. Inter 2º length not applicable <50% subjacent 2º >50% subjacent 2º 28 Unor. Vein frequency not applicable <1 per intercostal area ~1 per intercostal area >1 intercost. 29 Unor. Intercostal 3º veins opposite percurrent alternate percurrent mixed alt/opp irreg. reticulate reg. reticu not appli 30 Unor. 3º angle to 1º acute obtuse perpendicular 31 Unor. Epimedial 3º opposite percurrent alternate percurrent mixed alt/opp reticulate 32 Unor. 4º venation alternate percurrent regular poligonal retic. dichotomizing (FEVs) irreg. pol. ret 33 Unor. 5º ventaion absent regular poligonal retic. dichotomizing (FEVs) irreg. pol. ret. 34 Unor. Areolation lacking well developed moderately developed poorly devel. 35 Unor. FEV branch mostly branched mostly one branched dichotomous branching Dendritic bra. unbranch reticula abs. 36 Unor. FEV simple absent simple tracheoid ideoblasts branch sclereids 37 Order. Highest order 4 5 6 7 38 Order. Highest excurrent 3 4 5 6 39 Unor. Marginal ultimate looped fimbrial vein 40 Unor. Geographic distribution Neotropics Asia South Pacific

Clade Species Distribution Radula 450 Broadly distributed in the Neotropics, most species occur in open areas along road and forests edges Macrostachys 200–250 Throughout the Neotropics, but most species occur in Central America and northern Andes Peltobryon 80–100 Widespread in South America, but most species are restricted to Western Amazon and eastern Andean slopes Pothomorphe 10 Throughout the Neotropics Enckea 120 From the humid forests of the amazon to a drier forests in Mexico and the calcareous outcrops of the Greater Antilles Ottonia 50 Primarily in the Atlantic forests of Brazil and the Amazon Schilleria 200 Distributed in Central America and in the Atlantic Forests of Brazil

Table 3. Species distribution of the Piper Neotropical clades with its approximate number of species. Taken from Jaramillo et al. (2008).

Appendix 1. Genbank accesion numbers and abbreviation Piper arborescens P_arbores AF275202.1 Piper candollei P_cando EF056237.1 Species name Abbrev. Acce. num. Piper arboreum P_arboreu EU581106.1 Piper caninum P_canin EF060067.1 Macropiper hooglandii Mac_hoo AF275192.1 Piper arboricola P_arbori AY572319.1 P_capen EU581144.1 Macropiper latifolium Mac_lati EF635465.1 Piper archeri P_arche AF275178.1 Piper caracasanum P_carac EF056238.1 Macropiper melchior Mac_mel AF275191.1 Piper argyrophyllum P_argyr EU581107.1 Piper cararense P_carar AY326201.1 Manekia naranjoana Man_nar AF275210.1 Piper arieianum P_ariei EU581108.1 Piper carrilloanum P_carri EU581147.1 Manekia sydowii Man_syd AF275209.1 Piper artanthe P_artan EU581109.1 Piper cavendishioides P_caven AF275153.1 Peperomia bicolor Pe_bico FJ424465.1 Piper atrospicum P_atros AY572318.1 Piper celtidiforme P_celti EU581148.1 Peperomia blanda Pe_blan FJ424455.1 Piper attenuatum P_atten EU581110.1 Piper cenocladum P_cenoc EF056239.1 Peperomia clusiifolia Pe_clus FJ424450.1 Piper augustum P_augus EU581111.1 Piper cernuum P_cernu EF056242.1 Peperomia galioides Pe_gali FJ424452.1 Piper aulacospermum P_aulac EU581112.1 Piper chaudocanum P_chaudo EU581152.1 Peperomia glabella Pe_glab FJ424454.1 Piper auritifolium P_auriti EU581113.1 Piper chimonanthifolium P_chimo EU581153.1 Peperomia hylophila Pe_hylo FJ424456.1 P_auritu EU581116.1 Piper chuarense P_chuar AY326202.1 Peperomia inaequalifolia Pe_inae FJ424453.1 Piper austrocaledonicum P_austr EU581120.1 Piper cihuatlanense P_cihua AF275187.1 Peperomia Piper avellanum P_avell EU581122.1 Piper cinereum P_ciner EU581155.1 lanceolatopeltata Pe_lance FJ424448.1 Piper baccatum P_bacca EU581124.1 Piper coccoloboides P_cocco EF056243.1 Peperomia lancifolia Pe_lanci FJ424457.1 Piper bartlingianum P_bartli AF275183.1 Piper cocornanum P_cocor AY326203.1 Peperomia macrostachya Pe_macr FJ424447.1 Piper basilobatum P_basil AY326197.1 Piper cogolloi P_cogol EF056244.1 Peperomia magnoliifolia Pe_magn FJ424449.1 Piper bavinum P_bavin AF275199.1 Piper colligatispicum P_colli AY326204.1 Peperomia Piper begoniicolor P_begon EF056226.1 Piper colonense P_colon EU581156.1 pernambucensis Pe_pern FJ424451.1 Piper bellidifolium P_belli EF056227.1 Piper concepcionis P_conce1 EU581160.1 Peperomia pitcairnensis Pe_pitc FJ424459.1 Piper betle P_betle EF060062.1 Piper concepcionis P_conce2 EU581161.1 Peperomia polystachya Pe_poly FJ424458.1 Piper biolleyi P_bioll EU581127.1 Piper confertinodum P_confe AF275166.1 Peperomia prostrata Pe_pros FJ424462.1 Piper bisasperatum P_bisas EU581129.1 Piper confusum P_confu EU581162.1 Peperomia rotundifolia Pe_rotu FJ424460.1 Piper biseriatum P_biser EF056228.1 Piper consanguineum P_consa EU581163.1 Peperomia sp. N298 Pe_sp FJ424463.1 Piper blattarum P_blatt EU581130.1 Piper corcovadense P_corco EU581166.1 Peperomia tuisana Pe_tuis FJ424464.1 Piper boehmeriifolium P_boehm AF275204.1 Piper cordatilimbum P_corda AY572323.1 Peperomia vestita Pe_vest FJ424461.1 Piper borbonense P_borbo EU581131.1 Piper cordulatum P_cordu EU581168.1 Piper abalienatum P_abali EU581075.1 Piper brachypodon P_b_odon AY326198.1 Piper corintoananum P_corin EU581169.1 Piper abbreviatum P_abbre EU581076.1 Piper brachypus P_b_ypus EU581132.1 Piper costatum P_costa EU581170.1 Piper adenandrum P_adena EU581077.1 Piper bradei P_brade EU581133.1 Piper crassinervium P_crass EU581172.1 Piper aduncum P_adunc AF275157.1 Piper breviamentum P_brevia EU581134.1 Piper cubataonum P_cubat EU581173.1 Piper aequale P_aequa EU581080.1 Piper brevicuspe P_brevic AY572321.1 P_cubeb EF060070.1 Piper aereum P_aereu EF056220.1 Piper brevipedicellatum P_brevip AF275189.1 Piper curtifolium P_curtif EU581174.1 Piper albispicum P_albis AY572317.1 Piper brownsbergense P_brown EU581135.1 Piper curtirachis P_curtir EU581175.1 Piper albozonatum P_alboz AY326195.1 Piper bullosum P_bullo EU581137.1 Piper curtispicum P_curtis EU581176.1 Piper amalago P_amala EU581089.1 Piper cajambrense P_cajam AY326199.1 Piper daguanum P_dagua EF056247.1 Piper amoenum P_amoen AF275160.1 Piper calcariformis P_calca EU581138.1 Piper darienense P_darie EU581177.1 Piper amplum P_amplu EU581095.1 Piper caldense P_calde EU581139.1 Piper decumanum P_decum AF275203.1 Piper anisum P_anisu EU581099.1 Piper callosum P_callos EU581142.1 Piper densum P_densu AY615963.1 Piper anonifolium P_anoni EU581100.1 Piper campanum P_campa EF056235.1 Piper dilatatum P_dilat EU581180.1 Piper appendiculatum P_appen AY326196.1 Species name Abbrev. Acce. num. Piper hancei P_hance EU581232.1 Piper marsupiiferum P_marsu EF056269.1 Piper diospyrifolium P_diosp EU581181.1 Piper hartwegianum P_hartw AY326207.1 Piper martensianum P_marte EU581294.1 Piper divaricatum P_divar EU581182.1 Piper haughtii P_haugt EU581233.1 Piper massiei P_massi EU581295.1 Piper dolichotrichum P_dolic EU581185.1 Piper hebetifolium P_hebet EF056261.1 Piper maxonii P_maxon EF056270.1 Piper dryadum P_dryad EU581186.1 Piper hernandii P_herna AY572324.1 Piper medinillifolium P_medin EU581296.1 Piper dumosum P_dumos EU581189.1 Piper hirtellipetiolum P_hirte EU581234.1 Piper melanocladum P_melan EF056271.1 Piper entradense P_entra EU581190.1 Piper hispidum P_hispi EU581238.1 Piper melastomoides P_melas EU581297.1 Piper erectipilum P_erect EU581191.1 Piper hoffmannseggianum P_hoffm EU581246.1 Piper methysticum P_methy AF275194.1 Piper eucalyptifolium P_eu_ium EU581192.1 Piper holdridgeanum P_holdr EU581247.1 Piper mexiae P_mexia EU581299.1 Piper eucalyptiphyllum P_eu_lum EU581193.1 Piper hostmannianum P_hostm EU581249.1 Piper michelianum P_miche AF275188.1 Piper euryphyllum P_eury1 EF056249.1 Piper humistratum P_histr EU581252.1 Piper mollicomum P_mollic1 EU581300.1 Piper euryphyllum P_eury2 EF056250.1 Piper hymenophyllum P_hyme AY572327.1 Piper mollicomum P_mollic2 EU581301.1 Piper eustylum P_eusty EU581194.1 Piper ilheusense P_ilheu EU581254.1 Piper mollissimum P_mollis EF060075.1 Piper fallens P_falle EU581195.1 Piper imberbe P_imber EU581255.1 Piper mosenii P_mosen EU581302.1 Piper filistilum P_filis AF275155.1 Piper immutatum P_immut EU581256.1 Piper mourai P_moura EU581303.1 Piper fimbriulatum P_fimbr EF056252.1 Piper imperiale P_imper AF275176.1 Piper muelleri P_muell EU581304.1 Piper flagellicuspe P_flage AF275154.1 Piper inaequale P_inaeq EU581257.1 Piper mullesua P_mulle AF203634.2 Piper flavicans P_flavic EU581202.1 Piper insipiens P_insip EU581261.1 Piper multiplinervium P_multi AF275168.1 Piper flavidum P_flavid EU581203.1 Piper jacquemontianum P_jacqu EU581264.1 Piper munchanum P_munch AF275164.1 Piper flaviflorum P_flavif EU581204.1 Piper juliflorum P_julif EU581265.1 Piper muricatum P_muric EU581306.1 Piper flavoviride P_flavo EU581205.1 Piper klotzschianum P_klotz EU581266.1 Piper mutabile P_mutab EU581307.1 Piper fonteboanum P_fonte EF056255.1 Piper korthalsii P_korth AF275208.1 Piper myrmecophilum P_myrme AY572328.1 Piper friedrichsthalii P_fried EU581207.1 Piper lacunosum P_lacun EU581267.1 Piper napopastazanum P_napop EU581308.1 Piper frutescens P_frute EU581208.1 Piper laevigatum P_laevi EU581269.1 Piper neesianum P_neesia EU581310.1 Piper fuligineum P_fulig EU581209.1 Piper lanceifolium P_lance EU581273.1 Piper nicoyanum P_nicoy EU581312.1 Piper garagaranum P_garag EU581213.1 Piper laosanum P_laosa AY572326.1 Piper nigrum P_nigr AF275198.1 Piper gaudichaudianum P_gaudi EU581214.1 Piper lapathifolium P_lapat EU581274.1 Piper nitidum P_nitid EU581314.1 Piper gesnerioides P_gesne AY326206.1 Piper leptostachyum P_lepto EU581275.1 Piper nobile P_nobile EU581315.1 Piper gibbosum P_gibbo EF056256.1 Piper lepturum P_leptu EU581277.1 Piper novogalicianum P_novoga EU581316.1 Piper gigantifolium P_gigan EF056259.1 Piper littorale P_litto EU581278.1 Piper novogranatense P_novogr EU581317.1 Piper gigas P_gigas EF056260.1 Piper lolot P_lolot AY326208.1 Piper nudibaccatum P_nudib EU581318.1 Piper glabratum P_glabra EU581215.1 Piper longepilosum P_longep EF056266.1 Piper nudicaule P_nudic EU581319.1 Piper glabrescens P_glabre EU581217.1 Piper longestylosum P_longes EU581280.1 Piper nudifolium P_nudif EU581320.1 Piper glanduligerum P_gland EU581219.1 Piper longicaudatum P_longic EU581281.1 Piper obliquum P_obliq EU581323.1 Piper goesii P_goesi EU581220.1 Piper longispicum P_longis AY326209.1 Piper obtusilimbum P_obtus EU581327.1 Piper grande P_grand EU581221.1 Piper longivaginans P_longiva EU581282.1 Piper otophorum P_otoph EU581329.1 Piper griffithii P_griffi EU581225.1 Piper longivillosum P_longivi EU581283.1 Piper ottoniifolium P_otton AY326213.1 Piper guahamense P_guaha EU581226.1 Piper macropiper P_macrop EF060073.1 Piper ovatum P_ovat EU581330.1 Piper guayranum P_guayr EU581227.1 Piper macrotrichum P_macrot EU581285.1 Piper oviedoi P_oviedoi EU581331.1 Piper guazacapanense P_guaza EU581228.1 Piper maranyonense P_maran EU581287.1 Piper paramaribense P_param EU581332.1 P_guine EU581229.1 Piper marequitense P_mareq AY326210.1 Piper pedunculatum P_pedun EU581333.1 Piper gymnostachyum P_gymno AY572325.1 Piper marginatum P_margi EU581289.1 Piper peltatum P_pelta EU581335.1 Species name Abbrev. Acce. num. Piper sabaletasanum P_sabal AY326217.1 Piper thomsonii P_thoms EU581410.1 Piper pendulispicum P_pendu EU581337.1 Piper sagittifolium P_sagit EF056284.1 Piper tomas-albertoi P_tomas AY326222.1 Piper penninerve P_penni AF275206.1 Piper samanense P_saman EU581377.1 Piper tonduzii P_tondu EU581411.1 Piper perareolatum P_perar EF056279.1 Piper sampaioi P_sampa EU581378.1 Piper toppingii P_toppi AY572322.1 Piper perlasense P_perlas EU581338.1 Piper sanctifelicis P_sancti EU581380.1 Piper trianae P_trian EU581412.1 Piper perpusillum P_perpu AY326215.1 Piper sanctum P_sanctu EU581383.1 Piper trichoneuron P_trich EU581414.1 Piper phytolaccifolium P_phyto AY326216.1 Piper sarmentosum P_sarme EU581385.1 Piper tricuspe P_tricu AY326225.1 Piper pierrei P_pierr AF275200.1 Piper sasaimanum P_sasai EF056286.1 Piper trigonum P_trigo EU581420.1 Piper pilibracteum P_pilib AY768829.1 Piper schiedeanum P_schie EU581386.1 Piper truncatibaccum P_truncati EU581422.1 Piper piluliferum P_pilul EU581340.1 Piper schuppii P_schup AY326218.1 Piper truncatum P_truncatu EU581423.1 Piper pingbienense P_pingb EU581341.1 Piper schwackei P_schwa EU581387.1 Piper tuberculatum P_tuber EU581425.1 Piper piscatorum P_pisca EU581343.1 Piper scutifolium P_scutif EU581389.1 Piper tuerckheimii P_tuerc EU581427.1 Piper pittieri P_pitti EU581345.1 Piper scutilimbum P_scutil EU581390.1 Piper ubatubense P_ubatu AF275182.1 Piper porphyrophyllum P_porph EU581346.1 Piper semi-immersum P_semi EU581391.1 Piper umbellatum P_bella EU581429.1 Piper praesagium P_praes EU581348.1 Piper solmsianum P_solms1 EU581392.1 Piper umbricola P_brico EU581434.1 Piper premnospicum P_premn EU581349.1 Piper solmsianum P_solms2 EU581393.1 Piper unispicatum P_unisp AY326227.1 Piper pseudofuligineum P_pseudof EU581350.1 Piper sorsogonum P_sorso AY572320.1 Piper urdanetanum P_urdan AF275207.1 Piper pseudolanceifolium P_p_lium EU581351.1 Piper sphaerocarpum P_sphae EU581397.1 Piper urophyllum P_uroph EU581436.1 Piper pseudolindenii P_p_enii EU581354.1 Piper spoliatum P_spoli AF275179.1 Piper urostachyum P_urost1 EU581437.1 Piper pseudonobile P_pseudon EU581355.1 Piper sprengelianum P_spren EU581398.1 Piper urostachyum P_urost2 EU581438.1 Piper pseudopothifolium P_pseudop EU581356.1 Piper squamulosum P_squam EF056287.1 Piper vellosoi P_vello EU581439.1 Piper psilorhachis P_psilo EU581357.1 Piper sternii P_stern EU581399.1 Piper vicosanum P_vicos EU581440.1 Piper pterocladum P_ptero EU581359.1 Piper stileferum P_stile EU581400.1 Piper villiramulum P_villi EU581441.1 Piper puberulum P_puber EU581360.1 Piper stipulaceum P_stipu EU581401.1 Piper villosum P_villo AY326228.1 Piper pubistipulum P_pubis EU581361.1 Piper subflavum P_subfl EU581402.1 Piper vitaceum P_vitac EU581442.1 Piper pulchrum P_pulch1 AF275177.1 Piper subglabribracteatum P_subgl1 AY326220.1 Piper wachenheimii P_wach EU581443.1 Piper pulchrum P_pulch2 EU581362.1 Piper subglabribracteatum P_subgl2 EU581403.1 Piper wallichii P_walli EU581444.1 Piper recurvum P_recur EF060078.1 Piper submultinerve P_subm EU581404.1 Piper xanthostachyum P_xanth EU581445.1 Piper reticulatum P_retic EU581366.1 Piper subpedale P_subped AF275161.1 Piper xylosteoides P_xylos EU581447.1 P_retro EF060081.1 Piper subpenninerve P_subpen EU581405.1 Piper yanaconasense P_yanac AY326229.1 Piper richardiifolium P_richa EU581369.1 Piper subscutatum P_subsc EU581406.1 Piper yucatanense P_yucat EU581452.1 Piper riparense P_ripar EU581371.1 Piper subsessilifolium P_subse EU581407.1 Trianaeopiper bullatum Tr_bull AF275167.1 Piper robustipedunculum P_robus EU581373.1 Piper tardans P_tarda EF056290.1 Zippelia begoniifolia Z_begon AF203630.2 Piper rugosum P_rugos EU581374.1 Piper tectoniifolium P_tecto EU581408.1 Macropiper excelsum Mac_ex AF275193.1 Piper rusbyi P_rusby EU581375.1 Piper terryae P_terry AY326221.1 Piper thomasii P_thoma EU581409.1

Appendix 2

Appendix 2. Consensus tree of Piper including the outgroup Peperomia. The tree was calculated from the 50% majority-rule under bayesian inference. The figure displays a phylogram with the posterior probability value for the principal nodes.

Appendix 3. Consensus tree of Piper excluding the outgroup Peperomia. The tree was calculated from the 50% majority-rule under bayesian inference. The figure displays a phylogram with the posterior probability value for the principal nodes.

Appendix 4. Matrix of leaf architecture characters of Piper, Peperomia and Manekia. See Table 2 for the character and character states names.

Species name 1 5 10 15 20 25 30 35 40 Piper abalienatum 0 0 ? 0 4 0 1 0 0 0 0 0 2 0 0 0 2 0 2 1 1 1 1 1 1 1 2 1 2 0 2 0 1 1 2 1 3 3 0 0 Piper abbreviatum 0 0 ? 0 2 2 1 0 0 0 0 0 1 3 ? 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 2 1 2 2 2 1 1 1 0 1 Piper aduncum 0 1 1 0 3 1 1 0 1 0 0 0 1 2/3 0 1 0 0 0 0 0/3 2 1 0 0 0 0 0 0 0 0 1 2 2 2 1 1 1 0 0 Piper aequale 0 1 1 0 3 2 1 0 1 0 0 0 1 1 ? 0 0 0 0 1 0/3 1 1 1 1 1 1 1 0 0 0 1 1 2 0 1 2 2 0 0 Piper aereum 0 2 ? 0 3 2 1 0 1 0 0 0 1 2 ? 0 0 0 0 1 1 1 1 1 1 1 1 1 2 0 2 1 1 2 0 ? 2 2 0 0 Piper aff. unispicatum 0 0 1 0 3 1 0 0 1 0 0 0 1 1 2 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 ? ? ? ? ? 0 0 Piper albozonatum 0 1 ? 0 2 1 1 0 1 0 0 0 2 4 2 1 0 1 0 1 0 0 0 0 0 0 0 0 2 2 2 1 ? ? ? ? 0 ? 0 0 Piper amalago 0 0 ? 0 2 1 1 0 0 0 0 0 1 1 ? 0 1 0 2 1 2 1 1 0 0 0 0 0 5 0 2 1 2 2 2 1 1 1 0 0 Piper amoenum 0 0 1 0 1/2 2 0 0 1 0 0 0 0 3 ? 1 0 0 0 0 0 1 0 1 1 1 2 1 3 0 2 3 ? ? ? ? 0 ? 0 0 Piper anonifolium 0 1 ? 0 3 2 1 0 1 0 0 0/1 0 3 2 1 0 0 0 1 3 2 1 0 0 0 0 0 2 0 2 1 2 3 ? ? 1 1 ? 0 Piper appendiculatum 0 0 1 0 3 2/3 0 0 1 0 0 0 1/2 1/2 0/1 0 0 0 0 0 ? ? ? ? ? ? ? ? 3 ? ? ? ? ? ? ? ? ? ? 0 Piper arboreum 0 2 ? 0 3 2 0 0 1 0 0 0 1 1 ? 0 0 0 0 1 1 1 1 1 1 1 2 2 2 0 2 0 3 2 2 1 2 2 0 0 Piper arieianum 0 0 3 0 3 1 1 0 1 0 0 0 1 1 2 1 0 0 0 1 0 2 1 1 1 1 2 2 0 0 0 1 1 1 2 1 2 2 1 0 Piper artanthe 0 1 1 0 2 0 1 0 1 0 1 1 1 1 0/1 ? 0 0 0 1 1 1 1 1 1 1 1 1 1 0 2 0 ? ? ? ? 0 1 0 0 Piper atrospicum 0 0 ? 0 2 0 1 0 0 0 0 0 1 1 ? 0 1 0 2 1 2 4 1 0 0 0 0 0 5 1 1 1 2 1 0 0 1 1 0 1 Piper attenuatum 0 0 ? 0 2/3 2 0 0 0 0 0 0 1 3 ? 0 3 0 1 0 2 4 2 0 0 0 0 0 1 0 1 3 2 1 2 1 1 1 0 1 Piper augustum 0 2 2 0 3/4 1 1 0 1 0 0 0 1 1 ? 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 2 2 2 1 1 1 0 0 Piper auritifolium 0 0 ? 0 4 1 1 0 1 0 0 0 2 2 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 ? ? ? ? 0 ? 0 0 Piper auritum 0 2 ? 0 4 2 0 0 1 0 0 0 2 2 ? 0 0 1 0 1 1 1 1 0 0 0 0 0 2 0 0 0 1 1 6 0 2 3 0 0 Piper austrocaledonicum 0 0 ? 0 3 0 1 0 1 0 0 0 1 0/1 ? 0 0 0 1 1 0 1 2 0 0 0 0 0 2 0 2 1 2 1 0 1 1 1 0 1 Piper avellanum 0 1 1 0 2 1 0/1 0 1 0 0 0 1 1 2 1 0 0 0 0 0 2 1 1 1 4 1 2 0 0 0 3 2 3 0 1 1 1 0 0 Piper baccatum 0 0 ? 0 3 1 0 0 0 0 0 0 0 3 ? 0 0 0 1 0 3 1 0 0 0 0 0 0 2 0 2 0 1 3 2 ? 2 2 0 1 Piper bartilingianum 0 1 1 0 3 2 1 0 1 0 0 0 1 1 ? 1 0 0 0 1 1 1 1 1 1 1 2 2 2 0 2 3 2 2 2 1 1 1 0 0 Piper bavianum 0 0 ? 0 2 1 0 0 1 0 0 0 1 1 ? 1 0 0 1 1 1 1 2 0 0 0 0 0 0 0 1 0 1 1 4 1 2 2 0 1 Piper begoniicolor 0 2 ? 0 4 1 0 0 1 0 0 0 2 2 ? 0 0 0 0 1 1 1 1 0 0 0 0 0 1 2 1 1 1 1 4 1 2 2 0 0 Piper betle L. 0 0 ? 0 3 1 1 0 0 0 0 0 1 1 ? ? 0 0 0 1 1 1 1 0 0 0 0 0 0 0 2 1 2 1 0 1 1 1 0 1 Piper biolleyi 0 2 ? 0 3 1 1 0 1 0 1 3 1 1 ? 1 0 0 0 1 1 1 1 1 1 1 1 2 0 0 0 1 2 2 4 1 1 1 0 0 Piper biseriatum 0 0 ? 0 4 1 0 0 1 0 0 0 2 2 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 2 0 1 1 1 0 1 2 2 0 0 Piper blattarum 0 0 ? 0 3 1 0 0 1 0 0 0 1 3 ? 0 3 0 1 1 3 4 1 0 0 0 0 0 0 0 0 1 2 2 2 1 1 1 0 0 Piper bohemeaerifolium 0 0 ? 0 3 2 0 0 1 0 0 0 1 1 ? ? 0 0 0 0 0 1 2 0 0 0 0 0 0 0 2 1 2 1 2 1 1 1 0 1 Piper brachypodon 0 3 ? 0 3 1 0 0 1 0 0 0 1/2 1/2 ? 1 0 0 0 0 3 2 2 ? ? 0 0 0 0 2 0 0 1 1 0 1 2 2 0 0 Piper brachypus 0 0 ? 0 3 0 1 0 0 0 0 0 2 0 ? 0 1 0 2 1 2 4 1 0 0 0 0 0 2 0 2 1 2 2 2 1 1 1 0 0 Piper breviamentum 0 0 ? 0 2 1 1 0 1 0 0 0 1 1 ? 0 0 0 1 1 3 1 1 0 0 0 0 0 2 0 2 0 1 1 0 1 2 2 0 1 Piper brevicuspe 0 0 ? 0 3 1/2 1 0 0 0 0 0 2 0 ? 0 1 0 2 1 2 4 1 0 0 0 0 0 1 0 1 0 ? ? ? ? 0 ? 0 1 Piper brevipedicellatum 0 0 ? 0 3 0 1 0 0 0 0 0 2 0 ? 0 1 0 2 1 2 4 1 1 1 1 2 1 2 0 2 0 1 1 2 1 2 2 0 0 Piper brownsbergense 0 0 ? 0 3 2 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 ? 1 0 0 6 0 0/1 1 0 0 Piper bullosum 0 1 1 0 3 1 1 0 0 0 0 0 1/2 1 0/1 ? 0 0 0 1 3 ? 1 0 0 0 0 0 0 0 0 1 1 1 ? ? 2 2 0 0 Piper cabellense 0 2 3 0 4 1 1 0 1 0 0 0 2 2 0 0 0 1 0 2 1 1 0 1 1 1 2 1 3 0 2 0 1 1 ? ? 1/2 2 0 0 Piper calcariformis 0 2 ? 0 4 2 0 0 1 0 0 0 2 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 2 2 0 1 1 0 1 2 2 0 0 Piper caldense 0 1 1 0 3 2/3 0 0 1 0 0 0 0 3 ? 1 0 0 0 1 0 1 0 1 1 1 1 1 2 0 2 3 ? 3 6 0 0 1 0 0 Piper callosum 0 1 ? 0 3 1 1 0 1 0 0 0 1 1 ? 0 0 0 0 1 3 1 2 1 2 1 1 2 2 0 2 1 2 2 0 1 1 1 0 0 Species name 1 5 10 15 20 25 30 35 40 Piper campanum 0 2 ? 0 4 2 1 0 1 0 0 0 2 2 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 2 0 0 1 1 4 1 2 2 0 0 Piper canimum 0 0 ? 0 3 1 1 0 0 0 0 0 1 3 ? ? 0 0 0 0 3 1 0 0 0 0 0 0 2 0 2 1 2 1 2 2 1 1 0 1 Piper capense 0 0 ? 0 2 0 1 0 0 0 0 0 2 0 ? 1 1 0 2 1 0 0 1 0 0 0 0 0 2 0 2 1 2 1 2 2 1 1 0 2 Piper caracasanum 0 2 ? 0 4 2 0 0 1 0 0 0 2 2 ? 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 4 1 2 2 0 0 Piper cararense 0 1 2 0 3 1 3 0 0 0 0 0 1 1 ? 1 0 0 0 1 0 0 2 1 1 1 1 1 0 0 0 1 ? ? ? ? 0 ? 0 0 Piper carrilloanum 0 0 3 1 3/4 1 1 0 0 0 0 0 2 0 2 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 2 2 0 0 Piper cavendishioides 0 1 1 0 3 2 0 1 1 0 0 0 1 1 ? 1 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 1 1 0 3 2 2 0 0 Piper celditiforme 0 0 ? 0 3 1 1 0 0 0 0 0 1 1 ? 1 0 0 1 0 1 1 1 1 1 1 1 2 2 0 2 0 1 1 0 1 2 2 0 1 Piper cenocladum 0 0 ? 0 4 1 0 0 1 0 0 0 2 2 ? 0 0 0 0 1 1 1 1 0 0 0 0 0 0 2 2 0 1 1 0 1 2 2 0 0 Piper cernuum 0 2 ? 0 4 2 1 0 1 0 0 0 2 2 ? 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 2 0 1 1 5 3 3 3 0 0 Piper cf. cajambrense 0 2 ? 0 4 2 1 0 1 0 0 0 2 2 0 0 0 0 0 2 1 1 1 0 0 0 0 0 0 0 0 0 1 2 ? ? 1/2 1 0 0 Piper cf. colonense 0 1 2 0 3 2 0 0 1 0 0 0 1 1 0 1 0 0 0 1 3 1 1 0 0 0 0 0 0 0 0 0 1 1 2 1 2/3 2/3 0 0 Piper cihuatlanense 0 0 ? 0 3 3 0 0 0 0 0 0 1 1 ? 0 1 0 2 1 2 4 0/1 0 0 0 0 0 5 0 2 0 2 2 2 1 1 1 0 0 Piper cinereum 0 1 ? 0 3 0 1 0 0 0 0 0 2 0 ? 0 1 0 2 1 2 4 1 0 0 0 0 0 2 0 0 0 1 1 ? ? 2/3 2/3 0 0 Piper coccoloboides 0 2 ? 0 4 2 0 0 1 0 0 0 2 2 0 0 0 0 0 1 1 1 1 1 1 1 2 1 2 0 2 0 1 1 5 2 2 2 0 0 Piper cocornanum 0 1 ? 0 2 2 0 0 1 0 0 0 1 3 ? 0 0 0 0 0 3 1 0 0 0 0 0 0 2 0 2 1 ? ? ? ? 0 ? 0 0 Piper concepcionis 0 0 ? 0 4 1 1 0 1 0 0 0 1 1 ? 1 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 1 1 2 1 2 2 0 0 Piper confertinodum 0 2 ? 0 3/4 2 0 0 0 0 0 1 1 3 0 1 0 0 0 1 0 3 1 1 1 1 1 2 0 ? ? 2 0 0 4 1 0 0 0 0 Piper consanguineum 0 0 ? 0 2 3 1 0 1 0 0 1 1 1 ? 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 2 1 2 3 0 1 1 1 0 0 Piper corcovadensis 0 ? ? 0 3 1 0 0 0 0 0 0 1 3 ? 1 0 0 0 1 0 2 0 1 1 1 2 1 4 0 2 1 2 2 0 1 1 1 0 0 Piper cordatilimbum 0 0 ? 0 3 0 1 0 0 0 0 0 2 0 ? 0 0 0 2 1 0 1 0 0 0 0 0 0 2 0 2 0 2 1 2 1 1 1 0 1 Piper cordulatum 0 2 ? 0 3 3 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 2 0 1 ? ? ? ? 0 ? 0 0 Piper costatum cf. 0 0 1 0 3 3 0 0 1 0 0 0 2 0 2 0 0 0 0 0 1 1 1 1 1 4 1 2 0 0 ? 2 0 0 ? ? ? ? ? 0 Piper crassinervium 0 1 3 0 3 0 1 0 0 0 0 0 2 0 ? 0 0 0 0 1 0 2 1 0 0 0 0 0 2 0 2 1 1 2 0 1 2 2 0 0 Piper cubataonum 0 0 2 0 3 1 1 0 1 0 0 0 2 0 ? ? 0 0 ? 1 1 1 0 1 1 1 2 1 2 ? ? 1 ? ? ? ? ? ? ? 0 Piper cubeba 0 0 ? 0 3 1 0 0 0 0 0 0 2 0 ? 0 0 0 2 1 0 1 1 0 0 0 0 0 2 0 ? 0 1 ? ? ? 0 ? 0 1 Piper curtifolium cf 0 0 3 0 1 0 1 0 0 0 0 0 1 5 2 0 0 0 ? 1 0 1 1 1 1 1 1 1 2 ? ? 2 0 0 ? 1 0 0 0 2 Piper curtirhachis 0 ? ? ? 3 1 0 0 1 0 0 0 1 1 2 1 0 0 ? 0 0 1 2 0 0 0 0 0 2 ? ? 1 2 0 2 1 1 1 0 0 Piper curtispicum 0 1 ? 0 3 2 0 0 0 0 0 3 1 1 ? 1 0 0 0 1 0 1 0 1 1 1 1 2 2 0 2 1 2 3 ? 1 1 1 0 0 Piper daguanum 0 2 ? 0 3 2 0 0 1 0 0 0 2 2 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 2 1 4 1 1 1 0 0 Piper darienense 0 0 ? 0 3 2 0 0 0 0 0 0 1 1 ? 0 0 0 0 0 0 3 0 1 1 1 1 1 3 1 2 1 2 3 0 1 1 1 0 0 Piper decumanum 0 0 ? 0 4 2 1 0 1 0 0 0 2 0 ? 0 3 0 2 1 0 1 0 0 0 0 0 0 0 0 2 0 1 1 0 1 2 2 0 1 Piper dilatatum 0 0 ? 0 3 1 1 0 1 0 0 0 1 1 ? 1 0 0 0 1 0 1 0 0 0 0 0 0 2 0 2 0 2 2 0 1 1/2 1/2 0 0 Piper diospyrifolium 0 0 1 0 3 1 0 0 1 0 0 0 1 1 2 0 0 0 ? 1 0 1 0 1 1 1 1 1 0 1 2 3 2 0 2 1 1 0 ? 0 Piper divaricatum 0 0 ? 0 3 2 1 0 1 0 0 0 1 1 ? 1 0 0 0 1 0 1 1 0 0 0 0 0 2 0 2 1 2 2 2 1 1/2 1/2 0 0 Piper dolichotrichum 0 ? 1 0 3 2 0 0 1 0 0 0 1/2 1/4 0/1 1 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 3 2 2 0 1 1 1 0 0 Piper dryadum 0 ? ? 0 3/4 1 1 0 0 0 0 0 2 0 0 1 0 0 0 0 3 2 0 0 0 0 0 0 0 2 0 0 1 1 0 1 2 2 0 0 Piper dumosum 0 1 ? 0 3 2 0 0 1 0 0 0 0 3 0 1 0 0 0 0 0 1 2 1 1 1 1 2 0 0 2 1 ? ? ? ? 0 ? 0 0 Piper erectipilum 0 2 1 0 2/3 1 0 0 1 0 0 0 2 1/4 0 1 0 0 0 1 1 1 1 1 2 4 1 2 1 1 1 2 ? 3 0 1 0 0 0 0 Piper eucalyptofolium 0 0 ? 0 2 3 0 0 0 0 0 0 0 3 ? 0 0 0 0 0 0 3 0 0 0 0 0 0 3 1 2 3 2 1 ? ? 1 1 0 0 Piper euryphyllum 0 2 ? 0 4 2 0 0 1 0 0 1 2 2 ? 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 2 0 1 1 0 1 2 2 0 0 Piper excelsum 0 0 ? 1 2 0 1 0 0 0 0 0 2 0 ? 0 1 0 2 1 0 0 1 1 1 1 2 1 2 0 2 1 2 1 2 1 1 1 0 2

Species name 1 5 10 15 20 25 30 35 40 Piper filistylum 0 2 1 0 3 2 0 0 1 0 0 0 2 4 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 2 3 ? 0 6 0 0 1 0 0 Piper fimbriulatum 0 2 ? 0 4 2 0 0 1 0 0 0 2 2 0 0 0 0 0 1 1 1 1 0 0 0 0 0 2 0 2 0 1 1 1 1 2 2 0 0 Piper flagellicuspe 0 1 1 0 3 2 0 0 0 0 0 0 1 3 0 1 0 0 0 1 3 2 1 0 0 0 0 0 0 0 0 1 2 3 0 1 1 1 0 0 Piper flavicans 0 0 1 1 3 2 0 ? ? 0 0 0 2 0 0 1 0 0 ? 0 3 1 1 0 0 0 0 0 0 0 2 3 ? 0 6 0 0 0 0 0 Piper flavidum 0 0 1 0 2 2 0 0 1 0 0 0 0 3 2 1 0 0 ? 0 0 1 0 0 0 0 0 0 0 0 2 1 2 0 1 1 ? ? ? 0 Piper fonteboanum 0 2 ? 0 3 2 1 0 1 0 0 0 2 4 ? 1 0 0 0 1 1 1 0 0 0 0 0 0 2 0 2 0 1 2 2 1 2 2 0 0 Piper friedrichstahlii 0 1 1 0 3 2 1 0 1 0 0 0 1/2 2/3 0 1 0 0 0 0 3 ? 0 0 0 0 0 0 2 0 1 0 ? ? ? ? 0 ? 0 0 Piper fuligineum 0 ? 1 0 2 2 1 0 1 0 0 3 2 0 0 0 0 0 0 1 3 2 0 1 2 1 1 1 1 0 1 0 ? ? ? ? 0 ? 0 0 Piper garagaranum 0 1 1 0 3 1 0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 6 0 0 1 0 0 Piper gaudichaudianum 0 1 1 0 2/3 3 0 0 1 0 0 0 1 3 ? 1 0 0 0 1 3 2 1 0 0 0 0 0 2 0 2 0 2 2 4 1 1 1 0 0 Piper gigantifolium 0 2 ? 0 4 1 0 0 1 0 0 0 2 2 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 4 1 3 3 0 0 Piper glabratum 0 1 1 0 3 1 1 0 1 0 0 0 1 1 ? 1 0 0 0 1 0/3 2 ? 0 0 0 0 0 0 2 0 2 ? 0 6 1 0 0 0 0 Piper glabratum 0 0 1 0 2 2 0 0 1 0 0 0 1 1 ? ? 0 0 ? 0 3 1 2 0 0 0 0 0 0 0 0 1 2 3 2 1 ? ? ? 0 Piper glabrescens 0 1 2 0 3 2 ? 0 1 0 0 0 1 1 0 1 0 0 0 1 0 2 0 1 1 1 1 1 0 0 2 1 1 2 0 1 2 2 0 0 Piper glanduligerum 0 1 1 0 3 2 1 0 0 0 0 0 1 1 ? 0 0 0 0 1 0/3 1 0 1 1 1 2 2 0 0 0 1 2 2 2 1 1 1 0 0 Piper goesii 0 0 2 0 3 1 1 0 1 0 0 0 1 1 0 1 0 0 ? 0 0 1 2 1 1 1 2 1 2 0 2 0 ? 3 0 2 ? ? ? 0 Piper grande 0 1 1 0 3 2/3 1 0 0 0 0 0 1 1/2 ? 1 0 0 0 1 3 1 2 1 1 1 2 1 2 0 2 1 2 3 2 1 2 2 0 0 Piper griffithii 0 0 2 0 2 1 1 0 0 0 0 0 1 1 2 0 0 0 ? 0 0 1 1 0 0 0 0 0 2 ? 2 1 2 0 2 1 ? ? ? 1 Piper guahanense 0 0 ? 0 3 0 1 0 0 0 0 0 2 0 ? 0 1 0 2 1 2 0 1 0 0 0 0 0 2 0 2 1 2 1 2 1 1 1 0 2 Piper guayranum 0 0 1 0 3 2 1 0 0 0 0 0 2 2 0 1 0 0 ? ? 0 1 0 0 0 0 0 0 0 ? 0 0 2 0 1 1 1 1 0 0 Piper guineense 0 0 ? 0 3 1 0 0 0 0 0 0 1 1 ? ? 0 0 0 0 0 1 1 0 0 0 0 0 2 0 2 0 1 1 2 1 2 2 0 1 Piper gymnostachyum 0 0 ? 0 2 1 1 0 0 0 0 0 1 1 ? 0 0/3 0 2 1 0 1 1 0 0 0 0 0 2 0 2 1 2 1 0 1 1 1 0 1 Piper hancei 0 0 ? 0 2 3 0 0 0 0 0 0 0 3 ? 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 1 ? 2 ? ? 1 1 0 1 Piper hartwegianum 0 2 ? 1/2 4 1 1 0 1 0 0 0 1 1 0/1 0 0 0 0 1 1 1 0 0 0 0 0 0 3 0 2 1 1 1 ? ? 2 3 0 0 Piper haughtii 0 ? 1 0 3 2 0 1 1 0 0 0 1 1 0 1 0 0 0 1 3 2 1 0 0 0 0 0 0 0 2 0 1 2 2 1 1 3 0 0 Piper hebetifolium 0 2 ? 0 4 2 0 0 1 0 0 0 2 2 0 0 0 0 0 1 1 1 0 0 0 0 0 0 2 0 2 0 1 1 ? ? 1 2 0 0 Piper hirtellipetiolum 0 1 1 0 3 3 1 0 1 0 0 0 1 1 ? 0 0 0 0 1 0/3 1 2 1 1 2 1 1 2 0 2 0 2 3 2 1 1 1 0 0 Piper hispidum 0 1 1 0 3 2 0 1 1 0 0 0 0/1 1/3 0 1 0 0 0 1 3 2 0 0 0 0 0 0 0 0 0 3 2 3 2 1 1 1 0 0 Piper hoffmannseggianum 0 0 ? 0 3 2 0 0 0 0 0 0 1 3 ? 0 0 0 0 0 0 3 0 1 1 1 1 1 3 1 2 3 ? ? ? ? 0 ? 0 0 Piper holdridgianum 0 2 ? 0 3 1 1 0 1 0 0 0 1 1 ? 0 0 0 0 1 3 1 0 0 0 0 0 0 0 0 0 1 1 1 0 2 2 2 0 0 Piper hostmannianum 0 1 2 0 3 2 0 0 1 0 0 0 1/2 1/2 0 1 0 0 0 1 0 1 1 1 2 1 1 2 2 2 1 0 3 2 0 1 2 2 0 0 Piper humistratum 0 1 2 0 3 2 0 0 0 0 1 2 1 1 0 1 0 0 0 1 1 1 1 0 0 0 0 0 2 0 2 0 1 2 ? ? 1/2 2 0 0 Piper hymenophyllum 0 0 ? 0 2 0 0 0 0 0 0 0 1 3 ? 1 3 0 2 1 2 3 0 0 0 0 0 0 5 ? 1 2 2 1 ? ? 0 ? 0 1 Piper immutatum 0 1 1 0 3 2 0 1 1 0 0 0 1/2 1/2 0 1 0 0 0 0 3 2 ? 0 0 0 0 0 0 0 2 0 1 1 2 2 2 2 0 0 Piper imperiale 0 2 3 0 4 1 1 0 1 0 0 0 2 2 0 1 0 0 1 1 1 1 ? 0 0 0 0 0 2 0 2 3 2 3 2 1 1 1 0 0 Piper inaequale 0 2 3 0 3 2 1 0 1 0 0 0 0/1 1/3 ? 1 0 0 0 1 1 1 ? 0 0 0 0 0 0 0 2 0 2 2 2 1 1 1 0 0 Piper insipiens 0 0 ? 0 3 2 1 0 1 0 0 0 1 1 ? 1 0 0 0 1 0/3 1 1 0 0 0 0 0 0 2 0 1 2 2 2 1 1 1 0 0 Piper jacquemontianum 0 1 1 0 3 2 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 2 1 2 2 2 1 1 1 0 0 Piper klotzchianum 0 0 ? 0 3 2 0 0 0 0 0 0 1 3 ? 0 0 0 0 0 0 3 ? 1 1 1 1 1 3 1 1 1 2 2 0 1 1 1 0 0 Piper korthalsii 0 ? 3 0 3 2 0 0 0 0 0 0 0 3 2 ? 0 0 ? 0 0 1 2 0 0 0 0 0 2 0 2 1 2 0 2 1 1 1 ? 2 Piper lacunosum 0 1 2 0 3 1 1 0 1 0 0 0 1 1 0/1 1 0 0 0 1 1 ? 1 ? ? 0 ? ? 0 ? ? 0 1 1 ? ? 2 2 0 0

Species name 1 5 10 15 20 25 30 35 40 Piper laevigatum 0 2 2 0 4 2 1 0 0 0 0 0 1 1 ? 1 1 0 1 1 2 ? 0 0 0 0 0 0 0 0 ? 1 1 1 0 1 2 2 0 0 Piper lanciifolium 0 1 2 0 3 2 0 0 1 0 0 0 2 2 0/1 0 0 0 0 1 ? ? ? ? ? 0 ? ? ? ? ? 1 1 1 ? ? 1 2 0 0 Piper latifolium 0 0 ? 0 3 0 1 0 0 0 0 0 2 0 ? 0 1 0 2 1 0 0 0 1 1 1 1 2 2 0 2 1 2 1 2 1 1 1 0 2 Piper leptostachyum 0 0 3 0 3 1 1 0 0 0 0 0 1 1 2 0 0 0 ? 0 0 1 1 1 1 ? 1 ? 3 ? 2 1 2 0 2 1 1 1 1 1 Piper lepturum 0 1 ? 0 3 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0/3 1 ? 1 2 1 1 2 2 0 2 1 2 2 2 1 1 1 0 0 Piper litorale 0 1 1 0 3 2 0 0 1 0 0 0 1 1 ? 0 0 0 0 1 1 ? 2 0 0 0 0 0 2 ? 2 1 2 3 ? ? 1 1 0 0 Piper lolot 0 0 ? 0 2 2 1 0 0 0 0 0 1 3 ? 0 3 0 1 1 2 4 ? 0 0 0 0 0 0 0 ? 3 ? ? 2 ? 0 0 0 1 Piper longestylosum 0 1 ? 0 3 2 0 0 1 0 0 0 1 1 ? 0 0 0 0 1 0 1 ? 1 1 1 1 2 2 0 2 2 ? 3 2 1 0 1 0 0 Piper longipilosum 0 2 ? 0 4 2 0 0 1 0 0 0 2 2 ? 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 3 2 4 1 2 2 0 0 Piper longispicum 0 2 ? 0 4 2 0 0 1 0 0 0 2 2 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 2 0 1 1 2 4 1 2 2 0 0 Piper longivaginans 0 0 ? 0 2 3 0 0 0 0 0 0 0 3 ? 0 0/3 0 1 0 3 1 ? 0 0 0 0 0 0 0 2 1 ? 2 6 0 1 1 0 1 Piper longivillosum 0 2 1 0 3 2 0 0 1 0 0 1 1 1 0/1 1 0 0 0 1 3 ? 0 0 0 0 0 0 1 ? 2 0 2 2 0 1 1 1 0 0 Piper lunibracteatum 0 2 ? 0 3 2/3 0 0 1 0 0 0 2 2 1 0 0 0 0 1 1 1 2 0 0 0 0 0 0 0 0 0 1 1 ? ? 2 2 0 0 Piper macropiper 0 0 ? 0 3 0 1 0 0 0 0 0 1 1 0 0 1 0 2 1 2 4 0 0 0 0 0 0 2 0 2 1 2 1 0 1 1 1 0 1 Piper macrotrichum 0 1 1 0 3 2 0 0 1 0 0 0 1 3 0 1 0 0 0 1 0 ? 1 ? ? 0 ? ? ? ? ? 0 2 0 1 1 ? ? 0 0 Piper majusculum 0 0 ? 0 3 2 0 0 1 0 0 0 2 0 ? 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 2 1 1 3 0 1 Piper maranyonense 0 1 1 0 4 2 1 0 0 0 0 0 1 5 ? 1 0 0 0 1 0 ? 1 0 0 0 0 0 2 ? 2 0 1 2 2 1 2 2 0 0 Piper marequitense 0 0 2 0 3 1 0 0 1 0 0 0 1 1 0 ? 0 0 0 1 0 ? 2 0 0 0 0 ? 2 ? 1 3 3 2 ? ? 1 2 0 0 Piper marginatum 0 1 ? 0 3 0 1 0 0 0 0 0 2 0 ? 0 2 0 2 1 1 4 2 0 0 0 0 0 0 0 0 0 1 1 ? ? 1 2 0 0 Piper marsupiiferum 0 2 ? 0 3 2/3 0 0 1 0 0 0 2 2 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 2 0 1 1 1 ? ? 2 3 0 0 Piper massiei 0 ? ? 0 2 1 1 0 0 0 0 ? ? ? 2 0 1 0 ? 1 0 1 0 0 0 0 0 0 2 0 2 1 2 0 2 1 1 1 ? 1 Piper maxonii 0 2 ? 1 4 2 0 0 1 0 0 0 2 2 ? 0 0 0 0 1 1 1 2 0 0 0 0 0 2 0 2 0 1 1 0 1 2 2 0 0 Piper medellinifolium 0 0 ? 0 3 1 1 0 0 0 0 0 1 1 ? 0 3 0 2 0 0 4 1 0 0 0 0 0 0 0 2 0 1 1 2 2 2 2 0 1 Piper melanocladum 0 2 ? 0 4 2 0 0 1 0 0 0 2 2 ? 0 0 0 0 1 1 1 0 0 0 0 0 0 2 0 2 0 1 1 ? ? 2 2 0 0 Piper methysticum 0 0 ? 0 3 0 1 0 0 0 0 0 2 0 ? 0 1 0 2 1 0 0 0 1 1 1 2 2 2 0 2 1 2 1 2 1 1 1 0 2 Piper michelianum 0 0 ? 0 2 0 0 0 0 0 0 0 2 0 ? 0 1 0 1 1 2 4 0 0 0 0 0 0 2 0 2 0 1 1 2 1 2 2 0 0 Piper mollicomun 0 1 1 0 3 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 3 1 1 1 1 ? ? ? 2 0 2 1 1 2 ? ? 1 2 0 0 Piper mourai 0 2 ? 0 3 2 0 0 1 0 0 0 1 1 ? 1 0 0 0 1 0 1 0 1 2 1 1 2 3 0 2 1 ? ? ? ? 0 ? 1 0 Piper muelleri 0 0 ? 0 3 1 1 0 1 0 0 0 1 1 ? 0 1 0 1 1 2 4 1 0 0 0 0 0 5 0 2 0 1 1 2 1 2 2 0 0 Piper mullesua 0 0 ? 0 2 1 1 0 0 0 0 0 1 3 ? 0 0/3 0 0 1 0 1 0 0 0 0 0 0 0 0 2 1 2 1 2 1 1 1 0 1 Piper multiplinervium 0 1 ? 0 3 1 1 0 0 0 0 0 2 0 ? 0 0 0 1 1 1 1 1 1 1 1 1 1 2 0 2 1 2 2 0 1 1 1 0 0 Piper munchanum 0 0 ? 0 3 2 1 0 1 0 0 0 0 3 ? 0 0 0 0 0 0 1 1 1 1 1 1 2 2 0 2 1 1 2 0 3 2 1/2 0 0 Piper muricatum 0 0 ? 0 3 1 1 1 1 0 0 0 2 1 ? 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 2 2 2 2 2 0 1 Piper myrmecophillum 0 0 ? 0 3 2 0 0 1 0 0 0 2 0 0 0 3 0 1 0 2 4 2 1 1 1 1 2 0 0 0 1 1 1 0 1 2 2 0 1 Piper neesianum 0 0 ? 0 2 1 0 0 1 0 0 0 1 3 ? 1 2 0 0 1 0 4 2 0 0 0 0 0 5 0 2 0 2 2 2 1 1 1 0 0 Piper nigrum L. 0 0 ? 0 3 2 0 0 0 0 0 0 0 3 ? 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 2 2 0 0 2 2 0 0 0 1 Piper nudifolium 0 2 3 0 3 1 1 0 0 0 0 0 1 1 ? 1 0 0 0 1 0/3 1 1 0 0 0 0 0 0 0 2 1 1 1 6 0 2/3 3/4 0 0 Piper obliqum 0 2 ? 0 4 2 0 0 1 0 0 0 2 2 ? 0 0 0 0 1 1 1 1 0 0 0 0 0 2 0 2 0 1 1 ? ? 2 3 0 0 Piper obtusilimbum 0 1 3 0 3 2/3 0 0 1 0 0 0 2 0/2 ? 1 0 0 0 1 1 1 1 0 0 0 0 0 2 0 2 1 2 3 4 1 1 1 0 0 Piper otophorum 0 1 2 0 3 1 0 0 1 0 0 0 2 2 ? 1 0 0 0 1 0/3 1 - 0 0 0 0 0 0 0 2 0 2 3 1 1 1 1 0 0 Piper ottoniaefolium 0 1 ? 0 3 2/3 0 0 1 0 0 0 1 1 ? 0 0 0 0 1 3 ? 0 0 0 0 0 0 0 0 0 3 2 3 2 1 1 1 0 0

Species name 1 5 10 15 20 25 30 35 40 Piper oviedoi 0 ? ? ? 2 1 0 0 1 0 0 0 1 3 2 1 3 0 ? 0 0 1 1 0 0 0 0 0 0 ? 2 2 0 0 ? 1 0 0 0 0 Piper papillicaude*** 0 0 ? 0 3 2 1 0 1 0 0 0 1 1 ? 0 0 0 0 0 0/3 1 1 0 0 0 0 0 0 2 0 1 0 1 6 0 0 1 0 0 Piper paramaribense 0 0 1 0 2 2/3 0 0 0 0 0 0 1 3/5 ? 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 ? 1 ? ? ? ? 1 1 0 0 Piper pedunculatum 0 2 2 0 3 1 1 0 1 0 0 0 1 1/3 0 1 0 0 0 1 0 ? 2 0 0 0 0 0 0 ? 2 1 1 1 ? ? 1 2 0 0 Piper peltatum 0 2 ? 2 4 0 1 0 0 0 0 0 2 2 ? 0 0/3 0 2 1 1 1 0 0 0 0 0 0 2 0 2 0 1 1 4 1 2 2 0 0 Piper pendulispicum 0 0 1 0 2 1 1 0 1 0 0 0 1 3 0 1 0 0 ? 0 0 1 0 0 0 0 0 0 2 ? 2 1 2 3 0 1 1 1 0 1 Piper penninerve 0 0 ? 0 3 2 0 0 1 0 0 0 2 0 ? 0 0 0 0 0 0 1 1 1 1 1 1 2 2 0 2 1 2 2 2 1 1 1 0 1 Piper perareolatum 0 2 ? 0 3/4 0 1 0 1 0 0 0 2 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 2 2 2 0 1 1 ? ? 2 2 0 0 Piper perlasense 0 1 ? 0 3 3 1 0 1 0 0 0 1 1 ? 0 0 0 0 1 0/3 1 1 1 1 1 1 1 0 0 0 0 2 2 0 3 1 1 0 0 Piper perpusillum 0 0 2 0 2 1 1 0 0 0 0 0 1 1 2 1 0 0 ? 0 3 ? 2 0 0 0 0 0 2 0 2 1 1 3 4 1 2 2 0 0 Piper phytolaccaefolium 0 0 1 0 3 3 1 0 1 0 0 0/1 0 3 ? 1 0 0 0 1 0 1 1 1 1 1 1 2 2 0 2 3 2 3 2 1 1 1 0 0 Piper pierri 0 0 2 0 2 1 1 0 1 0 0 0 1 1 2 0 4 0 ? 0 0 1 1 0 0 0 0 0 1 0 2 1 1 2 6 0 1 2 0 1 Piper pilibracteum 0 0 ? 0 3 2/3 0 0 0 0 0 0 2 2 0 1 0 0 0 1 3 ? 0 0 0 0 0 0 1 0 1 1 1 2 0 1 2 2 0 0 Piper piluliferum 0 0 ? 0 2 2 1 1 1 0 0 0 1 2 ? 0 0 0 0 1 1 1 2 0 0 0 0 0 0 0 0 0 1 2 0 1 2 2 0 0 Piper piscatorum 0 0 ? 0 3 2 0 0 1 0 0 0 1 3 ? 0 0 0 0 0 0 1 0 1 1 1 1 1 3 1 2 3 ? 2 4 1 1 1 0 0 Piper pittieri 0 1 ? 0 3/4 1 1 0 1 0 0 0 2 0 ? 1 0 0 0 1 1 2 0 1 1 1 2 1 2 0 2 1 2 2 2 1 1 1 0 0 Piper porphirophyllum 0 0 ? 0 2 0 1 0 0 0 0 0 2 0 ? 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 2 1 2 1 1 1 0 1 Piper preasagium 0 1 1 0 3 2 0 1 1 0 0 0 0/1 1/3 ? 1 0 0 0 1 3 ? 1 0 0 0 0 0 0 ? 2 1 2 3 2 1 1 1 0 0 Piper pseudofuligineum 0 0 1 0 2 1 1 0 1 0 0 0 2 0 0 0 0 0 ? 0 1 ? 1 0 0 0 0 0 0 ? 0 1 2 3 1 1 1 1 0 0 Piper pseudolindenii 0 ? 1 0 2 1 0 0 1 0 0 0 1 3 ? 0 3 0 0 1 2 4 1 0 0 0 0 0 5 0 0 1 2 2 0 1 1 1 0 0 Piper pseudonobile 0 2 3 0 4 2 1 0 1 0 0 0 2 2 0 ? 0 1 0 1 1 ? 2 ? ? 0 ? ? 0 ? 2 1 2 3 2 1 1 1 0 0 Piper psilorhachis 0 0 ? 0 2 2 0 0 1 0 0 0 1 3 ? 0 3 0 0 1 2 4 1 0 0 0 0 0 5 0 0 1 2 2 0 1 1 1 0 0 Piper pterocladum 0 0 ? 0 3 2 1 0 0 0 0 0 2 0 ? 0 0 0 0 1 0 1 0 1 1 1 1 2 2 2 2 0 1 1 2 1 2 2 0 0 Piper puberulum 0 0 ? 0 3 0 1 0 0 0 0 0 2 0 ? 0 1 0 2 1 0 0 2 1 1 1 2 2 2 0 2 1 2 1 2 1 1 1 0 2 Piper pulchrum 0 2 ? 0 4 2 0 0 1 0 0 0 2 2 0/1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 4 1 3 3 0 0 Piper reticulatum 0 0 ? 0 4 1 1 0 0 0 0 0 1 1 ? 0 1 0 2 1 2 4 1 0 0 0 0 0 0 0 0 0 1 3 0 1 3 3 0 0 Piper retrofractum 0 0 ? 0 3 1 3 0 0 0 0 0 1 3 ? 1 0 0 1 1 0 1 0 0 0 0 0 0 2 0 2 0 1 1 ? ? 0 ? 0 1 Piper richaerdiifolium 0 2 ? 0 4 2 0 0 1 0 0 0 2 2 0 0 0 0 0 1 0 1 1 1 1 1 1 1 2 2 2 0 1 1 0 1 3 3 0 0 Piper riparense 0 1 ? 0 3 1 1 0 1 0 0 0 2 0 0/1 0 0/4 1 2 1 1 1 1 0 0 0 0 0 0 2 0 0 1 1 ? ? 1 2 0 0 Piper rusbyi 0 0 1 0 3 1 1 0 1 0 0 0 1 1 0 0 0 0 ? 0 0/3 1 0 1 1 1 1 1 2 0 0 1 2 2 ? ? 1 1 1 0 Piper sabaletasanum 0 0 1 0 3 1 1 0 1 0 0 0 2 0 0 0 0 0 ? 0 0/3 ? 1 0 0 0 0 0 2 ? 0 1 1 2 1 1 2 2 0 0 Piper sagittifolium 0 2 ? 0 4 2 0 0 1 0 0 0 2 4 ? 0 0 0 0 1 1 1 1 0 0 0 0 0 2 0 2 0 1 1 5 3 2 3 0 0 Piper samanense 0 0 ? 0 2 1 0 0 0 0 1 3 0 3 ? 0 2 0 1 1 1 4 ? 0 0 0 0 0 5 0 2 1 2 3 0 1 1 1 0 0 Piper sampaioi 0 0 1 1 3 1 1 0 1 0 0 0 1 0 0 1 0 0 ? 0 0 ? 1 1 1 1 2 1 2 ? 0 1 2 3 ? ? 1 1 0 0 Piper sanctifelicis 0 1 1 0 3 2 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0/3 ? 0 0 0 0 0 0 0 ? 0 1 2 3 2 1 1 1 0 0 Piper sanctum 0 1 2 0 3 1 0 0 1 0 0 0 1 1 ? 1 1 0 0 1 0/3 ? ? 0 0 0 0 0 2 ? 2 0 1 1 2 1 2/3 2/3 0 0 Piper sarmentosum 0 0 ? 0 2 1 1 0 0 0 0 0 1 0 ? 0 0/3 0 0 1 1 1 ? 0 0 0 0 0 2 0 2 1 2 1 2 1 1 1 0 1 Piper sasaimanum 0 2 ? 0 5 2 0 0 1 0 0 0 2 2 0 0 0 0 0 1 0 1 ? 0 0 0 0 0 2 0 2 0 3 2 2 1 3 3 0 0 Piper schiedeanum 0 1 3 1 3 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 1 ? 1 1 1 1 1 0 0 0 1 1 2 ? ? 1 1/2 0 0 Piper schwackei 0 1 ? 0 3 2 0 0 0 0 0 0 1 1/3 ? 0 0/3 0 1 1 0 1 ? 0 0 0 0 0 0 0 0 1 1 2 ? ? 1 2 0 0 Piper scutifolium 0 0 1 ? 3 1 0 0 1 0 0 0 1 ? 2 0 0 0 ? 0 2 3 ? 1 1 1 1 1 2 0 0 1 1 2 1 1 2 2 0 0

Species name 1 5 10 15 20 25 30 35 40 Piper scutilimbum 0 1 ? 1 3 2 0 0 0 0 0 0 1 2 ? 0 0 0 0 1 0 1 1 1 1 1 1 1 2 0 2 0 1 2 0 1 2 2 0 0 Piper solmsianum 0 1 ? 0 3 1 1 0 0 0 0 0 1 1 ? 1 0 0 0 1 0/1 1 ? 1 2 1 1 2 2 0 0 1 1 2 2 2 2 2 0 0 Piper sorsogonum 0 0 ? 0 3/4 0 1 0 0 0 0 0 2 0 ? 0 3 0 2 1 0 4 ? 0 0 0 0 0 5 1 1 1 2 1 ? ? 1/2 1/2 0 1 Piper sp. aff. costatum 0 2 ? 0 2/3 2 0 0 0 0 0 1 1 1 0 1 0 0 0 0 2 2 ? 0 0 0 0 0 0 ? ? ? ? ? ? ? 0 ? 1 0 Piper spoliatum 0 2 ? 0 5 2 0 0 1 0 0 0 2 2 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 3 2 4 1 2 2 0 0 Piper sprengelianum 0 1 ? 0 3 1 1 0 1 0 0 0 1 1 ? 0 0 0 0 1 1 1 1 1 2 1 1 2 2 0 0 1 2 2 0 3 1 1 0 0 Piper squamulosum 0 2 ? 0 4 1 1 0 1 0 0 0 2 2 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 3 2 4 1 2 2 0 0 Piper sternii 0 0 1 0 3 2 1 0 1 0 0 0 1 1 2 1 0 0 ? 0 1 ? ? ? ? 0 0 0 0 0 0 1 1 1 ? ? 1/2 2 0 0 Piper stileferum 0 0 2 0 3 1 1 0 1 0 1 3 2 0 0 0 0 0 ? 0 0 ? 2 1 1 1 1 1 2 ? 2 0 1 1 4 1 2 2 0 0 Piper stipulaceum 0 0 ? 0 3 0 1 0 0 0 0 0 2 0 ? 0 1 0 2 1 1 4 1 0 0 0 0 0 0 0 2 0 1 1 2 1 2 2 0 0 Piper subflavuum 0 1 1 1 3 2 1 0 1 0 0 0 2 0/2 0 1 0 0 0 1 2 ? ? 0 0 0 0 0 0 ? 2 0 0 0 6 0 0 1 0 0 Piper subglabribracteatum 0 2 3 0 4 2 1 0 1 0 0 0 2 2 0 1 0 0 0 1 0/3 ? ? ? ? 0 ? ? ? ? ? 3 1 1 2 3 3 3 0 0 Piper subpedale 0 ? ? 0 3 2 1 0 1 0 0 0 0 3 ? ? 0 0 0 1 1 ? ? 0 0 0 0 0 1 ? 2 ? ? ? ? ? ? ? 0 0 Piper subscutatum 0 0 2 2 3 1 1 0 0 0 0 0 1 1 2 0 0 0 ? 0 0/3 ? ? 0 0 0 0 0 2 ? 0 1 1 1 1 2 2 2 1 0 Piper tardans 0 2 3 0 3 2 1 0 1 0 0 0 2 4 0 1 0 0 ? 1 1 ? 2 0 0 0 0 0 2 ? 2 1 1 1 6 0 2/3 3 0 0 Piper tomas-albertoi 0 2 ? ? 3 1 1 0 1 0 0 0 2 2 0 0 0 0 ? ? 0 ? 0 0 0 0 0 0 2 ? 2 1 1 2 4 1 2 2 0 0 Piper tonduzii 0 ? ? ? 2 2 1 0 1 0 0 0 2 2 0 0 0 0 ? 0 1 ? 0 0 0 0 0 0 0 ? 2 1 2 2 ? ? 1 1 1 0 Piper toppingii 0 0 ? 0 2 2 1 0 0 0 0 0 1 1 ? 0 1 0 2 1 ? 1 ? 0 0 0 0 0 0 0 0 0 2 2 0 1 1 1 0 1 Piper trianae 0 ? ? ? 4 2 1 ? ? 0 ? ? ? ? 0 1 0 0 ? ? 2 ? ? 1 1 1 ? ? ? ? ? 1 1 3 6 0 1 1/2 0 0 Piper tricuspe 0 ? ? ? 3 2 1 1 0 1 0 0 0 3 2 1 0 0 ? 0 1 ? ? 0 0 0 0 0 4 ? 2 0 2 0 1 1 1 1 1 0 Piper trigonum 0 ? ? ? 3 2 1 0 1 0 0 0 0 3 2 1 0 0 ? 0 0 ? ? 0 0 0 0 0 2 ? 2 1 2 3 ? 1 1 1 0 0 Piper truncatibaccum 0 0 ? 0 3 1 1 0 1 0 0 0 2 0 ? 0 1 0 2 1 0 4 ? 0 0 0 0 0 1 0 1 1 1 1 2 1 2 2 0 1 Piper truncatum 0 2 ? 0 4 3 1 0 1 0 0 0 2 2 ? 0 0 0 0 1 2 1 ? 0 0 0 0 0 2 2 2 0 1 2 ? 1 2 2 0 0 Piper tuberculatum 0 2 ? 0 2 2 0 0 1 0 0 0 1 1 ? 0 0 0 0 1 1 1 ? 1 1 1 2 2 2 0 2 0 3 2 2 1 2 2 0 0 Piper tuerkheimi 0 0 2 2 3 1 1 0 0 0 0 0 1 1 2 1 0 0 ? 1 1 ? ? 0 0 0 0 0 2 ? 2 1 ? ? ? ? 0 ? 0 0 Piper umbellatum 0 2 ? 0 4 0 1 0 0 0 0 0 2 0 ? 1 0/3 0 2 1 ? 1 ? 0 0 0 0 0 2 0 2 0 1 1 ? ? 2 2 0 0 Piper urophyllum 0 1 ? 0 2 2 0 0 0 0 0 0 1 3 ? 0 0 0 0 1 1 1 ? 1 1 1 1 2 3 0 2 1 2 2 0 3 1 1 0 0 Piper urostachyum 0 1 2 0 3 1 1 0 1 0 0 0 2 2 0 1 0 0 ? 0 0/3 ? ? 0 0 0 0 0 0 ? 0 0 2 2 ? ? 1 1 0 0 Piper vallicolum 0 1 3 0/1 3 1 1 0 0 0 0 0 2 0 ? 1 0 0 2 1 0/3 1 ? ? ? ? ? ? 0 ? ? 1 1 2 ? ? 1/2 1/2 0 0 Piper villiramulum 0 0 1 0 3 1 1 0 1 0 0 0 1 1 0 1 0 0 ? 0 3 ? ? 0 0 0 0 0 0 ? 0 0 1 0 ? ? 1 2 0 0 Piper villosum 0 0 1 0 3 1 0 0 1 0 0 0 2 0 0 0 0 0 ? 0 1 1 ? 1 1 1 1 1 2 ? 0 0 1 1 ? ? 1 2 0 0 Piper vitaceum 0 ? ? ? ? ? ? ? ? 0 ? ? ? ? 0 1 0 0 ? ? 1 ? ? ? ? ? ? ? ? ? ? 0 1 0 ? 1 ? ? ? 0 Piper wachenheinii 0 ? ? ? ? ? ? ? ? 0 ? 0 ? 3 0 0 0 0 0 0 1 ? ? 1 2 1 1 1 0 0 ? 0 1 1 2 1 2 2 0 0 Piper xanthostachyum 0 0 1 0 3 2 0 0 1 0 0 0 0 3 2 1 0 0 1 0 3 2 ? 0 0 0 0 0 0 0 0 1 1 2 1 1 1 2/3 0 0 Piper xylosteoides 0 1 ? 0 2 1 1 0 0 0 0 0 1 1 ? 0 0 0 1 1 3 1 ? 0 0 0 0 0 0 0 0 1 1 0 ? ? 1 2 0 0 Peperomia bicolor 0 ? ? 0 ? 0 1 ? ? 0 ? ? ? ? 2 ? 0 0 ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 Peperomia blanda 0 ? ? 2 ? ? 3 ? ? 0 ? ? ? ? 2 ? 0 0 ? ? ? ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 Peperomia clusiifolia 0 ? ? 1 ? ? 3 ? ? 0 ? ? ? ? 4 ? 1/2 0 ? ? ? ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 Peperomia galioides 0 ? 0 2 0 2 0 ? ? 0 ? ? ? ? 3 ? 0 0 ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 Peperomia glabella 0 1 2 2 1 2 1 ? ? 0 ? ? ? ? 2 ? 0 0 ? ? ? ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 Peperomia hylophila 0 ? ? 2 ? ? 3 ? ? 0 ? ? ? ? 2 ? 1/2 0 ? ? ? ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0

Species name 1 5 10 15 20 25 30 35 40 Peperomia inaequalifolia 0 0 2 2 0 2 0 ? ? 0 ? ? ? ? 3 ? 1/2 0 ? ? ? ? 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 Peperomia lanceolatopeltata 1 0 3 0 2 1 1 ? ? 0 ? ? ? ? 2 ? 1 0 ? ? ? ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 Peperomia lancifolia 0 ? 0 2 2 2 0 ? ? 0 ? ? ? ? 4 ? 0 0 ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 Peperomia macrostachya 0 1 2 1 2 2 1 ? ? 0 ? ? ? ? 4 ? 0 0 ? ? ? ? 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 Peperomia magnoliifolia 0 ? ? 1 ? ? 3 ? ? 0 ? ? ? ? 4 ? ? 0 ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 Peperomia pernambucensis 0 ? 0 1 3 2 3 ? ? 0 ? ? ? ? 4 ? 0 0 ? ? ? ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 Peperomia pitcairnensis 0 ? ? 0 ? ? 3 ? ? 0 ? ? ? ? 2 ? ? 0 ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Peperomia polystachya 0 ? ? 2 ? ? 3 ? ? 0 ? ? ? ? 2 ? 0 0 ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 Peperomia prostrata 0 ? ? 2 ? 0 0 ? ? 0 ? ? ? ? 3 ? 0 0 ? ? ? ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 Peperomia rotundifolia 0 0 3 2 0 0 0 ? ? 0 ? ? ? ? 2 ? 2 0 ? ? ? ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 Peperomia tuisana 0 ? ? 2 ? ? 3 ? ? 0 ? ? ? ? 2 ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 Peperomia vestita 0 ? ? 1 ? 2 0 ? ? 0 ? ? ? ? 4 ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 Manekia naranjoana 0 0 2 0 3 1 1 0 0 0 0 0 2 0 2 ? 0 0 2 1 0/3 ? 0 0 0 0 0 0 0 ? 2 1 ? ? ? ? ? ? ? 0 Manekia sydowii 0 0 2 0 3 0 1 0 0 0 0 0 2 0 2 ? 0 0 2 1 0/3 ? ? 0 0 0 0 0 0 ? 2 1 ? ? ? ? ? ? ? 0