The Flora of Madagascar. by the Rev
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Medical, Therapeutic and Pharmaceutical Use of Cyperus Articulatus L
11 Medical, Therapeutic and Pharmaceutical Use of Cyperus articulatus L. – a Review Inês Ribeiro Machado1, Keila Rêgo Mendes2, Michel Rios Arévalo3, Aline Aparecida Munchen Kasper3, Kelly Christina Ferreira Castro3, Homero de Giorge Cerqueira2, Amanda Souza Silva3 & Lauro Euclides Soares Barata3 Recebido em 19/03/2020 – Aceito em 08/05/2020 1 Universidade Estadual do Norte Fluminense Darcy Ribeiro/UENF, Avenida Alberto Lamego 2000, Parque Califórnia, Campos dos Goytacazes/RJ, Brasil. CEP: 28.013-600. <[email protected]>. 2 Instituto Chico Mendes de Conservação da Biodiversidade/ICMBio, EQSW 103/104, Bloco “B”, Complexo Administrativo, Setor Sudoeste, Brasília/DF, Brasil. CEP: 70.670-350. <[email protected], [email protected]>. 3 Universidade Federal do Oeste do Pará/UFOPA, Rua Vera Paz s/n (Unidade Tapajós), Bairro Salé, Santarém/PA, Brasil. CEP: 68.040-255. <[email protected], [email protected], [email protected], [email protected], [email protected]>. ABSTRACT – Cyperus articulatus L., belonging to the Cyperaceae family, is a plant species that has almost insignificant flowers at its ends. The stalks of the species produce tubers that, when cut, give off a fresh, woody and spicy smell; they are traditionally used in baths and in the manufacture of artisanal colonies in northern Brazil. In addition to use in cosmetics and perfumery, the plant also has medicinal and pharmacological properties. Among the pharmacological properties are the antimalarial, sedative, hepatoprotective, contraceptive effects on the central nervous system (CNS), insecticide, antimicrobial, anticancer, antioxidant, anticonvulsant, anthococcosis. The metabolites found related to the mentioned activities were cyperotundone, alpha-cyperone, mustacone for antimalarial activity in the chloroform extract of the priprioca rhizomes. -
Front Cover: Pandanus Odoratissimus L.F Published Quarterly PRINTED IN
Front cover: Pandanus odoratissimus L.f (PHOTO: Y.I. ULUMUDDIN) Published quarterly PRINTED IN INDONESIA ISSN: 1412-033X E-ISSN: 2085-4722 BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 1, January 2018 E-ISSN: 2085-4722 Pages: 77-84 DOI: 10.13057/biodiv/d190113 Forest gardens management under traditional ecological knowledge in West Kalimantan, Indonesia BUDI WINARNI1,♥, ABUBAKAR M. LAHJIE2,♥♥, B.D.A.S. SIMARANGKIR2, SYAHRIR YUSUF2, YOSEP RUSLIM2,♥♥♥ 1Department of Agricultural Management, Politeknik Pertanian Negeri Samarinda. Jl. Samratulangi, Kampus Sei Keledang, Samarinda 75131, East Kalimantan, Indonesia. Tel.: +62-541-260421, Fax.: +62-541-260680, ♥email: [email protected] 2Faculty of Forestry, Universitas Mulawarman. Jl. Ki Hajar Dewantara, PO Box 1013, Gunung Kelua, SamarindaUlu, Samarinda 75116, East Kalimantan, Indonesia. Tel.: +62-541-735089, Fax.: +62-541-735379. ♥♥email: [email protected]; ♥♥♥[email protected] Manuscript received: 5 July 2017. Revision accepted: 2 December 2017. Abstract. Winarni B, Lahjie AM, Simarangkir B.D.A.S., Yusuf S, Ruslim Y. 2018. Forest gardens management under traditional ecological knowledge in West Kalimantan, Indonesia. Biodiversitas 19: 77-84. Local wisdom of Dayak Kodatn people in West Kalimantan in forest management shows that human and nature are in one beneficial ecological unity known as Traditional Ecological Knowledge (TEK). Former cultivation forest areas are managed in various ways, including planting forest trees, fruit-producing plants, and rubber trees until they transform -
Nutrient Content of Three Clones of Red Fruit (Pandanus Conoideus) During the Maturity Development
International Food Research Journal 23(3): 1217-1225 (2016) Journal homepage: http://www.ifrj.upm.edu.my Nutrient content of three clones of red fruit (Pandanus conoideus) during the maturity development 1*Sarungallo, Z. L., 1Murtiningrum, 1Santoso, B., 1Roreng, M. K. and 1Latumahina, R. M. M. 1Department of Agricultural Technology, Papua University. Jl. Gunung Salju, Amban, Manokwari-98314, West Papua, Indonesia Article history Abstract Received: 23 November 2014 The purpose of this study was to determine the best harvest time of three clones red fruit Received in revised form: (Pandanus conoideus) based on their nutrient contents. Fruit flesh of three red fruit clones 28 August 2015 (namely Monsor, Edewewits and Memeri) were analyzed the nutritional content, during the Accepted: 9 September 2015 development of the maturity i.e. unripe, half ripe, ripe and overripe. The results show that the maturity stages had a significant effect on the nutrient contents of three clones of red fruit. Nutritional components in the red fruit on are fat (50.8-55.58%), carbohydrate (36.78-46.3%), Keywords vitamin C (24-45 mg per 100 g), phosphorus (654-792 ppm), calcium (4919-5176 ppm), total carotenoids (976-1592 ppm) and total tocopherols (1256-2016 ppm). The changed of nutrient Red fruit (Pandanus conoideus) composition of fruits vary in each clone during ripening. Using the principal component Ripening stages analysis (PCA), commonly three clones of red fruit in unripe and half ripe stages could be Carotenoids characterized by high content of ash, calcium, phosphor, and carbohydrate, while red fruit in Tocopherol maturity level of ripe and overripe were characterized by high content of fat, total carotenoids Nutrient composition and total tocopherol content. -
Group B: Grasses & Grass-Like Plants
Mangrove Guidebook for Southeast Asia Part 2: DESCRIPTIONS – Grasses & grass like plants GROUP B: GRASSES & GRASS-LIKE PLANTS 271 Mangrove Guidebook for Southeast Asia Part 2: DESCRIPTIONS – Grasses & grass like plants Fig. 25. Cyperus compactus Retz. (a) Habit, (b) spikelet, (c) flower and (d) nut. 272 Mangrove Guidebook for Southeast Asia Part 2: DESCRIPTIONS – Grasses & grass like plants CYPERACEAE 25 Cyperus compactus Retz. Synonyms : Cyperus dilutus Vahl., Cyperus grabowskianus Bolck., Cyperus luzonensis Llanos, Cyperus septatus Steud., Duraljouvea diluta Palla, Mariscus compactus Boldingh, Mariscus dilutus Nees, Mariscus microcephalus Presl., Sphaeromariscus microcephalus Camus Vernacular name(s) : Prumpungan, Jekeng, Suket (Ind.), Wampi lang (PNG), Baki-baking- pula, Durugi, Giron (Phil.). Description : A robust, perennial herb, 15-120 cm tall. Does not have stolons, and the rhizome is either very short or absent altogether. Stems are bluntly 3-angular, sometimes almost round, smooth, and with a diameter of up to 6 mm. The stem, leaves and sheath have numerous air-chambers. Leaves are 5-12 mm wide, stiff, deeply channelled, and as long as or shorter than the stem. Leaf edges and midrib are coarse towards the end of the leaf. Lower leaves are spongy and reddish-brown. Flowers are terminal and grouped in a large, up to 30 cm diameter umbrella-shaped cluster that has a reddish-brown colour. Large leaflets at the base of the flower cluster are up to 100 cm long. Spikelets (see illustration) are stemless and measure 5-15 by 1-1.5 mm. Ecology : Occurs in a variety of wetlands, including swamps, wet grasslands, coastal marshes, ditches, riverbanks, and occasionally in the landward margin of mangroves. -
Pollen Morphology and Taxonomy of Clutia L. (Euphorbiaceae)
POLLEN MORPHOLOGY AND TAXONOMY OF CLUTIA L. (EUPHORBIACEAE) TITUS DLAMINI University of Cape Town SYSTEMATICS HONOURS PROJECT SUPERVISED BY: H.P. LINDER UNIVERSITY OF CAPE TOWN 1996 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town BOLUS LIBRARY C24 0005 5091 Abstract 1111111111111 The pollen morphlogy of 34 species of Clutia L. (Euphorbiaceae) has been studied by light and scanning electron microscopy. The grains are medium sized, prolate to subprolate and rarely prolate spheroidal, tricolporate and distinctly tectate. The tectum is reticulate to punctate and the lumina are variable in size and shape. Pollen dimensions were found to be of no significance in defining infrageneric relationships while reticulation pattern, pitting density and roughnes of the exine distinguished several pollen groups when analysed by multivariate methods. The three large groups maintained their integrity regardless of method of multivariate analysis employed. A further comparison with the sections of Clutia suggested by Pax (1911) and Prain (1913) gave substantial support for some of these sections.Type ED 1 is characterised by irregular exine pits and rough tecta and is correlated to the section C. alatemoideae recognized by both workers in earlier sectioning of Clutia. Type RT 1 I corresponds to C. abyssinica and C. -
Croton Production and Use1 Robert H
ENH878 Croton Production and Use1 Robert H. Stamps and Lance S. Osborne2 FAMILY: Euphorbiaceae GENUS: Codiaeum SPECIFIC EPITHET: variegatum CULTIVARS: ‘Banana’, ‘Gold Dust’, ‘Mammy’, ‘Norma’, ‘Petra’, ‘Sunny Star’ and many others. Crotons have been popular in tropical gardens for centuries. Crotons grow into shrubs and small trees in their native habitats of India, Malaysia, and some of the South Pacific islands. Few other plants can surpass them in both foliage color and leaf shape variation. Leaf colors range from reds, oranges and yellows to green with all combinations of variegated colors. Leaf shapes vary from broad and elliptical to narrow and almost linear. Leaf blades range from flat to cork-screw-shaped. Since some cultivars are tolerant of interior environments, crotons have also become very popular as interior potted foliage plants. One additional point, often overlooked, is that foliage of crotons Figure 1. Crotons are useful for adding color to floral arrangements, is excellent material for use in floral arrangements. Both landscapes, and interiorscapes. individual leaves and entire branches can be used in floral Credits: Robert Stamps, UF/IFAS designs. 1. This document is ENH878, one of a series of the Environmental Horticulture Department, UF/IFAS Extension. Original publication date December 2002. Revised Revised May 2009 and March 2019. Visit the EDIS website at https://edis.ifas.ufl.edu for the currently supported version of this publication. 2. Robert H. Stamps, professor of Environmental Horticulture and Extension Cut Foliage Specialist; and Lance S. Osborne, professor of Entomology; UF/ IFAS Mid-Florida Research and Education Center, Apopka, FL. The use of trade names in this publication is solely for the purpose of providing specific information. -
WIAD CONSERVATION a Handbook of Traditional Knowledge and Biodiversity
WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity Table of Contents Acknowledgements ...................................................................................................................... 2 Ohu Map ...................................................................................................................................... 3 History of WIAD Conservation ...................................................................................................... 4 WIAD Legends .............................................................................................................................. 7 The Story of Julug and Tabalib ............................................................................................................... 7 Mou the Snake of A’at ........................................................................................................................... 8 The Place of Thunder ........................................................................................................................... 10 The Stone Mirror ................................................................................................................................. 11 The Weather Bird ................................................................................................................................ 12 The Story of Jelamanu Waterfall ......................................................................................................... -
Notes on Occurrence and Feeding of Birds at Crater Mountain Biological Research Station, Papua New Guinea
EMU Vol. 96,89-101,1996 0 Royal Australasian Ornithologists Union 1996 0158-4197/96/0289 + 12 Received 10-4-1995, accepted 14-7-1995 Notes on Occurrence and Feeding of Birds at Crater Mountain Biological Research Station, Papua New Guinea Andrew L. MacklJ and Debra D. Wright132 University of Miami, Department of Biology, Coral Gables, Florida 33124, USA Department of Ornithology, Academy of Natural Sciences, 19th and Parkway, Philadelphia, Pennsylvania 19103, USA Summary: During 1989-93, 170 species of birds were ob- net capture rates. Comparisons among four other sites in served and 1787 individuals captured in mist nets at the southern Papua New Guinea reveal striking similarities Crater Mountain Biological Research Station, Chimbu among sites in number of species and trophic organisation. Province, Papua New Guinea. Populations of many species Range extensions, weights and natural history observations fluctuated on annual or supra-annual schedules; 46 species are reported for many species. Feeding observations of nec- were considered transients. Areas of the forest where many tarivorous and frugivorous birds at over 50 species of plant understorey trees had been removed exhibited reduced mist are reported. In a review of the ecology of New Guinea's avifauna, Management Area, a conservation project based on Beehler (1982) reported that no long-term field studies land-use management by the traditional Pawaiian and had been carried out in diverse avian communities of Gimi landowners. The station is 10 km east of Haia in New Guinea. Since then there has been some progress, Chimbu Province, Papua New Guinea (6"43.4'S, mostly in lowland sites (Bell 1982a, 1982b, 1982c, 145'5.6'E) at c. -
Agathis Macrophylla Araucariaceae (Lindley) Masters
Agathis macrophylla (Lindley) Masters Araucariaceae LOCAL NAMES English (pacific kauri); Fijian (da‘ua,dakua dina,makadri,makadre,takua makadre,dakua,dakua makadre) BOTANIC DESCRIPTION Agathis macrophylla is a tall tree typically to about 30–40 m tall, 3 m in bole diameter, with a broad canopy of up to 36 m diameter. Branches may be erect to horizontal and massive. Mature specimens have wide, spreading root systems whereas seedlings and young specimens have a vigorous taproot with one or more whorls of lateral roots. Leaves simple, entire, elliptic to lanceolate, leathery, and dark green, and shiny above and often glaucous below; about 7–15 cm long and 2–3.5 cm wide, with many close inconspicuous parallel veins. The leaves taper to a more or less pointed tip, rounded at the base, with the margins curved down at the edge. Petioles short, from almost sessile up to 5 mm long. Cones egg-shaped at the end of the first year, about 5 cm long, and 3 cm in diameter, more or less round at the end of the second year, 8–10 cm in diameter. Female cones much larger than males, globular, on thick woody stalks, green, slightly glaucous, turning brownish during ripening. Seeds brown, small, ovoid to globose, flattened, winged, and attached to a triangular cone scale about 2.5 cm across. BIOLOGY Pacific kauri is monoecious and produces cones instead of flowers. The first female cones begin to be produced at about 10 years old and take up to 2 years to mature (more often in 12-15 months). -
(12) Patent Application Publication (10) Pub. No.: US 2017/0143022 A1 Wicker Et Al
US 20170143022A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0143022 A1 Wicker et al. (43) Pub. Date: May 25, 2017 (54) COMPOSITIONS INCORPORATING AN (52) U.S. Cl. UMLAM FLAVORAGENT CPC ............... A2.3L 27/20 (2016.08); A23L 27/88 (2016.08); A23L 2/56 (2013.01); A23L 2780 (71) Applicant: Senomyx, Inc., San Diego, CA (US) (2016.08); A23L 27/30 (2016.08); A23K 20/10 (2016.05); A23K 50/40 (2016.05); A61K 47/22 (72) Inventors: Sharon Wicker, Carlsbad, CA (US); (2013.01) Tanya Ditschun, San Diego, CA (US) (21) Appl. No.: 14/948,101 (57) ABSTRACT The present invention relates to compositions containing (22) Filed: Nov. 20, 2015 flavor or taste modifiers, such as a flavoring or flavoring agents and flavor or taste enhancers, more particularly, Publication Classification savory (“umami”) taste modifiers, savory flavoring agents (51) Int. Cl. and savory flavor enhancers, for foods, beverages, and other AOIN 25/00 (2006.01) comestible compositions. Compositions comprising an A23K2O/It (2006.01) umami flavor agent or umami taste-enhancing agent in A6 IK 47/22 (2006.01) combination with one or more other food additives, prefer A2.3L 2/56 (2006.01) ably including a flavorant, herb, Spice, fat, or oil, are A23K 50/40 (2006.01) disclosed. US 2017/O 143022 A1 May 25, 2017 COMPOSITIONS INCORPORATING AN tions WO 02/06254, WO 00/63166 art, WO 02/064631, and UMAM FLAVORAGENT WO 03/001876, and U.S. Patent publication US 2003 0232407 A1. The entire disclosures of the articles, patent BACKGROUND OF THE INVENTION applications, -
Acanthaceae), a New Chinese Endemic Genus Segregated from Justicia (Acanthaceae)
Plant Diversity xxx (2016) 1e10 Contents lists available at ScienceDirect Plant Diversity journal homepage: http://www.keaipublishing.com/en/journals/plant-diversity/ http://journal.kib.ac.cn Wuacanthus (Acanthaceae), a new Chinese endemic genus segregated from Justicia (Acanthaceae) * Yunfei Deng a, , Chunming Gao b, Nianhe Xia a, Hua Peng c a Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China b Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, Facultyof Life Science, Binzhou University, Binzhou, 256603, Shandong, People's Republic of China c Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China article info abstract Article history: A new genus, Wuacanthus Y.F. Deng, N.H. Xia & H. Peng (Acanthaceae), is described from the Hengduan Received 30 September 2016 Mountains, China. Wuacanthus is based on Wuacanthus microdontus (W.W.Sm.) Y.F. Deng, N.H. Xia & H. Received in revised form Peng, originally published in Justicia and then moved to Mananthes. The new genus is characterized by its 25 November 2016 shrub habit, strongly 2-lipped corolla, the 2-lobed upper lip, 3-lobed lower lip, 2 stamens, bithecous Accepted 25 November 2016 anthers, parallel thecae with two spurs at the base, 2 ovules in each locule, and the 4-seeded capsule. Available online xxx Phylogenetic analyses show that the new genus belongs to the Pseuderanthemum lineage in tribe Justi- cieae. -
Hypoestes Aristata (Vahl) Sol
Biol Res 43: 403-409, 2010 BHATT ET AL. Biol Res 43, 2010, 403-409 B403R The foliar trichomes of Hypoestes aristata (Vahl) Sol. ex Roem. & Schult var aristata (Acanthaceae) a widespread medicinal plant species in tropical sub-Saharan Africa: with comments on its possible phylogenetic significance A. Bhatt*, Y. Naidoo and A. Nicholas School of Biological and Conservation Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, KZN, 4000, South Africa ABSTRACT The micromorphology of foliar trichomes of Hypoestes aristata var. aristata was studied using stereo, light and scanning microscopy (SEM). This genus belongs to the advanced angiosperm family Acanthaceae, for which few micromorphological leaf studies exist. Results revealed both glandular and non-glandular trichomes, the latter being more abundant on leaf veins, particularly on the abaxial surface of very young leaves. With leaf maturity, the density of non-glandular trichomes decreased. Glandular trichomes were rare and of two types: long-stalked capitate and globose-like peltate trichomes. Capitate trichomes were observed only on the abaxial leaf surface, while peltate trichomes were distributed on both adaxial and abaxial leaf surfaces. Key terms: Acanthaceae, Glandular trichomes, Hypoestes aristata var. aristata, medicinal plant, Scanning electron microscope. INTRODUCTION zygomorphic flowers supported by prominent bracts and producing explosive capsular fruits. Many studies have The Family Acanthaceae is a large and diverse family of further supported the placement of Hypoestes in a smaller dicotyledonous plants comprising about 202 genera and 3520 clade that includes the prominent genus Justicia (McDade species (Judd et al., 2008); although estimates vary from 2600 and Moody 1999).