Galeterone for the Treatment of Castration- Resistant Prostate Cancer Bruce Montgomery1, Mario A

Total Page:16

File Type:pdf, Size:1020Kb

Galeterone for the Treatment of Castration- Resistant Prostate Cancer Bruce Montgomery1, Mario A Published OnlineFirst November 2, 2015; DOI: 10.1158/1078-0432.CCR-15-1432 Cancer Therapy: Clinical Clinical Cancer Research Androgen Receptor Modulation Optimized for Response (ARMOR) Phase I and II Studies: Galeterone for the Treatment of Castration- Resistant Prostate Cancer Bruce Montgomery1, Mario A. Eisenberger2, Matthew B. Rettig3, Franklin Chu4, Roberto Pili5, Joseph J. Stephenson6, Nicholas J. Vogelzang7, Alan J. Koletsky8, Luke T. Nordquist9, William J. Edenfield10, Khalid Mamlouk11, Karen J. Ferrante11, and Mary-Ellen Taplin12 Abstract Purpose: Galeterone is a selective, multitargeted agent that Results: In ARMOR1, across all doses, 49.0% (24/49) achieved a inhibits CYP17, antagonizes the androgen receptor (AR), and 30% decline in prostate-specific antigen (PSA; PSA30) and reduces AR expression in prostate cancer cells by causing an 22.4% (11/49) demonstrated a 50% PSA decline (PSA50). In increase in AR protein degradation. These open-label phase I ARMOR2 part 1, across all doses, PSA30 was 64.0% (16/25) and and II studies [Androgen Receptor Modulation Optimized PSA50 was 48.0% (12/25). In the 2,550-mg dose cohort, PSA30 for Response-1 (ARMOR1) and ARMOR2 part 1] evaluated was 72.7% (8/11) and PSA50 was 54.5% (6/11). Galeterone was the efficacy and safety of galeterone in patients with treat- well tolerated; the most common adverse events were fatigue, ment-naive nonmetastatic or metastatic castration-resistant increased liver enzymes, gastrointestinal events, and pruritus. Most prostate cancer (CRPC) and established a dose for further were mild or moderate in severity and required no action and there study. were no apparent mineralocorticoid excess (AME) events. Experimental Design: In ARMOR1, 49 patients received Conclusions: The efficacy and safety from ARMOR1 and increasing doses (650–2,600 mg) of galeterone in capsule ARMOR2 part 1 and the pharmacokinetic results support the formulation; 28 patients in ARMOR2 part 1 received increasing galeterone tablet dose of 2,550 mg/d for further study. Galeterone doses (1,700–3,400 mg) of galeterone in tablet formulation for was well tolerated and demonstrated pharmacodynamic changes 12 weeks. Patients were evaluated biweekly for safety and consistent with its selective, multifunctional AR signaling inhibi- efficacy, and pharmacokinetic parameters were assessed. tion. Clin Cancer Res; 22(6); 1356–63. Ó2015 AACR. Introduction common cancer-related mortality in men in the United States (1). The development of a new generation of therapies targeting the Despite recent advances in the treatment of castration-resistant androgen axis has been based on an expanded understanding of prostate cancer (CRPC), prostate cancer remains the second most the molecular mechanisms of CRPC. It is now understood that in the clinical setting of castrate levels of serum testosterone, prostate tumors adapt by upregulating tissue androgens and androgen 1University of Washington, Seattle,Washington. 2Sidney Kimmel Com- prehensive Cancer Center at Johns Hopkins University, James Bucha- receptors (AR) to maintain proliferation. Tumor androgen levels nan Brady Urological Institute, Baltimore, Maryland. 3UCLA Jonsson remain sufficiently elevated to stimulate ARs as a result of tumor Comprehensive Cancer Center, Los Angeles, California. 4San Berna- de novo 5 conversion of circulating adrenal androgens and androgen dino Urological Associates, San Bernadino, California. Indiana – University School of Medicine, Indianapolis, Indiana. 6Institute for synthesis (2 5). In addition, prostate cancer adapts to androgen- Translational Oncology Research, Greenville, South Carolina. 7Com- deprivation therapy by AR gene amplification, upregulation of AR prehensive Cancer Centers of Nevada and U.S. Oncology Research, transcripts, or protein expression (6, 7). Thus, inhibition of the Las Vegas, Nevada. 8Lynn Cancer Institute, Boca Raton, Florida. 9Urol- ogy Cancer Center and GU Research Network, Omaha, Nebraska. synthesis of nongonadal androgens and blockade of AR remain 10Greenville Hospital System and University Medical Center, Green- key targets in CRPC therapy. 11 ville, South Carolina. Tokai Pharmaceuticals, Cambridge, Massachu- Abiraterone and enzalutamide have improved outcomes for setts. 12Dana-Farber Cancer Institute, Boston, Massachusetts. patients with metastatic CRPC (mCRPC). Although abiraterone Note: Supplementary data for this article are available at Clinical Cancer and enzalutamide have been shown to improve overall survival Research Online (http://clincancerres.aacrjournals.org/). (OS), these agents are not curative and not without safety and Corresponding Author: Mary-Ellen Taplin, Dana-Farber Cancer Institute, 450 tolerability issues (8–11). In addition, a significant proportion of Brookline Avenue, Boston, MA 02215. Phone: 617-632-3237; Fax: 617-632-2165; patients do not respond; and in those who do respond, therapy E-mail: [email protected] will eventually fail because of the development of resistance doi: 10.1158/1078-0432.CCR-15-1432 (9, 10, 12–14). A major component of resistance to second- Ó2015 American Association for Cancer Research. generation AR-targeting agents may be mediated by AR splice 1356 Clin Cancer Res; 22(6) March 15, 2016 Downloaded from clincancerres.aacrjournals.org on September 28, 2021. © 2016 American Association for Cancer Research. Published OnlineFirst November 2, 2015; DOI: 10.1158/1078-0432.CCR-15-1432 Galeterone for Metastatic Castration-Resistant Prostate Cancer study confirmed a significant food effect with the capsule formu- Translational Relevance lation that was used in ARMOR1 (Supplementary Data). The SDD Despite the recent advances in the understanding and tablet formulation was shown in a healthy volunteer study to not treatment of metastatic castration-resistant prostate cancer be affected by food, providing similar exposure (area under the (mCRPC), it remains a lethal disease. Androgen receptor (AR) concentration-time curve, AUC) in fed and fasted states (28). signaling remains a primary target of therapy, as the under- Results of this study also demonstrated equivalent serum con- standing of both the disease and mechanisms of resistance centrations using either 1,700 mg of the SDD tablet or 2,600 mg of expand. Galeterone, a selective, multitargeted agent, is distinct the capsule, which was the highest dose studied in ARMOR1. from other mCRPC therapies in that it combines the mechan- Thus, the dose-escalation portion of ARMOR2 was conducted to isms of current agents—CYP17 inhibition and AR antago- evaluate the safety and tolerability of escalating doses of the SDD nism—with the novel mechanism of increasing AR protein formulation and to determine the recommended dose for degradation. These first assessments of galeterone in mCRPC ARMOR2 part 2 and ARMOR3. identified a well-tolerated dose that resulted in clinically significant reductions in prostate-specific antigen, and dem- onstrate the potential of this agent. In vitro data and results of Patients and Methods these studies have informed future investigation of galeterone, Patients which will include AR-related biomarker analyses. Eligible men had histologically confirmed nonmetastatic (M0) or metastatic (M1) adenocarcinoma of the prostate, a life expec- tancy of >12 weeks, and progressive disease despite ongoing androgen-deprivation therapy. Patients were required to have progressive disease according to Prostate Cancer Clinical Trials variants, such as AR-V7, which are produced in tumor cells as a Working Group 1 [PCWG1] criteria (29) in ARMOR1, or PCWG2 result of aberrant RNA splicing of the wild-type AR transcript. The criteria (30) in ARMOR2 part 1, ongoing treatment with gonad- resultant truncated AR protein lacks the C-terminal domain to otropin-releasing hormone analogs or orchiectomy (serum tes- which androgen binds and is the primary site of action of tosterone <50 mg/dL), and an Eastern Cooperative Oncology nonsteroidal antiandrogens such as enzalutamide. Furthermore, Group (ECOG) performance status of 1. ARMOR1 excluded splice variants have been shown to be constitutively active tran- patients who had previously received chemotherapy, ketocona- scription factors, leading to the activation of androgen-responsive zole, abiraterone, or enzalutamide. ARMOR2 part 1 permitted the genes even at castrate levels of androgens (15, 16). Mutations in enrollment of abiraterone-refractory patients, provided it had the AR may also contribute to resistance in CRPC, and AR point been discontinued 4 weeks before enrollment and that the mutations allow activation of the receptor by nonphysiologic duration of therapy was 6 months before PSA progression or ligands (e.g., cortisol, progesterone, flutamide, bicalutamide; >6 weeks with documentation of an initial response followed by refs. 17, 18, 19). As a result, androgen-independent, but PSA progression. Previous ketoconazole treatment was permitted AR-dependent, tumor growth occurs, and tumors become resis- upon agreement between the investigator and the study sponsor. tant to therapeutic agents that alter androgen production (e.g., Patients with nonhepatic visceral metastases and/or tumor-asso- abiraterone) or antagonize binding to the AR (e.g., bicalutamide, ciated bone pain that required active pain management were enzalutamide). Recent data demonstrated that patients with excluded from ARMOR1. Patients with indeterminate lung detectable circulating tumor cells harboring AR-V7 had inferior nodules were eligible. Other exclusion criteria included any responses
Recommended publications
  • A Phase 1 Multiple-Dose Study of Orteronel in Japanese Patients with Castration-Resistant Prostate Cancer
    Cancer Chemother Pharmacol (2015) 75:373–380 DOI 10.1007/s00280-014-2654-y ORIGINAL ARTICLE A phase 1 multiple-dose study of orteronel in Japanese patients with castration-resistant prostate cancer Kazuhiro Suzuki · Seiichiro Ozono · Akito Yamaguchi · Hidekazu Koike · Hiroshi Matsui · Masao Nagata · Takatoshi Takubo · Kana Miyashita · Takafumi Matsushima · Hideyuki Akaza Received: 6 November 2014 / Accepted: 14 December 2014 / Published online: 24 December 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Cycle 1 in this study. Adverse events (AEs) were reported Purpose Orteronel (TAK-700) is a non-steroidal, selec- in all 15 patients. Most common AEs (>30 %) were hyper- tive, reversible inhibitor of 17,20-lyase. We evaluated the lipasemia (47 %), hyperamylasemia (40 %), and consti- safety, tolerability, pharmacokinetics, pharmacodynamics, pation (33 %). Acute pancreatitis (Grades 2 and 3) and and antitumor effect of orteronel with or without predniso- pancreatitis (Grade 1) were complicated in three patients lone in Japanese patients with castration-resistant prostate during the study. Dose-dependent increase in plasma orte- cancer (CRPC). ronel concentrations was indicated over the 200–400 mg Methods We conducted a phase 1 study in men with pro- BID dose range. Prednisolone coadministered did not alter gressive and chemotherapy-naïve CRPC. Patients received PK of orteronel. Serum testosterone was rapidly suppressed orteronel orally at doses of 200–400 mg twice daily (BID) below the lower limit of quantification across all doses. Of with or without oral prednisolone (5 mg BID). Dose-limit- 15 subjects, 13 achieved at least a 50 % reduction from ing toxicity (DLT) was assessed during Cycle 1 (28 days).
    [Show full text]
  • (19) United States (12) Patent Application Publication (Io) Pub
    llIIlIlllIlIlIllIlIllIllIllIIlIlllIlIIllllIIlllIIlIlllIIlIlllllIIIlllIlIllIIIIIIIIIIIIIIII US 20160015712AI (19) United States (12) Patent Application Publication (Io) Pub. No. : US 2016/0015712 A1 DORSCH et al. (43) Pub. Date: Jan. 21, 2016 (54) TRIAZOLO [4,5-D]PYRIMIDINE Publication Classification DERIVATIVES (51) Int. Cl. (71) Applicant: MERCK PATENT GMBH, Darmstadt 261K31/519 (2006.01) (DE) 261K31/53 77 (2006.01) C07D 519/00 (2006.01) (72) Inventors: Dieter DORSCH, Ober-Ramstadt (DE); C07D 487/04 (2006.01) Guenter HOELZEMANN, (52) U.S. Cl. Seeheim- Jugenheim (DE); Michel CPC ............ 261K31/519 (2013.01); C07D 487/04 CALDERINI, Darmstadt (DE); Ansgar (2013.01);261K31/5377 (2013.01); C07D WEGENER, Heusenstamm (DE); 519/00 (2013.01) Oliver POESCHKE, Wiesbaden (DE) (57) ABSTRACT (73) Assignee: MERCK PATENT GMBH, Darmstadt (DE) Compounds of the formula I (21) Appl. No. : 14/772, 865 (22) PCT Filed: Feb. 10, 2014 H (86) PCT No. : PCT/EP2014/000361 II ) 371 (c)(I), NX N (2) Date: Sep. 4, 2015 (30) Foreign Application Priority Data in which R' and R have the meanings indicated in Claim 1, are inhibitors of GCN2, and can be employed, inter alia, for Mar. 5, 2013 (EP) ... 13001110.9 the treatment of cancer. US 2016/0015712 A1 Jan. 21, 2016 TRIAZOLO [4,5-D]PYRIMIDINE [0006] Several mechanistic studies discovered that DERIVATIVES immune escape has an important interface with metabolic alterations within the tumor microenvironment. Here impor- BACKGROUND OF THE INVENTION tant roles in mediating immune tolerance to antigens have been associated to the catabolism ofthe essential amino acids [0001] The invention had the object of finding novel com- tryptophan and arginine, carried out by the enzymes pounds having valuable properties, in particular those which indoleamine 2,3-dioxygenase (IDO) and arginase I (ARG), can be used for the medicaments.
    [Show full text]
  • WO 2018/111890 Al 21 June 2018 (21.06.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/111890 Al 21 June 2018 (21.06.2018) W !P O PCT (51) International Patent Classification: EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, C07K 16/28 (2006.01) A61K 31/4166 (2006.01) MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, 59/595 (2006.01) TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). (21) International Application Number: PCT/US20 17/065841 Declarations under Rule 4.17: (22) International Filing Date: — as to applicant's entitlement to apply for and be granted a 12 December 2017 (12.12.2017) patent (Rule 4.1 7(H)) — as to the applicant's entitlement to claim the priority of the (25) Filing Language: English earlier application (Rule 4.17(Hi)) (26) Publication Langi English — of inventorship (Rule 4.1 7(iv)) (30) Priority Data: Published: 62/433,158 12 December 2016 (12.12.2016) US — with international search report (Art. 21(3)) — with sequence listing part of description (Rule 5.2(a)) (71) Applicant (for all designated States except AL, AT, BE, BG, CH, CN, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IN, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, P T RO, RS, SE, SI, SK, SM, TR): GENENTECH, INC. [US/US]; 1 DNA Way, South San Francisco, CA 94080-4990 (US).
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • Download Product Insert (PDF)
    Product Information Galeterone Item No. 17586 N CAS Registry No.: 851983-85-2 Formal Name: 17-(1H-benzimidazol-1-yl)-androsta- 5,16-dien-3β-ol N Synonym: TOK-001 MF: C26H32N2O FW: 388.6 H Purity: ≥98% H H Stability: ≥2 years at -20°C Supplied as: A crystalline solid HO Laboratory Procedures For long term storage, we suggest that galeterone be stored as supplied at -20°C. It should be stable for at least two years. Galeterone is supplied as a crystalline solid. A stock solution may be made by dissolving the galeterone in the solvent of choice. Galeterone is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide (DMF), which should be purged with an inert gas. The solubility of galeterone in ethanol and DMSO is approximately 20 mg/ml and approximately 30 mg/ml in DMF. Galeterone is sparingly soluble in aqueous buffers. For maximum solubility in aqueous buffers, galeterone should first be dissolved in DMF and then diluted with the aqueous buffer of choice. Galeterone has a solubility of approximately 0.2 mg/ml in a 1:3 solution of DMF:PBS (pH 7.2) using this method. We do not recommend storing the aqueous solution for more than one day. The cytochrome P450 (CYP) isoform CYP17 is also known as steroid 17α-hydroxylase/17,20 lyase because it catalyzes both 17α-hydroxylase and 17,20 lyase reactions in the synthesis of steroids, including androgens, estrogens, glucocorticoids, 1 and mineralocorticoids. Galeterone is a CYP17 inhibitor (IC50 = 300 nM) that has been shown to competitively block synthetic androgen binding (EC50 = 845 nM) and to antagonize the androgen receptor in transcriptional activation 2 assays.
    [Show full text]
  • Therapies Targeted to Androgen Receptor Signaling Axis in Prostate Cancer: Progress, Challenges, and Hope
    cancers Review Therapies Targeted to Androgen Receptor Signaling Axis in Prostate Cancer: Progress, Challenges, and Hope Sirin Saranyutanon 1,2, Sanjeev Kumar Srivastava 1,2,*, Sachin Pai 3, Seema Singh 1,2,4 and Ajay Pratap Singh 1,2,4,* 1 Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA; [email protected] (S.S.); [email protected] (S.S.) 2 Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA 3 Department of Medical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; [email protected] 4 Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA * Correspondence: [email protected] (S.K.S.); [email protected] (A.P.S.); Tel.: +1-251-445-9874 (S.K.S.); +1-251-445-9843 (A.P.S.) Received: 4 November 2019; Accepted: 18 December 2019; Published: 23 December 2019 Abstract: Prostate cancer is the mostly commonly diagnosed non-cutaneous malignancy and the second leading cause of cancer-related death affecting men in the United States. Moreover, it disproportionately affects the men of African origin, who exhibit significantly greater incidence and mortality as compared to the men of European origin. Since androgens play an important role in the growth of normal prostate and prostate tumors, targeting of androgen signaling has remained a mainstay for the treatment of aggressive prostate cancer. Over the years, multiple approaches have been evaluated to effectively target the androgen signaling pathway that include direct targeting of the androgens, androgen receptor (AR), AR co-regulators or other alternate mechanisms that impact the outcome of androgen signaling.
    [Show full text]
  • Orteronel for Metastatic Hormone-Relapsed Prostate Cancer
    Horizon Scanning Centre March 2013 Orteronel for metastatic hormone- relapsed prostate cancer following chemotherapy SUMMARY NIHR HSC ID: 4870 Orteronel is intended to be used as therapy for the treatment of hormone- relapsed prostate cancer following progression despite docetaxel-containing chemotherapy. If licensed, it will provide an additional treatment option for this patient group. Orteronel is a reversible, non-steroidal androgen biosynthesis inhibitor that selectively inhibits the 17,20 lyase enzyme, This briefing is suppressing the production of testosterone. based on information Prostate cancer is the most common cancer in men in the UK, accounting for available at the time 25% of all male cancers. The main risk factor is increasing age, with an of research and a average of 75% of cases diagnosed in men aged 65 years and over. In 2010, limited literature there were 37,354 new diagnoses registered in England and Wales and in search. It is not 2011, there were 9,671 deaths. intended to be a definitive statement Current treatment options include hormonal therapies, (glucocorticoids, low- on the safety, dose oestrogens, selective 17,20 lyase inhibitors, or novel androgen receptor efficacy or antagonists), chemotherapies (docetaxel, mitoxantrone) and effectiveness of the immunotherapies (sipuleucel-T). Orteronel is currently in phase III clinical health technology trials comparing its effect on overall survival and event-free survival against covered and should treatment with placebo. These trials are expected to complete in 2013 and not be used for 2015. commercial purposes or commissioning without additional information. This briefing presents independent research funded by the National Institute for Health Research (NIHR).
    [Show full text]
  • Development of Combination Therapy for Prostate Cancer
    DEVELOPMENT OF COMBINATION THERAPY FOR PROSTATE CANCER A Dissertation Presented to the Faculty of the Weill Cornell Graduate School of Medical Sciences in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Alexander R. Root July 2017 © 2017 Weill Cornell Graduate School of Medical Sciences ALL RIGHTS RESERVED DEVELOPMENT OF COMBINATION THERAPY FOR PROSTATE CANCER Alexander R. Root, Ph.D. Cornell University 2017 There is an unmet need in prostate cancer for effective therapies to prevent the emergence of resistance. Combinations of small molecules targeting key pathways are a promising strategy. I investigated how populations of the early metastatic prostate cancer cell line LNCaP respond at the proteomic and pheno- typic levels to six clinically-relevant, one-drug treatments and their 15 pairs of two-drug combinations, administered simultaneously to treatment-naive cells. After 24 hours of drug addition for all 21 drug treatments I measured 52 total- proteins by selected-reaction monitoring mass-spectrometry based proteomics (SRM), 20 phospho-proteins, and 50 total-proteins by reverse-phase protein ar- rays (RPPA). I measured phenotypic effects on cell proliferation and apoptosis in all conditions using phase-contrast and fluorescence microscopy. Network analysis identified (phospho)-proteins with large responses to drug treatments that are druggable with FDA-approved drugs or have nearest-neighbors that are druggable. A total of ten drugs targeting these nearest responder (phospho)-proteins were tested in single, double, and triple combinations. I found that 7 out of 10 triple combinations co-targeting androgen receptor and PI3K pathways were no more effective than the two-drug combination at the doses tested: PRKC (en- zastaurin), MAPK (losmapimod), STAT3 (napabucasin), HDAC (panobinostat), SRC (saracatinib), casein kinase (silmitasertib), MAPK (ulixertinib).
    [Show full text]
  • ( 12 ) United States Patent
    US010314797B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 314 ,797 B2 Narayanan et al. ( 45 ) Date of Patent : * Jun . 11, 2019 ( 54 ) SELECTIVE ANDROGEN RECEPTOR ( 56 ) References Cited DEGRADER (SARD ) LIGANDS AND METHODS OF USE THEREOF U . S . PATENT DOCUMENTS 5 ,480 ,656 A 1 / 1996 Okada et al . (71 ) Applicant: University of Tennessee Research 5 ,575 , 987 A 11/ 1996 Kamei et al . Foundation , Knoxville , TN (US ) 5 ,631 , 020 A 5 / 1997 Okada et al. 5 , 643 ,607 A 7 / 1997 Okada et al. 5 ,716 ,640 A 2 / 1998 Kamei et al. ( 72 ) Inventors : Ramesh Narayanan , Cordova , TN 5 , 814 ,342 A 9 / 1998 Okada et al . (US ) ; Duane D . Miller , Collierville , 6 ,036 , 976 A 3 / 2000 Takechi et al . TN (US ) ; Thamarai Ponnusamy , 7 , 118 , 552 B2 10 / 2006 Shaw et al . Memphis , TN (US ); Dong - Jin Hwang, 7 , 220 , 247 B25 / 2007 Shaw et al . 7 ,500 , 964 B23 / 2009 Shaw et al . Arlington , TN (US ) ; Yali He, 9 ,815 , 776 B2 * 11 / 2017 Narayanan . .. .. C07C 255 /60 Germantown , TN (US ) 9 , 834 , 507 B2 * 12 / 2017 Narayanan . .. .. .. C07C 255 /60 2005 /0101657 A1 5 /2005 Furuya et al . (73 ) Assignee : University of Tennessee Research 2007 /0265290 A1 11/ 2007 Dalton et al . 2010 /0227846 AL 9 /2010 Ito et al. Foundation , Knoxville , TN ( US ) 2014 / 0018433 A11 / 2014 Dalton et al . ( * ) Notice : Subject to any disclaimer , the term of this 2018 /0118663 A1 * 5 / 2018 Narayanan . C07C 237/ 20 patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS U . S .
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Orteronel Item No. 24191 CAS Registry No.: 566939-85-3 Formal Name: 6-[(7S)-6,7-dihydro-7-hydroxy- 5H-pyrrolo[1,2-c]imidazol-7-yl]-N- O methyl-2-naphthalenecarboxamide Synonym: TAK-700 N MF: C H N O 18 17 3 2 H OH N FW: 307.3 Purity: ≥98% N UV/Vis.: λmax: 237, 280 nm Supplied as: A crystalline solid Storage: -20°C Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Orteronel is supplied as a crystalline solid. A stock solution may be made by dissolving the orteronel in the solvent of choice. Orteronel is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide (DMF), which should be purged with an inert gas. The solubility of orteronel in ethanol is approximately 0.2 mg/ml and approximately 10 mg/ml in DMSO and DMF. Description Orteronel is a non-steroidal inhibitor of the 17,20-lyase activity of the cytochrome P450 (CYP) isoform CYP17A1 (IC50s = 48 and 19 nM for the rat and human enzyme, respectively), which is the CYP17A1 activity that converts progestogens into androgens.1 Orteronel is selective for the 17,20-lyase activity of CYP17A1 over its 11-hydroxylase activity and CYP3A4 (IC50s = >1,000 and >10,000 nM, respectively). It decreases adrenocorticotropic hormone-induced production of DHEA, androstenedione, cortisol, and aldosterone in monkey adrenal cells (IC50s = 110, 130, 310, and 4,400 nmol/L, respectively) and inhibits DHEA production in NCI-H295R human adrenocortical tumor cells.2 A single oral dose of orteronel (0.3-10 mg/kg) dose-dependently decreases DHEA, cortisol, and testosterone levels in the plasma of intact cynomolgus monkeys for at least 10 hours, and chronic dosing of 15 mg/kg twice daily suppresses levels for up to seven days of treatment.
    [Show full text]
  • Prostate Cancer
    Antonarakis_RL_EU Uro 13/12/2011 12:46 Page 251 Prostate Cancer Management of Metastatic Castration-resistant Prostate Cancer Emmanuel S Antonarakis Assistant Professor of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Abstract The management of men with metastatic castration-resistant prostate cancer (CRPC) has taken several leaps forwards in the last two years, with the demonstration of improved overall survival with three novel agents (sipuleucel-T, cabazitaxel and abiraterone acetate) and a significant delay in skeletal-related events observed with denosumab. The pipeline of systemic therapies in prostate cancer remains strong, as multiple agents with a diverse array of mechanisms of action are demonstrating preliminary signs of clinical benefit, leading to more definitive Phase III confirmatory trials. In this review, we will discuss the evolving landscape of treatment options for men with CRPC, with a particular focus on currently approved and emerging treatment options for these patients. Knowledge of these evolving standards will help to optimise delivery of care and long-term outcomes in men with advanced CRPC. Keywords Castration-resistant prostate cancer, novel therapies, drug development, sipuleucel-T, cabazitaxel, abiraterone, denosumab, orteronel, MDV3100, ipilimumab Disclosure: Emmanuel S Antonarakis has served as an advisor/consultant for Sanofi-Aventis. Received: 12 August 2011 Accepted: 19 October 2011 Citation: European Oncology & Haematology, 2011;7(4):251–6 DOI: 10.17925/EOH.2011.07.04.251 Correspondence: Emmanuel S Antonarakis, Prostate Cancer Research Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, CRB1-1M45, Baltimore, MD 21231-1000, US. E: [email protected] While much of the recent focus on prostate cancer relates to the for the second-line treatment of metastatic CRPC.
    [Show full text]
  • Metabolic Enzyme/Protease
    Inhibitors, Agonists, Screening Libraries www.MedChemExpress.com Metabolic Enzyme/Protease Metabolic pathways are enzyme-mediated biochemical reactions that lead to biosynthesis (anabolism) or breakdown (catabolism) of natural product small molecules within a cell or tissue. In each pathway, enzymes catalyze the conversion of substrates into structurally similar products. Metabolic processes typically transform small molecules, but also include macromolecular processes such as DNA repair and replication, and protein synthesis and degradation. Metabolism maintains the living state of the cells and the organism. Proteases are used throughout an organism for various metabolic processes. Proteases control a great variety of physiological processes that are critical for life, including the immune response, cell cycle, cell death, wound healing, food digestion, and protein and organelle recycling. On the basis of the type of the key amino acid in the active site of the protease and the mechanism of peptide bond cleavage, proteases can be classified into six groups: cysteine, serine, threonine, glutamic acid, aspartate proteases, as well as matrix metalloproteases. Proteases can not only activate proteins such as cytokines, or inactivate them such as numerous repair proteins during apoptosis, but also expose cryptic sites, such as occurs with β-secretase during amyloid precursor protein processing, shed various transmembrane proteins such as occurs with metalloproteases and cysteine proteases, or convert receptor agonists into antagonists and vice versa such as chemokine conversions carried out by metalloproteases, dipeptidyl peptidase IV and some cathepsins. In addition to the catalytic domains, a great number of proteases contain numerous additional domains or modules that substantially increase the complexity of their functions.
    [Show full text]