Scanned Using Fujitsu 6670 Scanner and Scandall Pro Ver 1.7 Software
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Osmoregulatory Metabolism Op the Starry Flounder, Platichthys Stellatus
THE OSMOREGULATORY METABOLISM OP THE STARRY FLOUNDER, PLATICHTHYS STELLATUS by CLEVELAND PENDLETON HICKMAN, JR. B.A., DePauw University, 1950 M.S., University of New Hampshire, 1953 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Zoology We accept this thesis as conforming to the required standard. THE UNIVERSITY OF BRITISH COLUMBIA June, 1958 Faculty of Graduate Studies PROGRAMME OF THE FINAL ORAL EXAMINATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY of CLEVELAND PENDLETON HICKMAN JR. B.A. DePauw University, 1950 M.S. University of New Hampshire, 1953 IN ROOM 187A, BIOLOGICAL SCIENCES BUILDING MONDAY, JUNE 30, 1958 at 10:30 a.m. COMMITTEE IN CHARGE DEAN F. H. SOWARD, Chairman H. ADASKIN W. S. HOAR W. A. CLEMENS W. N. HOLMES I. McT. COWAN C. C. LINDSEY P. A. DEHNEL H. McLENNAN R. F. SCAGEL External Examiner: F. E. J. FRY University of Toronto THE OSMOREGULATORY METABOLISM OF THE STARRY FLOUNDER, PLATICHTYS STELLATUS ABSTRACT Energy demands for osmotic regulation and the possible osmoregulatory role of the thyroid gland were investigated in the euryhaline starry flounder, Platichthys stellatus. Using a melt• ing-point technique, it was established that flounder could regulate body fluid concentration independent of widely divergent environ• mental salinities. Small flounder experienced more rapid disturb• ances of body fluid concentration than large flounder after abrupt salinity alterations. The standard metabolic rate of flounder adapted to fresh water was consistently and significantly less than that of marine flounder. In supernormal salinities standard metabolic rate was significantly greater than in normal sea water. -
New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E. -
Elephant Fish
Best Fish Guide 2009-2010 How sustainable is New Zealand seafood? (Ecological Assessments) Produced and Published by Royal Forest and Bird Protection Society of New Zealand, Inc. PO Box 631, Level One, 90 Ghuznee Street, Wellington. www.forestandbird.org.nz November 2009 Acknowledgements Forest & Bird with to thank anonymous reviewers for their peer review comments on this draft. We also thank Peta Methias, Annabel Langbein, Martin Bosely, Margaret Brooker, Lois Daish, Kelder Haines, Dobie Blaze, Rohan Horner and Ray McVinnie for permission to use their recipes on the website. Special thanks to our Best Fish Guide Ambassador Dobie Blaze, keyboard player with Fat Freddy’s Drop. Editing: Kirstie Knowles, Barry Weeber and Helen Bain Technical Advisor: Barry Weeber Cover Design: Rob Deliver Cover fish (Tarakihi): Malcolm Francis Photography: Malcolm Francis: blue cod, blue moki, blue shark, butterfish, groper/hapuku, hoki, jack mackerel, john dory, kahawai, kingfish, leather jacket, moonfish, paua, porbeagle shark, red gurnard, red snapper, scallop, school shark, sea perch, snapper, spiny dogfish, tarakihi, trevally and trumpeter. Peter Langlands: blue warehou, cockles, elephantfish, frostfish, lookdown dory, oyster, pale ghost shark, queen scallops, red cod, rig/lemonfish, rubyfish and scampi. Ministry of Fisheries: albacore tuna, bigeye tuna, blue mackerel, pacific bluefin tuna, skipjack tuna, southern bluefin tuna and swordfish. John Holdsworth: gemfish, striped marlin and yellowfin tuna. Kirstie Knowles: sand flounder and rock lobster. Department of Conservation: kina and skate. Quentin Bennett: mako shark. Scott Macindoe: garfish. Jim Mikoz: yellow-eyed mullet. Forest & Bird: arrow squid, dark ghost shark, orange roughy, smooth oreo, packhorse lobster, paddle crabs, stargazer and white warehou. -
Black Flounder) Family: Pleuronectidae
9 Pātiki Mohoao (Black flounder) Family: Pleuronectidae Species: Rhombosolea retiaria The black flounder (Figure 69), pātiki mohoao (Rhombosolea retiaria), is the only member of the flatfish family, or Pleuronectidae, that is a truly freshwater species. Other members of the family, such as the yellow-belly flounder (Rhombosolea leporina), occasionally wander into the lower reaches of rivers, but do not usually stay there. As their name implies, the flatfishes are indeed flat, and have adopted a habit of laying on their sides down on the substrate. Both eyes are on their dorsal or upper side to improve their field of view. Because of their shape, flounders are unlikely to be confused with other fish species except other flatfishes. The black flounder is easily distinguished from other flatfishes by its colouration; the top of the fish is usually dark-coloured with numerous, obvious brick-red spots. Flounders can grow to about 450 mm in length, although 200–300 mm fish are most common. Figure 1: (Top) The adult black flounder (Rhombosolea retiaria); and (Bottom) Juvenile black flounder, c. 10 mm in length. (Sources: [Top] Bob McDowall; [Bottom] Roper [1979] in Eldon & Smith [1986]). The black flounder is found throughout Aotearoa-NZ and is unique to this country. They are primarily a coastal species, although they can penetrate well inland if the river gradient is not too steep and specimens have been recorded more than 100 km inland in some river systems. Black flounder are a carnivorous species and probably eat a variety of bottom dwelling insects and molluscs. They are also known to feed on whitebait during the spring migration. -
Ovarian Development in Yellow Belly Flounder Following Gonadotrophin Releasing Hormone Analogue Treatment
http://researchcommons.waikato.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. Assessment of key reproductive markers after hormonal induction of spawning, using gonadotrophin-releasing hormone in female yellow belly flounder (Rhombosolea leporine): A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in biological sciences at The University of Waikato by KENT JEFFRIES Year of submission 2019 1 Abstract Yellow belly flounder (YBF) (Rhombosolea leporina) are of interest to the New Zealand aquaculture industry as a novel culture species. This is due to their high commercial value and low trophic feeding level. However, when held in captive settings, YBF are observed to undergo reproductive failure. GnRHa has been used as a spawning inducing agent within many cultured fish species. Flounder gonadotrophin levels were traced after induction and oocyte development was histologically assessed. At pituitary level it was seen that the GnRHa induction resulted in increased follicle stimulating hormone (FSH) levels. -
The Fisheries (Fish Species Restrictions) Notice 1983
1983/308 THE FISHERIES (FISH SPECIES RESTRICTIONS) NOTICE 1983 PURSUANT to section 89 of the Fisheries Act 1983, and the Fisheries (Commercial Fishing) Regulations 1983, the Director-General of Agriculture and Fisheries hereby gives the following notice. ANALYSIS 9. Restrictions on taking scallops 10. Taking of toheroa prohibited 1. Title and commencement 2. Interpretation Rock Lobsters 11. Minimum length of rock lobsters Finfish 12. Measuring rock lobsters 3. Minimum finfish length, weight, and net 13. Restrictions on taking rock lobsters mesh size 14. Rock lobsters to be landed and 4. Use of certain nets prohibited processed alive 5. Use of Danish seine net prohibited General Restrictions Shellfish 15. Taking of black coral pr.ohibited 6. Size limits on shellfish 16. Return of unlawful fish 7. Restrictions on opening shellfish 17. Handling of salmon by-catch 8. Restrictions on taking oysters Schedule NOTICE 1. Title and commencement-(l) This notice may be cited as the Fisheries (Fish Species Restrictions) Notice 1983. (2)This notice shall come into force on the 1st day ofJanuary 1984. 2. Interpretation-(l) In this notice, unless the context otherwise requires,- "Black coral" means a coelenterate of the genus Aphanipathes: "Blue cod" means the fish of which the scientific name is Parapercis colias: "Blue moki" means the fish of which the scientific name is Latridopsis ciliaris: "Box net" or "teichi net" means any trap net capable of taking finfish: "Butterfish" means the fish of which the scientific names are Odax pullus and Odax cyanoallix: -
The Flounder Free
FREE THE FLOUNDER PDF GГјnter Grass,Ralph Manheim | 560 pages | 21 Jul 1997 | Vintage Publishing | 9780749394851 | English | London, United Kingdom Flounder | fish | Britannica Flounderany of numerous species of flatfishes belonging to the families Achiropsettidae, Pleuronectidae, Paralichthyidae, and Bothidae order Pleuronectiformes. The flounder is morphogenetically unusual. When born it is bilaterally symmetrical, with an eye on each side, and it swims near the surface of the sea. After a few days, however, it begins to lean to one side, and the eye on that side begins to The Flounder to what eventually becomes the top side of the fish. With this development a number of other complex changes in bones, nerves, and muscles occur, and the underside of the flounder loses The Flounder colour. As an adult the fish lives on the bottom, with the eyed side uppermost. Included among the approximately species of the family Pleuronectidae are the European flounder Platichthys flesusa marine and freshwater food and sport fish of Europe that grows to a length of 50 cm 20 inches and weight of 2. Flounders in that family typically have the eyes and colouring on the right side. In the families Bothidae and Paralichthyidae, which together contain more than species, the better-known flounders include the summer flounder The Flounder dentatusan American Atlantic food fish growing to about 90 cm 35 inches ; the peacock flounder Bothus lunatusa tropical American Atlantic species attractively marked with many pale blue spots and rings; the brill Scophthalmus rhombusa relatively large commercial European species, reaching a length of 75 cm 29 inches ; and the dusky flounde r Syacium papillosuma tropical western Atlantic species. -
A Cyprinid Fish
DFO - Library / MPO - Bibliotheque 01005886 c.i FISHERIES RESEARCH BOARD OF CANADA Biological Station, Nanaimo, B.C. Circular No. 65 RUSSIAN-ENGLISH GLOSSARY OF NAMES OF AQUATIC ORGANISMS AND OTHER BIOLOGICAL AND RELATED TERMS Compiled by W. E. Ricker Fisheries Research Board of Canada Nanaimo, B.C. August, 1962 FISHERIES RESEARCH BOARD OF CANADA Biological Station, Nanaimo, B0C. Circular No. 65 9^ RUSSIAN-ENGLISH GLOSSARY OF NAMES OF AQUATIC ORGANISMS AND OTHER BIOLOGICAL AND RELATED TERMS ^5, Compiled by W. E. Ricker Fisheries Research Board of Canada Nanaimo, B.C. August, 1962 FOREWORD This short Russian-English glossary is meant to be of assistance in translating scientific articles in the fields of aquatic biology and the study of fishes and fisheries. j^ Definitions have been obtained from a variety of sources. For the names of fishes, the text volume of "Commercial Fishes of the USSR" provided English equivalents of many Russian names. Others were found in Berg's "Freshwater Fishes", and in works by Nikolsky (1954), Galkin (1958), Borisov and Ovsiannikov (1958), Martinsen (1959), and others. The kinds of fishes most emphasized are the larger species, especially those which are of importance as food fishes in the USSR, hence likely to be encountered in routine translating. However, names of a number of important commercial species in other parts of the world have been taken from Martinsen's list. For species for which no recognized English name was discovered, I have usually given either a transliteration or a translation of the Russian name; these are put in quotation marks to distinguish them from recognized English names. -
Age and Growth of Greenback Flounder (Rhombosolea Tapirina ) from Southern New Zealand
Age and growth of greenback flounder ( Rhombosolea tapirina ) from southern New Zealand C. P. Sutton 1 D. J. MacGibbon 2 D. W. Stevens 2 1NIWA P O Box 893 Nelson 7040 2NIWA Private Bag 14901 Wellington 6241 New Zealand Fisheries Assessment Report 2010/48 December 2010 Published by Ministry of Fisheries Wellington 2010 ISSN 1175-1584 (print) ISSN 1179-5352 (online) © Ministry of Fisheries 2010 Sutton, C.P.; MacGibbon, D.J.; Stevens, D.W. (2010). Age and growth of greenback flounder ( Rhombosolea tapirina ) from southern New Zealand. New Zealand Fisheries Assessment Report 2010/48.. This series continues the informal New Zealand Fisheries Assessment Research Document series which ceased at the end of 1999. EXECUTIVE SUMMARY Sutton, C.P.; MacGibbon, D.J.; Stevens, D.W. (2010). Age and growth of greenback flounder (Rhombosolea tapirina ) from southern New Zealand. New Zealand Fisheries Assessment Report 2010/48. Two hundred and seventy-five greenback flounder were sampled from southern New Zealand waters. Biological data, including fish length, weight, sex, and gonad maturity were collected from all specimens. Regression equations for defining length-weight relationships were calculated and presented for male and female fish separately and for both sexes combined. Counts of growth zones in unprepared whole otoliths and prepared thin-sectioned otoliths were used to determine ages, von Bertalanffy growth parameters, and natural mortality. Growth is rapid throughout the lifespan of greenback flounder. Females reached a slightly greater maximum length than males, but the difference was not significant at the 95% level of confidence. Differences in growth rate were also not significant at this level. -
Habitats and Areas of Particular Significance for Coastal Finfish
Habitats and areas of particular significance for coastal finfish fisheries management in New Zealand: A review of concepts and life history knowledge, and suggestions for future research New Zealand Aquatic Environment and Biodiversity Report No. 125 M.A. Morrison, E.G. Jones, D.P. Parsons, C.M. Grant ISSN 1179-6480 (online) ISBN 978-0-478-42387-7 (online) March 2014 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright - Ministry for Primary Industries Contents 1. INTRODUCTION .......................................................................................................................... 3 1.2 Scope and limitations of review .............................................................................................. 4 2. A BRIEF REVIEW OF SOME CONCEPTS ................................................................................. 5 2.1 Spawning........................................................................................................................................... 5 2.2 Nursery habitats ................................................................................................................................ 6 2.3 Migrations -
Te Waihora Mahinga Kai: a Compilation of Data and Summary of Existing Research on Freshwater Fishes in Te Waihora Prepared for the Whakaora Te Waihora Partners
Te Waihora Mahinga Kai: a compilation of data and summary of existing research on freshwater fishes in Te Waihora Prepared for the Whakaora Te Waihora Partners September 2013 Authors/Contributors: Shannan Crow Marty Bonnett For any information regarding this report please contact: Shannan Crow Scientist Freshwater Ecology Group +64-3-343 7868 [email protected] National Institute of Water & Atmospheric Research Ltd 10 Kyle Street Riccarton Christchurch 8011 PO Box 8602, Riccarton Christchurch 8440 New Zealand Phone +64-3-348 8987 Fax +64-3-348 5548 NIWA Client Report No: CHC2013-097 Report date: September 2013 NIWA Project: ENC13509 Contents Executive summary ..................................................................................................... 6 1 Introduction ........................................................................................................ 7 2 Methods .............................................................................................................. 9 2.1 Dataset of individual fish measurements ..................................................... 9 2.2 Dataset of annual commercial catch .......................................................... 10 2.3 Dataset of fish abundance ......................................................................... 10 2.4 Analysis..................................................................................................... 10 3 Overview of individual fish measurements .................................................... 12 4 Summary of available -
Molecular Identification and Transmission Studies of X-Cell
Freeman et al. Parasites & Vectors 2011, 4:15 http://www.parasitesandvectors.com/content/4/1/15 RESEARCH Open Access Molecular identification and transmission studies of X-cell parasites from Atlantic cod Gadus morhua (Gadiformes: Gadidae) and the northern black flounder Pseudopleuronectes obscurus (Pleuronectiformes: Pleuronectidae) MA Freeman1,2*†, M Eydal3†, M Yoshimizu5, K Watanabe6, AP Shinn2, K Miura7, K Ogawa4† Abstract Background: Epidermal pseudotumours from Hippoglossoides dubius and Acanthogobius flavimanus in Japan and gill lesions in Limanda limanda from the UK have been shown to be caused by phylogenetically related protozoan parasites, known collectively as X-cells. However, the phylogenetic position of the X-cell group is not well supported within any of the existing protozoan phyla and they are currently thought to be members of the Alveolata. Ultrastructural features of X-cells in fish pseudotumours are somewhat limited and no typical environmental stages, such as spores or flagellated cells, have been observed. The life cycles for these parasites have not been demonstrated and it remains unknown how transmission to a new host occurs. In the present study, pseudobranchial pseudotumours from Atlantic cod, Gadus morhua, in Iceland and epidermal pseudotumours from the northern black flounder, Pseudopleuronectes obscurus, in Japan were used in experimental transmission studies to establish whether direct transmission of the parasite is achievable. In addition, X-cells from Atlantic cod were sequenced to confirm whether they are phylogenetically related to other X-cells and epidermal pseudotumours from the northern black flounder were analysed to establish whether the same parasite is responsible for infecting different flatfish species in Japan. Results: Phylogenetic analyses of small subunit ribosomal DNA (SSU rDNA) sequence data from Atlantic cod X-cells show that they are a related parasite that occupies a basal position to the clade containing other X-cell parasites.