The Fisheries (Fish Species Restrictions) Notice 1983
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Osmoregulatory Metabolism Op the Starry Flounder, Platichthys Stellatus
THE OSMOREGULATORY METABOLISM OP THE STARRY FLOUNDER, PLATICHTHYS STELLATUS by CLEVELAND PENDLETON HICKMAN, JR. B.A., DePauw University, 1950 M.S., University of New Hampshire, 1953 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Zoology We accept this thesis as conforming to the required standard. THE UNIVERSITY OF BRITISH COLUMBIA June, 1958 Faculty of Graduate Studies PROGRAMME OF THE FINAL ORAL EXAMINATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY of CLEVELAND PENDLETON HICKMAN JR. B.A. DePauw University, 1950 M.S. University of New Hampshire, 1953 IN ROOM 187A, BIOLOGICAL SCIENCES BUILDING MONDAY, JUNE 30, 1958 at 10:30 a.m. COMMITTEE IN CHARGE DEAN F. H. SOWARD, Chairman H. ADASKIN W. S. HOAR W. A. CLEMENS W. N. HOLMES I. McT. COWAN C. C. LINDSEY P. A. DEHNEL H. McLENNAN R. F. SCAGEL External Examiner: F. E. J. FRY University of Toronto THE OSMOREGULATORY METABOLISM OF THE STARRY FLOUNDER, PLATICHTYS STELLATUS ABSTRACT Energy demands for osmotic regulation and the possible osmoregulatory role of the thyroid gland were investigated in the euryhaline starry flounder, Platichthys stellatus. Using a melt• ing-point technique, it was established that flounder could regulate body fluid concentration independent of widely divergent environ• mental salinities. Small flounder experienced more rapid disturb• ances of body fluid concentration than large flounder after abrupt salinity alterations. The standard metabolic rate of flounder adapted to fresh water was consistently and significantly less than that of marine flounder. In supernormal salinities standard metabolic rate was significantly greater than in normal sea water. -
FAO Fisheries Technical Paper 402/2
ISSNO0428-9345 FAO Asia Diagnostic Guide to FISHERIES TECHNICAL Aquatic Animal Diseases PAPER 402/2 NETWORK OF AQUACULTURE CENTRES IN ASIA-PACIFIC C A A N Food and Agriculture Organization of the United Nations A F O F S I I A N T P A ISSNO0428-9345 FAO Asia Diagnostic Guide to FISHERIES TECHNICAL Aquatic Animal Diseases PAPER 402/2 Edited by Melba G. Bondad-Reantaso NACA, Bangkok, Thailand (E-mail: [email protected]) Sharon E. McGladdery DFO-Canada, Moncton, New Brunswick (E-mail: [email protected]) Iain East AFFA, Canberra, Australia (E-mail: [email protected]) and Rohana P. Subasinghe NETWORK OF FAO, Rome AQUACULTURE CENTRES (E-mail: [email protected]) IN ASIA-PACIFIC C A A N Food and Agriculture Organization of the United Nations A F O F S I I A N T P A The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) or of the Network of Aquaculture Centres in Asia-Pa- cific (NACA) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its fron- tiers or boundaries. ISBN 92-5-104620-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. -
Shellfish Reefs at Risk
SHELLFISH REEFS AT RISK A Global Analysis of Problems and Solutions Michael W. Beck, Robert D. Brumbaugh, Laura Airoldi, Alvar Carranza, Loren D. Coen, Christine Crawford, Omar Defeo, Graham J. Edgar, Boze Hancock, Matthew Kay, Hunter Lenihan, Mark W. Luckenbach, Caitlyn L. Toropova, Guofan Zhang CONTENTS Acknowledgments ........................................................................................................................ 1 Executive Summary .................................................................................................................... 2 Introduction .................................................................................................................................. 6 Methods .................................................................................................................................... 10 Results ........................................................................................................................................ 14 Condition of Oyster Reefs Globally Across Bays and Ecoregions ............ 14 Regional Summaries of the Condition of Shellfish Reefs ............................ 15 Overview of Threats and Causes of Decline ................................................................ 28 Recommendations for Conservation, Restoration and Management ................ 30 Conclusions ............................................................................................................................ 36 References ............................................................................................................................. -
New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E. -
The Oyster Industry
A Study of the New Zealand Farmed Oyster Industry and the Potential for Sustainable Maori Economic Development Part 1: Industry Analysis Brenda Hay & Val Lindsay Sustainable Mäori Development in Taitokerau A Study of the New Zealand Farmed Oyster Industry and the Potential for Sustainable Maori Economic Development Part 1: Industry Analysis Brenda Hay and Val Lindsay Prepared for: The James Henare Mäori Research Centre The University of Auckland Private Bag 92-019 AUCKLAND Phone: 09 3737-599 x 85085 Fax: 09 3737-458 E-mail: [email protected] This document may be copied and distributed on a non-commercial basis for educational purposes. © James Henare Mäori Research Centre 2003 The research to which this paper contributes is part of a programme funded from the Public Good Science Fund by the Foundation for Research, Science and Technology, Wellington, New Zealand. A Study of the New Zealand Farmed Oyster Industry and the Potential for Sustainable Maori Economic Development Part 1: Industry Analysis A report prepared on behalf of the James Henare Maori Research Centre by: Brenda Hay AquaBio Consultants Ltd P.O. Box 560 Shortland St. P.O. Auckland Email: [email protected] & Associate Professor Val Lindsay School of Marketing and International Business Victoria University of Wellington P.O. Box 600 Wellington Email: [email protected] April 2004 James Henare Maori Research Centre University of Auckland Private Bag 92019 Auckland Table of Contents Page No. SECTION 1 INTRODUCTION 1 SECTION 2 BACKGROUND 2 2.1 Introduction 2 2.2 Rock Oyster -
Inventory of Shellfish Restoration Permitting & Programs in the Coastal States
Inventory of Shellfish Restoration Permitting & Programs in the Coastal States Prepared for The Nature Conservancy by Mississippi-Alabama Sea Grant Legal Program National Sea Grant Law Center Troy University December 2014 Table of Contents INTRODUCTION .......................................................................................................................................................................... 3 ALABAMA ...................................................................................................................................................................................... 6 CALIFORNIA .............................................................................................................................................................................. 14 CONNECTICUT .......................................................................................................................................................................... 21 DELAWARE ................................................................................................................................................................................ 29 FLORIDA ...................................................................................................................................................................................... 37 GEORGIA .................................................................................................................................................................................... -
Mikrocytos Roughleyi Taxonomic Affiliation Leads to the Genus Bonamia (Haplosporidia)
DISEASES OF AQUATIC ORGANISMS Vol. 54: 209–217, 2003 Published April 24 Dis Aquat Org Mikrocytos roughleyi taxonomic affiliation leads to the genus Bonamia (Haplosporidia) N. Cochennec-Laureau1, 4,*, K. S. Reece2, F. C. J. Berthe1, P. M. Hine3 1Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), Laboratoire de Génétique et Pathologie, PO Box 1346, 17390 La Tremblade, France 2Virginia Institute of Marine Science (VIMS), Aquaculture Genetics and Breeding Technology Center, Gloucester Point, Virginia 23062, USA 3Aquatic Animal Diseases, National Centre for Disease Investigation, Ministry of Agriculture and Fisheries (MAF) Operations, PO Box 40-742, Upper Hutt, 6007 Wellington, New Zealand 4Present address: IFREMER, Laboratoire d’Aquaculture Tropicale, BP 7004, 98719 Taravao, French Polynesia ABSTRACT: Microcell-type parasites of oysters are associated with a complex of diseases in different oyster species around the world. The etiological agents are protists of very small size that are very dif- ficult to characterize taxonomically. Associated lesions may vary according to the host species, and their occurrence may be related to variations in tissue structure. Lesion morphology cannot be used to distinguish the different agents involved. Ultrastructural observations on Mikrocytos roughleyi revealed similarities with Bonamia spp., particularly in regard to the presence of electron-dense hap- losporosomes and mitochondria, whose absence from M. mackini also indicate that M. roughleyi and M. mackini are not congeneric. A partial small subunit (ssu) rRNA gene sequence of M. roughleyi was determined. This partial sequence, 951 nucleotides in length, has 95.2 and 98.4% sequence sim- ilarities with B. ostreae and B. exitiosus ssu rDNA sequences, respectively. -
Elephant Fish
Best Fish Guide 2009-2010 How sustainable is New Zealand seafood? (Ecological Assessments) Produced and Published by Royal Forest and Bird Protection Society of New Zealand, Inc. PO Box 631, Level One, 90 Ghuznee Street, Wellington. www.forestandbird.org.nz November 2009 Acknowledgements Forest & Bird with to thank anonymous reviewers for their peer review comments on this draft. We also thank Peta Methias, Annabel Langbein, Martin Bosely, Margaret Brooker, Lois Daish, Kelder Haines, Dobie Blaze, Rohan Horner and Ray McVinnie for permission to use their recipes on the website. Special thanks to our Best Fish Guide Ambassador Dobie Blaze, keyboard player with Fat Freddy’s Drop. Editing: Kirstie Knowles, Barry Weeber and Helen Bain Technical Advisor: Barry Weeber Cover Design: Rob Deliver Cover fish (Tarakihi): Malcolm Francis Photography: Malcolm Francis: blue cod, blue moki, blue shark, butterfish, groper/hapuku, hoki, jack mackerel, john dory, kahawai, kingfish, leather jacket, moonfish, paua, porbeagle shark, red gurnard, red snapper, scallop, school shark, sea perch, snapper, spiny dogfish, tarakihi, trevally and trumpeter. Peter Langlands: blue warehou, cockles, elephantfish, frostfish, lookdown dory, oyster, pale ghost shark, queen scallops, red cod, rig/lemonfish, rubyfish and scampi. Ministry of Fisheries: albacore tuna, bigeye tuna, blue mackerel, pacific bluefin tuna, skipjack tuna, southern bluefin tuna and swordfish. John Holdsworth: gemfish, striped marlin and yellowfin tuna. Kirstie Knowles: sand flounder and rock lobster. Department of Conservation: kina and skate. Quentin Bennett: mako shark. Scott Macindoe: garfish. Jim Mikoz: yellow-eyed mullet. Forest & Bird: arrow squid, dark ghost shark, orange roughy, smooth oreo, packhorse lobster, paddle crabs, stargazer and white warehou. -
Fisheries (Southland and Sub-Antarctic Areas Commercial Fishing) Regulations 1986 (SR 1986/220)
Fisheries (Southland and Sub-Antarctic Areas Commercial Fishing) Regulations 1986 (SR 1986/220) Note Changes authorised by section 17C of the Acts and Regulations Publication Act 1989 have been made in this eprint. A general outline of these changes is set out in the notes at the end of this eprint, together with other explanatory material about this eprint. These regulations are administered in the Ministry of Agriculture and Fisheries. PURSUANT to section 89 of the Fisheries Act 1983, His Excellency the Governor-General, acting by and with the advice and consent of the Executive Council, hereby makes the following regulations. Contents 1 Title, commencement, and application 2 Interpretation Part 1 Southland area Total prohibition 3 Total prohibitions Certain fishing methods prohibited 3A Certain fishing methods prohibited in defined areas 3AB Set net fishing prohibited in defined area from Slope Point to Sand Hill Point Minimum set net mesh size 3B Minimum set net mesh size 3BA Minimum net mesh for queen scallop trawling Set net soak times 3C Set net soak times 3D Restrictions on fishing in paua quota management areas 3E Labelling of containers for paua taken in any PAU 5 quota management area 3F Marking of blue cod pots and fish holding pots Trawling 4 Trawling prohibited in Foveaux Strait [Revoked] 4 Trawling prohibited in defined area from Slope Point to Sand Hill Point 4A Use of 60mm mesh trawl net permitted south of 48°S at certain times 4B Solander Trench closed to trawling and bottom-longlining by certain vessels Rock lobsters -
Benthic Habitat Classes and Trawl Fishing Disturbance in New Zealand Waters Shallower Than 250 M
Benthic habitat classes and trawl fishing disturbance in New Zealand waters shallower than 250 m New Zealand Aquatic Environment and Biodiversity Report No.144 S.J. Baird, J. Hewitt, B.A. Wood ISSN 1179-6480 (online) ISBN 978-0-477-10532-3 (online) January 2015 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright - Ministry for Primary Industries Contents EXECUTIVE SUMMARY 1 1. INTRODUCTION 3 The study area 3 2. COASTAL BENTHIC HABITAT CLASSES 4 2.1 Introduction 4 2.2 Habitat class definitions 6 2.3 Sensitivity of the habitat to fishing disturbance 10 3. SPATIAL PATTERN OF BOTTOM-CONTACTING TRAWL FISHING ACTIVITY 11 3.1 Bottom-contact trawl data 12 3.2 Spatial distribution of trawl data 21 3.3 Trawl footprint within the study area 26 3.4 Overlap of five-year trawl footprint on habitats within 250 m 32 3.5 GIS output from the overlay of the trawl footprint and habitat classes 37 4. SUMMARY OF NON-TRAWL BOTTOM-CONTACT FISHING METHODS IN THE STUDY AREA 38 5. DISCUSSION 39 6. ACKNOWLEDGMENTS 41 7. REFERENCES 42 APPENDIX 1: AREAS CLOSED TO FISHING WITHIN THE STUDY AREA 46 APPENDIX 2: MAPS SHOWING THE DISTRIBUTION OF THE DATA INPUTS FOR THE BENTHIC HABITAT DESCRIPTORS 49 APPENDIX 3: SENSITIVITY TO FISHING DISTURBANCE 53 APPENDIX 4: TRAWL FISHING DATA 102 APPENDIX 5: CELL-BASED TRAWL SUMMARIES 129 APPENDIX 6: TRAWL FOOTPRINT SUMMARY 151 APPENDIX 7: TRAWL FOOTPRINT – HABITAT OVERLAY 162 APPENDIX 8: SUMMARY OF DREDGE OYSTER AND SCALLOP EFFORT DATA WITHIN 250 M, 1 OCTOBER 2007–30 SEPTEMBER 2012 165 APPENDIX 9: SUMMARY OF DANISH SEINE EFFORT 181 EXECUTIVE SUMMARY Baird, S.J.; Hewitt, J.E.; Wood, B.A. -
Foveaux Strait Dredge Oyster ( Tiosfrea Chilensis) Stock Assessment, 1999
- ISSN 1 175-1584 MINISTRY OF FISHERIES Te Taufiaki i nga fini a Tangaroa Foveaux Strait dredge oyster ( Tiosfrea chilensis) stock assessment, 1999 K. F? Michael A. Dunn N. L. Andrew F? A. Breen New Zealand Fisheries Assessment Report 2001/35 July 2001 Foveaux Strait dredge oyster (Eostreachih) stock assessment, 1999 K P. Michael A. Dunn N. L. Andrew P. A. Breen NIWA PO Box 14 901 Wellington New Zealand Fisheries Assessment Report 2001/38 July 2001 Published bjr Ministry of Fisheries Wellington 2001 ISSN 11711584 0 Ministry of Fisheries 2001 Citation: Michael, K.P.; Dunn, A.; Andrew, N.L.; Breen, P.A. (2001). Foveaux Strait dredge oyster (Tiostrea chilensis) stock assessment, 1999. New Zealand Fisheries Assessment Report 200U38.42 p. This series continues the informa1 New Zealand Fisheries Assessment Research Document series which ceased at the end of 1999. EXECUTIVE SUMMARY Michael, K.P.; Dunn, A.; Andrew, N.L.; Breen, PA. (2001). Foveaux Strait dredge oyster (Tiostrea chilensis) stock assessment, 1999. New Zealand Fisheries Assessment Report 2OOl/J8.42 p. A survey of the Foveaux Strait oyster population in October 1999 estimated the mean absolute population of recruited oysters in the 1055 km2 area surveyed to be 1461 million (95% confidence interval, 872-2334 million). The area surveyed was 55% larger than the area surveyed in 1995. The mean population in the area surveyed in 1995 had inaeased fiom 630 miuion (395- 899 million) in 1997 to 1183 million (721-1874 million) in 1999. The population of pre-recruit and small oysters, within the area surveyed in 1995, has about doubled since 1995. -
Black Flounder) Family: Pleuronectidae
9 Pātiki Mohoao (Black flounder) Family: Pleuronectidae Species: Rhombosolea retiaria The black flounder (Figure 69), pātiki mohoao (Rhombosolea retiaria), is the only member of the flatfish family, or Pleuronectidae, that is a truly freshwater species. Other members of the family, such as the yellow-belly flounder (Rhombosolea leporina), occasionally wander into the lower reaches of rivers, but do not usually stay there. As their name implies, the flatfishes are indeed flat, and have adopted a habit of laying on their sides down on the substrate. Both eyes are on their dorsal or upper side to improve their field of view. Because of their shape, flounders are unlikely to be confused with other fish species except other flatfishes. The black flounder is easily distinguished from other flatfishes by its colouration; the top of the fish is usually dark-coloured with numerous, obvious brick-red spots. Flounders can grow to about 450 mm in length, although 200–300 mm fish are most common. Figure 1: (Top) The adult black flounder (Rhombosolea retiaria); and (Bottom) Juvenile black flounder, c. 10 mm in length. (Sources: [Top] Bob McDowall; [Bottom] Roper [1979] in Eldon & Smith [1986]). The black flounder is found throughout Aotearoa-NZ and is unique to this country. They are primarily a coastal species, although they can penetrate well inland if the river gradient is not too steep and specimens have been recorded more than 100 km inland in some river systems. Black flounder are a carnivorous species and probably eat a variety of bottom dwelling insects and molluscs. They are also known to feed on whitebait during the spring migration.