Intro-Propulsion-Lect-19
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
( ∂U ∂T ) = ∂CV ∂V = 0, Which Shows That CV Is Independent of V . 4
so we have ∂ ∂U ∂ ∂U ∂C =0 = = V =0, ∂T ∂V ⇒ ∂V ∂T ∂V which shows that CV is independent of V . 4. Using Maxwell’s relations. Show that (∂H/∂p) = V T (∂V/∂T ) . T − p Start with dH = TdS+ Vdp. Now divide by dp, holding T constant: dH ∂H ∂S [at constant T ]= = T + V. dp ∂p ∂p T T Use the Maxwell relation (Table 9.1 of the text), ∂S ∂V = ∂p − ∂T T p to get the result ∂H ∂V = T + V. ∂p − ∂T T p 97 5. Pressure dependence of the heat capacity. (a) Show that, in general, for quasi-static processes, ∂C ∂2V p = T . ∂p − ∂T2 T p (b) Based on (a), show that (∂Cp/∂p)T = 0 for an ideal gas. (a) Begin with the definition of the heat capacity, δq dS C = = T , p dT dT for a quasi-static process. Take the derivative: ∂C ∂2S ∂2S p = T = T (1) ∂p ∂p∂T ∂T∂p T since S is a state function. Substitute the Maxwell relation ∂S ∂V = ∂p − ∂T T p into Equation (1) to get ∂C ∂2V p = T . ∂p − ∂T2 T p (b) For an ideal gas, V (T )=NkT/p,so ∂V Nk = , ∂T p p ∂2V =0, ∂T2 p and therefore, from part (a), ∂C p =0. ∂p T 98 (a) dU = TdS+ PdV + μdN + Fdx, dG = SdT + VdP+ Fdx, − ∂G F = , ∂x T,P 1 2 G(x)= (aT + b)xdx= 2 (aT + b)x . ∂S ∂F (b) = , ∂x − ∂T T,P x,P ∂S ∂F (c) = = ax, ∂x − ∂T − T,P x,P S(x)= ax dx = 1 ax2. -
Thermodynamics
ME346A Introduction to Statistical Mechanics { Wei Cai { Stanford University { Win 2011 Handout 6. Thermodynamics January 26, 2011 Contents 1 Laws of thermodynamics 2 1.1 The zeroth law . .3 1.2 The first law . .4 1.3 The second law . .5 1.3.1 Efficiency of Carnot engine . .5 1.3.2 Alternative statements of the second law . .7 1.4 The third law . .8 2 Mathematics of thermodynamics 9 2.1 Equation of state . .9 2.2 Gibbs-Duhem relation . 11 2.2.1 Homogeneous function . 11 2.2.2 Virial theorem / Euler theorem . 12 2.3 Maxwell relations . 13 2.4 Legendre transform . 15 2.5 Thermodynamic potentials . 16 3 Worked examples 21 3.1 Thermodynamic potentials and Maxwell's relation . 21 3.2 Properties of ideal gas . 24 3.3 Gas expansion . 28 4 Irreversible processes 32 4.1 Entropy and irreversibility . 32 4.2 Variational statement of second law . 32 1 In the 1st lecture, we will discuss the concepts of thermodynamics, namely its 4 laws. The most important concepts are the second law and the notion of Entropy. (reading assignment: Reif x 3.10, 3.11) In the 2nd lecture, We will discuss the mathematics of thermodynamics, i.e. the machinery to make quantitative predictions. We will deal with partial derivatives and Legendre transforms. (reading assignment: Reif x 4.1-4.7, 5.1-5.12) 1 Laws of thermodynamics Thermodynamics is a branch of science connected with the nature of heat and its conver- sion to mechanical, electrical and chemical energy. (The Webster pocket dictionary defines, Thermodynamics: physics of heat.) Historically, it grew out of efforts to construct more efficient heat engines | devices for ex- tracting useful work from expanding hot gases (http://www.answers.com/thermodynamics). -
7 Apr 2021 Thermodynamic Response Functions . L03–1 Review Of
7 apr 2021 thermodynamic response functions . L03{1 Review of Thermodynamics. 3: Second-Order Quantities and Relationships Maxwell Relations • Idea: Each thermodynamic potential gives rise to several identities among its second derivatives, known as Maxwell relations, which express the integrability of the fundamental identity of thermodynamics for that potential, or equivalently the fact that the potential really is a thermodynamical state function. • Example: From the fundamental identity of thermodynamics written in terms of the Helmholtz free energy, dF = −S dT − p dV + :::, the fact that dF really is the differential of a state function implies that @ @F @ @F @S @p = ; or = : @V @T @T @V @V T;N @T V;N • Other Maxwell relations: From the same identity, if F = F (T; V; N) we get two more relations. Other potentials and/or pairs of variables can be used to obtain additional relations. For example, from the Gibbs free energy and the identity dG = −S dT + V dp + µ dN, we get three relations, including @ @G @ @G @S @V = ; or = − : @p @T @T @p @p T;N @T p;N • Applications: Some measurable quantities, response functions such as heat capacities and compressibilities, are second-order thermodynamical quantities (i.e., their definitions contain derivatives up to second order of thermodynamic potentials), and the Maxwell relations provide useful equations among them. Heat Capacities • Definitions: A heat capacity is a response function expressing how much a system's temperature changes when heat is transferred to it, or equivalently how much δQ is needed to obtain a given dT . The general definition is C = δQ=dT , where for any reversible transformation δQ = T dS, but the value of this quantity depends on the details of the transformation. -
Joule-Thomson Expansion of Charged Ads Black Holes
Joule-Thomson Expansion of Charged AdS Black Holes Ozg¨ur¨ Okc¨u¨ ∗ and Ekrem Aydınery Department of Physics, Faculty of Science, Istanbul_ University, Istanbul,_ 34134, Turkey (Dated: January 24, 2017) In this paper, we study Joule-Thomson effects for charged AdS black holes. We obtain inversion temperatures and curves. We investigate similarities and differences between van der Waals fluids and charged AdS black holes for the expansion. We obtain isenthalpic curves for both systems in T − P plane and determine the cooling-heating regions. I. INTRODUCTION Variable cosmological constant notion has some nice features such as phase transition, heat cycles and com- It is well known that black holes as thermodynamic pressibility of black holes [41]. Applicabilities of these systems have many interesting consequences. It sets deep thermodynamic phenomena to black holes encourage us and fundamental connections between the laws of clas- to consider Joule-Thomson expansion of charged AdS sical general relativity, thermodynamics, and quantum black holes. In this letter, we study the Joule-Thompson mechanics. Since it has a key feature to understand expansion for chraged AdS black holes. We find sim- quantum gravity, much attention has been paid to the ilarities and differences with van der Waals fluids. In topic. The properties of black hole thermodynamics have Joule-Thomson expansion, gas at a high pressure passes been investigated since the first studies of Bekenstein and through a porous plug to a section with a low pressure Hawking [1{6]. When Hawking discovered that black and during the expansion enthalpy is constant. With holes radiate, black holes are considered as thermody- the Joule-Thomson expansion, one can consider heating- namic systems. -
Chapter 3 Non-Ideal Gases
Chapter 3 Non-ideal Gases This chapter is devoted to considering systems where the interactions be- tween particles can no longer be ignored. We note that in the previous chapter we did indeed consider, albeit briefly, the effects of interactions in fermion and in boson gases. This chapter is concerned more with a system- atic treatment of interatomic interactions. Here the quantum aspect is but a complication and most of the discussions will thus take place within the context of a classical description. 3.1 Statistical Mechanics of Interacting Par- ticles 3.1.1 The partition function We are now considering gases where the interactions between the particles cannot be ignored. Our starting point is that everything can be found from the partition function. We will work, initially, in the classical framework where the energy function of the system is p2 H (p , q ) = i + U (q , q ) . (3.1.1) i i 2m i j i i<j X X Because of the interaction term U (qi, qj) the partition function can no longer be factorised into the product of single-particle partition functions. The many-body partition function is 1 p2/2m+ U(q ,q ) kT 3N 3N Z = e− ( i i i<j i j )/ d p d q (3.1.2) N!h3N Z P P 133 134 CHAPTER 3. NON-IDEAL GASES where the factor 1/N! is used to account for the particles being indistinguish- able. While the partition function cannot be factorised into the product of single-particle partition functions, we can factor out the partition function for the non-interacting case since the energy is a sum of a momentum-dependent term (kinetic energy) and a coordinate-dependent term (potential energy). -
Maxwell Relations
MAXWELLRELATIONS 7.I THE MAXWELL RELATIONS In Section 3.6 we observedthat quantities such as the isothermal compressibility, the coefficientof thermal expansion,and the molar heat capacities describe properties of physical interest. Each of these is essentiallya derivativeQx/0Y)r.r..,. in which the variablesare either extensiveor intensive thermodynaini'cparameters. with a wide range of extensive and intensive parametersfrom which to choose, in general systems,the numberof suchpossible derivatives is immense.But thire are azu azu ASAV AVAS (7.1) -tI aP\ | AT\ as),.*,.*,,...: \av)s.N,.&, (7.2) This relation is the prototype of a whole class of similar equalities known as the Maxwell relations. These relations arise from the equality of the mixed partial derivatives of the fundamental relation expressed in any of the various possible alternative representations. 181 182 Maxwell Relations Given a particular thermodynamicpotential, expressedin terms of its (l + 1) natural variables,there are t(t + I)/2 separatepairs of mixed second derivatives.Thus each potential yields t(t + l)/2 Maxwell rela- tions. For a single-componentsimple systemthe internal energyis a function : of three variables(t 2), and the three [: (2 . 3)/2] -arUTaSpurs of mixed second derivatives are A2U/ASAV : AzU/AV AS, AN : A2U / AN AS, and 02(J / AVA N : A2U / AN 0V. Thecompleteser of Maxwell relations for a single-componentsimple systemis given in the following listing, in which the first column states the potential from which the ar\ U S,V I -|r| aP\ \ M)',*: ,s/,,' (7.3) dU: TdS- PdV + p"dN ,S,N (!t\ (4\ (7.4) \ dNls.r, \ ds/r,r,o V,N _/ii\ (!L\ (7.5) \0Nls.v \0vls.x UITI: F T,V ('*),,.: (!t\ (7.6) \0Tlv.p dF: -SdT - PdV + p,dN T,N -\/ as\ a*) ,.,: (!"*),. -
PHSX 446 EXAM 2 – SOLUTIONS Spring 2015 1 1. First, Some Basic
PHSX 446 EXAM 2 – SOLUTIONS Spring 2015 1 1. First, some basic knowledge questions. You need not show work here; just give the answer. More than one answer might apply. Don’t waste time transcribing answers; just write on this exam sheet. (a) An inexact differential is: a) inexpressible as a function, b) of no use in mathematics or physics, c) only approximately correct. (b) Maxwell relations express: a) conservation laws, b) the conditions under which phase transitions occur, c) relations among thermodynamic variables, d) the properties of ideal gases only. (c) Does equipartition always hold for a gas in equilibrium? Briefly explain. No. Equiparition holds for an ideal gas, and generally not for a non-ideal gas. (d) Give an example of an adiabatic process that is not reversible. Thermal diffusion in a closed system, mixing, free expansion. (e) Give an example of a reversible process that is not adiabatic. Heating of a system from one temperature to another by an outside heat source. The heat can always be removed (by putting the system in contact with a reservoir at the original temperature), which will restore the original state with unchanged entropy. The pressure, or volume, or both, could change. (f) What property must a gas have for it to cool in the Joule-Thompson (throt- tling) process? The gas must be non-ideal. (g) Write down the expression for the heat current in thermal conduction. ∂T j = −k one dimension. ∂x (h) Why are engines usually cyclical? Because we want to repeat the process to get some amount of work at each cycle, rather than do it only once. -
Thermodynamic Potentials and Maxwell's Relations
Thermodynamic Potentials and Maxwell’s Relations (A lecture notes). By : Chandan kumar Department of Physics. S N S College Jehanabad Dated: 04/09/2020 Introduction: In this lecture we introduce other thermodynamic potentials and Maxwell relations. The energy and entropy representations We have noted that both S(U,V,N) and U(S,V,N) contain complete thermodynamic information. We will use the fundamental thermodynamic identity dU = TdS − pdV + µdN as an aid to memorizing the of temperature, pressure, and chemical potential from the consideration of equilibrium conditions. by calculating the appropriate partial derivatives we have and We can also write the fundamental thermodynamic identity in the entropy representation: d 1 from which we find and By calculating the second partial derivatives of these quantities we find the Maxwell relations. Maxwell relations can be used to relate partial derivatives that are easily measurable to those that are not. Starting from and we can calculate , and . Now since under appropriate conditions = and then . This result is called a Maxwell relation. By considering the other second partial derivatives, we find two other Maxwell relations from the energy representation of the fundamental thermodynamic identity. These are: and . Similarly, in the entropy representation, starting from d and the results , and . we find the Maxwell relations: 2 and . Enthalpy H(S,p,N): We have already defined enthalpy as H = U + pV . We can calculate its differential and combine it with the fundamental thermodynamic identity to show that the natural variables of H are S, p0, and N. H = U + pV we have dH = dU +d(pV ) = dU + pdV + V dp, and so inserting dU = TdS − pdV + µdN we have dH = TdS − pdV + µdN + pdV + V dp resulting in dH = TdS + V dp + µdN. -
Thermodynamics and Statistical Mechanics
Thermodynamics and Statistical Mechanics Richard Fitzpatrick Professor of Physics The University of Texas at Austin Contents 1 Introduction 7 1.1 IntendedAudience.................................. 7 1.2 MajorSources.................................... 7 1.3 Why Study Thermodynamics? ........................... 7 1.4 AtomicTheoryofMatter.............................. 7 1.5 What is Thermodynamics? . ........................... 8 1.6 NeedforStatisticalApproach............................ 8 1.7 MicroscopicandMacroscopicSystems....................... 10 1.8 Classical and Statistical Thermodynamics . .................... 10 1.9 ClassicalandQuantumApproaches......................... 11 2 Probability Theory 13 2.1 Introduction . .................................. 13 2.2 What is Probability? . ........................... 13 2.3 Combining Probabilities . ........................... 13 2.4 Two-StateSystem.................................. 15 2.5 CombinatorialAnalysis............................... 16 2.6 Binomial Probability Distribution . .................... 17 2.7 Mean,Variance,andStandardDeviation...................... 18 2.8 Application to Binomial Probability Distribution . ................ 19 2.9 Gaussian Probability Distribution . .................... 22 2.10 CentralLimitTheorem............................... 25 Exercises ....................................... 26 3 Statistical Mechanics 29 3.1 Introduction . .................................. 29 3.2 SpecificationofStateofMany-ParticleSystem................... 29 2 CONTENTS 3.3 Principle -
Maxwell Relations
Maxwell relations Maxwell's relations are a set of equations in thermodynamics which are derivable from the symmetry of second derivatives and from the definitions of the thermodynamic potentials. ese relations are named for the nineteenth- century physicist James Clerk Maxwell. Contents Equations The four most common Maxwell relations Derivation Derivation based on Jacobians General Maxwell relationships See also Equations Flow chart showing the paths between the Maxwell relations. P: e structure of Maxwell relations is a pressure, T: temperature, V: volume, S: entropy, α: coefficient of statement of equality among the second thermal expansion, κ: compressibility, CV: heat capacity at derivatives for continuous functions. It constant volume, CP: heat capacity at constant pressure. follows directly from the fact that the order of differentiation of an analytic function of two variables is irrelevant (Schwarz theorem). In the case of Maxwell relations the function considered is a thermodynamic potential and xi and xj are two different natural variables for that potential: Schwarz' theorem (general) where the partial derivatives are taken with all other natural variables held constant. It is seen that for every thermodynamic potential there are n(n − 1)/2 possible Maxwell relations where n is the number of natural variables for that potential. e substantial increase in the entropy will be verified according to the relations satisfied by the laws of thermodynamics e four most common Maxwell relations e four most common Maxwell relations are the equalities of the second derivatives of each of the four thermodynamic potentials, with respect to their thermal natural variable (temperature T; or entropy S) and their mechanical natural variable (pressure P; or volume V): Maxwell's relations (common) where the potentials as functions of their natural thermal and mechanical variables are the internal energy U(S, V), enthalpy H(S, P), Helmholtz free energy F(T, V) and Gibbs free energy G(T, P). -
An Important Practical Question Is What Happens When a Gas Is Expanded Into Vacuum Or a Very Low Pressure (Against “Zero External Pressure”)
An important practical question is what happens when a gas is expanded into vacuum or a very low pressure (against “zero external pressure”). We saw already that W=0. And in a fundamental sense, it helps us to further illustrate the (usefulness of the) concept of enthalpy. Does the T decrease, as is typical when it is expanded adiabatically? Should it, if no work is done? (Remember that the adiabatic expansion curve on the P-v diagram is steeper than that of isothermal expansion!) Initial experiments (done by Joule in the 19th century) showed that, when the gas can be considered ideal, heat is neither evolved nor absorbed. Thus both heat and work are zero, which means that the internal energy remains constant: ∂U =0 ∂V T In fact, this condition is a complementary definition of an ideal gas, because Joule and Thomson -- two of the leading 'fathers' of thermodynamics, the latter immortalized as lord Kelvin -- subsequently showed that this is not true in general (for non-ideal or real gases). In fact, the ability to predict the so called Joule-Thomson inversion temperature (see relevant figures in the textbook) is often used as a litmus test for an equation of state. So the concept and the quantification of the Joule-Thomson coefficient is an essential topic in an introductory thermo course: ∂T ≡ μ ∂P H It turns out that the assumption Q=0 is more reasonable than the assumption W=0, because of the need to overcome the attractive (or repulsive!) forces between molecules. In other words, no ‘external’ work is done (by compressing the surroundings), but some ‘internal’ work is done.. -
On Maxwell's Relations of Thermodynamics for Polymeric
640 Macromolecules 2011, 44, 640–646 DOI: 10.1021/ma101813q On Maxwell’s Relations of Thermodynamics for Polymeric Liquids away from Equilibrium Chunggi Baig,*,† Vlasis G. Mavrantzas,*,† and Hans Christian Ottinger€ ‡ †Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, Patras, GR 26504, Greece, and ‡Department of Materials, Polymer Physics, ETH Zurich,€ HCI H 543, CH-8093 Zurich,€ Switzerland Received August 9, 2010; Revised Manuscript Received December 9, 2010 ABSTRACT: To describe complex systems deeply in the nonlinear regime, advanced formulations of nonequilibrium thermodynamics such as the extended irreversible thermodynamics (EIT), the matrix model, the generalized bracket formalism, and the GENERIC (=general equation for the nonequilibrium reversible-irreversible coupling) formalism consider generalized versions of thermodynamic potentials in terms of a few, well-defined position-dependent state variables (defining the system at a coarse-grained level). Straightforward statistical mechanics considerations then imply a set of equalities for its second derivatives with respect to the corresponding state variables, typically known as Maxwell’s relations. We provide here direct numerical estimates of these relations from detailed atomistic Monte Carlo (MC) simulations of an unentangled polymeric melt coarse-grained to the level of the chain conformation tensor, under both weak and strong flows. We also report results for the nonequilbrium (i.e., relative to the quiescent fluid) internal energy, entropy, and free energy functions of the simulated melt, which indicate a strong coupling of the second derivatives of the corresponding thermodynamic potential at high flow fields. 1. Introduction the set x of the proper state variables, a step of paramount Since Onsager’s pioneering work1 on irreversible phenomena importance requiring deep physical insight and experience.