An Important Practical Question Is What Happens When a Gas Is Expanded Into Vacuum Or a Very Low Pressure (Against “Zero External Pressure”)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Internal Energy in an Electric Field
Internal energy in an electric field In an electric field, if the dipole moment is changed, the change of the energy is, U E P Using Einstein notation dU Ek dP k This is part of the total derivative of U dU TdSij d ij E kK dP H l dM l Make a Legendre transformation to the Gibbs potential G(T, H, E, ) GUTSijij EP kK HM l l SGTE data for pure elements http://www.sciencedirect.com/science/article/pii/036459169190030N Gibbs free energy GUTSijij EP kK HM l l dG dU TdS SdTijij d ij d ij E kk dP P kk dE H l dM l M l dH l dU TdSij d ij E kK dP H l dM l dG SdTij d ij P k dE k M l dH l G G G G total derivative: dG dT d dE dH ij k l T ij EH k l G G ij Pk E ij k G G M l S Hl T Direct and reciprocal effects (Maxwell relations) Useful to check for errors in experiments or calculations Maxwell relations Useful to check for errors in experiments or calculations Point Groups Crystals can have symmetries: rotation, reflection, inversion,... x 1 0 0 x y 0 cos sin y z 0 sin cos z Symmetries can be represented by matrices. All such matrices that bring the crystal into itself form the group of the crystal. AB G for A, B G 32 point groups (one point remains fixed during transformation) 230 space groups Cyclic groups C2 C4 http://en.wikipedia.org/wiki/Cyclic_group 2G Pyroelectricity i Ei T Pyroelectricity is described by a rank 1 tensor Pi i T 1 0 0 x x x 0 1 0 y y y 0 0 1 z z 0 1 0 0 x x 0 0 1 0 y y 0 0 0 1 z z 0 Pyroelectricity example Turmalin: point group 3m Quartz, ZnO, LaTaO 3 for T = 1°C, E ~ 7 ·104 V/m Pyroelectrics have a spontaneous polarization. -
3. Energy, Heat, and Work
3. Energy, Heat, and Work 3.1. Energy 3.2. Potential and Kinetic Energy 3.3. Internal Energy 3.4. Relatively Effects 3.5. Heat 3.6. Work 3.7. Notation and Sign Convention In these Lecture Notes we examine the basis of thermodynamics – fundamental definitions and equations for energy, heat, and work. 3-1. Energy. Two of man's earliest observations was that: 1)useful work could be accomplished by exerting a force through a distance and that the product of force and distance was proportional to the expended effort, and 2)heat could be ‘felt’ in when close or in contact with a warm body. There were many explanations for this second observation including that of invisible particles traveling through space1. It was not until the early beginnings of modern science and molecular theory that scientists discovered a true physical understanding of ‘heat flow’. It was later that a few notable individuals, including James Prescott Joule, discovered through experiment that work and heat were the same phenomenon and that this phenomenon was energy: Energy is the capacity, either latent or apparent, to exert a force through a distance. The presence of energy is indicated by the macroscopic characteristics of the physical or chemical structure of matter such as its pressure, density, or temperature - properties of matter. The concept of hot versus cold arose in the distant past as a consequence of man's sense of touch or feel. Observations show that, when a hot and a cold substance are placed together, the hot substance gets colder as the cold substance gets hotter. -
Joule-Thomson Expansion of Charged Ads Black Holes
Joule-Thomson Expansion of Charged AdS Black Holes Ozg¨ur¨ Okc¨u¨ ∗ and Ekrem Aydınery Department of Physics, Faculty of Science, Istanbul_ University, Istanbul,_ 34134, Turkey (Dated: January 24, 2017) In this paper, we study Joule-Thomson effects for charged AdS black holes. We obtain inversion temperatures and curves. We investigate similarities and differences between van der Waals fluids and charged AdS black holes for the expansion. We obtain isenthalpic curves for both systems in T − P plane and determine the cooling-heating regions. I. INTRODUCTION Variable cosmological constant notion has some nice features such as phase transition, heat cycles and com- It is well known that black holes as thermodynamic pressibility of black holes [41]. Applicabilities of these systems have many interesting consequences. It sets deep thermodynamic phenomena to black holes encourage us and fundamental connections between the laws of clas- to consider Joule-Thomson expansion of charged AdS sical general relativity, thermodynamics, and quantum black holes. In this letter, we study the Joule-Thompson mechanics. Since it has a key feature to understand expansion for chraged AdS black holes. We find sim- quantum gravity, much attention has been paid to the ilarities and differences with van der Waals fluids. In topic. The properties of black hole thermodynamics have Joule-Thomson expansion, gas at a high pressure passes been investigated since the first studies of Bekenstein and through a porous plug to a section with a low pressure Hawking [1{6]. When Hawking discovered that black and during the expansion enthalpy is constant. With holes radiate, black holes are considered as thermody- the Joule-Thomson expansion, one can consider heating- namic systems. -
Energy Minimum Principle
ESCI 341 – Atmospheric Thermodynamics Lesson 12 – The Energy Minimum Principle References: Thermodynamics and an Introduction to Thermostatistics, Callen Physical Chemistry, Levine THE ENTROPY MAXIMUM PRINCIPLE We’ve seen that a reversible process achieves maximum thermodynamic efficiency. Imagine that I am adding heat to a system (dQin), converting some of it to work (dW), and discarding the remaining heat (dQout). We’ve already demonstrated that dQout cannot be zero (this would violate the second law). We also have shown that dQout will be a minimum for a reversible process, since a reversible process is the most efficient. This means that the net heat for the system (dQ = dQin dQout) will be a maximum for a reversible process, dQrev dQirrev . The change in entropy of the system, dS, is defined in terms of reversible heat as dQrev/T. We can thus write the following inequality dQ dQ dS rev irrev , (1) T T Notice that for Eq. (1), if the system is reversible and adiabatic, we get dQ dS 0 irrev , T or dQirrev 0 which illustrates the following: If two states can be connected by a reversible adiabatic process, then any irreversible process connecting the two states must involve the removal of heat from the system. Eq. (1) can be written as dS dQ T (2) The equality will hold if all processes in the system are reversible. The inequality will hold if there are irreversible processes in the system. For an isolated system (dQ = 0) the inequality becomes dS 0 isolated system , which is just a restatement of the second law of thermodynamics. -
Chapter 20 -- Thermodynamics
ChapterChapter 2020 -- ThermodynamicsThermodynamics AA PowerPointPowerPoint PresentationPresentation byby PaulPaul E.E. TippensTippens,, ProfessorProfessor ofof PhysicsPhysics SouthernSouthern PolytechnicPolytechnic StateState UniversityUniversity © 2007 THERMODYNAMICSTHERMODYNAMICS ThermodynamicsThermodynamics isis thethe studystudy ofof energyenergy relationshipsrelationships thatthat involveinvolve heat,heat, mechanicalmechanical work,work, andand otherother aspectsaspects ofof energyenergy andand heatheat transfer.transfer. Central Heating Objectives:Objectives: AfterAfter finishingfinishing thisthis unit,unit, youyou shouldshould bebe ableable to:to: •• StateState andand applyapply thethe first andand second laws ofof thermodynamics. •• DemonstrateDemonstrate youryour understandingunderstanding ofof adiabatic, isochoric, isothermal, and isobaric processes.processes. •• WriteWrite andand applyapply aa relationshiprelationship forfor determiningdetermining thethe ideal efficiency ofof aa heatheat engine.engine. •• WriteWrite andand applyapply aa relationshiprelationship forfor determiningdetermining coefficient of performance forfor aa refrigeratior.refrigeratior. AA THERMODYNAMICTHERMODYNAMIC SYSTEMSYSTEM •• AA systemsystem isis aa closedclosed environmentenvironment inin whichwhich heatheat transfertransfer cancan taketake place.place. (For(For example,example, thethe gas,gas, walls,walls, andand cylindercylinder ofof anan automobileautomobile engine.)engine.) WorkWork donedone onon gasgas oror workwork donedone byby gasgas INTERNALINTERNAL -
Chapter 3 Non-Ideal Gases
Chapter 3 Non-ideal Gases This chapter is devoted to considering systems where the interactions be- tween particles can no longer be ignored. We note that in the previous chapter we did indeed consider, albeit briefly, the effects of interactions in fermion and in boson gases. This chapter is concerned more with a system- atic treatment of interatomic interactions. Here the quantum aspect is but a complication and most of the discussions will thus take place within the context of a classical description. 3.1 Statistical Mechanics of Interacting Par- ticles 3.1.1 The partition function We are now considering gases where the interactions between the particles cannot be ignored. Our starting point is that everything can be found from the partition function. We will work, initially, in the classical framework where the energy function of the system is p2 H (p , q ) = i + U (q , q ) . (3.1.1) i i 2m i j i i<j X X Because of the interaction term U (qi, qj) the partition function can no longer be factorised into the product of single-particle partition functions. The many-body partition function is 1 p2/2m+ U(q ,q ) kT 3N 3N Z = e− ( i i i<j i j )/ d p d q (3.1.2) N!h3N Z P P 133 134 CHAPTER 3. NON-IDEAL GASES where the factor 1/N! is used to account for the particles being indistinguish- able. While the partition function cannot be factorised into the product of single-particle partition functions, we can factor out the partition function for the non-interacting case since the energy is a sum of a momentum-dependent term (kinetic energy) and a coordinate-dependent term (potential energy). -
10.05.05 Fundamental Equations; Equilibrium and the Second Law
3.012 Fundamentals of Materials Science Fall 2005 Lecture 8: 10.05.05 Fundamental Equations; Equilibrium and the Second Law Today: LAST TIME ................................................................................................................................................................................ 2 THERMODYNAMIC DRIVING FORCES: WRITING A FUNDAMENTAL EQUATION ........................................................................... 3 What goes into internal energy?.......................................................................................................................................... 3 THE FUNDAMENTAL EQUATION FOR THE ENTROPY................................................................................................................... 5 INTRODUCTION TO THE SECOND LAW ....................................................................................................................................... 6 Statements of the second law ............................................................................................................................................... 6 APPLYING THE SECOND LAW .................................................................................................................................................... 8 Heat flows from hot objects to cold objects ......................................................................................................................... 8 Thermal equilibrium ........................................................................................................................................................... -
Forms of Energy: Kinetic Energy, Gravitational Potential Energy, Elastic Potential Energy, Electrical Energy, Chemical Energy, and Thermal Energy
6/3/14 Objectives Forms of • State a practical definition of energy. energy • Provide or identify an example of each of these forms of energy: kinetic energy, gravitational potential energy, elastic potential energy, electrical energy, chemical energy, and thermal energy. Assessment Assessment 1. Which of the following best illustrates the physics definition of 2. Which statement below provides a correct practical definition of energy? energy? A. “I don’t have the energy to get that done today.” A. Energy is a quantity that can be created or destroyed. B. “Our team needs to be at maximum energy for this game.” B. Energy is a measure of how much money it takes to produce a product. C. “The height of her leaps takes more energy than anyone else’s.” C. The energy of an object can never change. It depends on “ D. That performance was so exhilarating you could feel the energy the size and weight of an object. in the audience!” D. Energy is the quantity that causes matter to change and determines how much change occur. Assessment Physics terms 3. Match each event with the correct form of energy. • energy I. kinetic II. gravitational potential III. elastic potential IV. thermal • gravitational potential energy V. electrical VI. chemical • kinetic energy ___ Ice melts when placed in a cup of warm water. • elastic potential energy ___ Campers use a tank of propane gas on their trip. ___ A car travels down a level road at 25 m/s. • thermal energy ___ A bungee cord causes the jumper to bounce upward. ___ The weightlifter raises the barbell above his head. -
Enthalpy and Internal Energy
Enthalpy and Internal Energy • H or ΔH is used to symbolize enthalpy. • The mathematical expression of the First Law of Thermodynamics is: ΔE = q + w , where ΔE is the change in internal energy, q is heat and w is work. • Work can be defined in terms of an expanding gas and has the formula: w = -PΔV , where P is pressure in pascals (N/m2) and V is volume in m3. N-23 Enthalpy and Internal Energy • Enthalpy (H) is related to energy. H = E + PV • However, absolute energies and enthalpies are rarely measured. Instead, we measure CHANGES in these quantities. Reconsider the above equations (at constant pressure): ΔH = ΔE + PΔV recall: w = - PΔV therefore: ΔH = ΔE - w substituting: ΔH = q + w - w ΔH = q (at constant pressure) • Therefore, at constant pressure, enthalpy is heat. We will use these words interchangeably. N-24 State Functions • Enthalpy and internal energy are both STATE functions. • A state function is path independent. • Heat and work are both non-state functions. • A non-state function is path dependant. Consider: Location (position) Distance traveled Change in position N-25 Molar Enthalpy of Reactions (ΔHrxn) • Heat (q) is usually used to represent the heat produced (-) or consumed (+) in the reaction of a specific quantity of a material. • For example, q would represent the heat released when 5.95 g of propane is burned. • The “enthalpy (or heat) of reaction” is represented by ΔHreaction (ΔHrxn) and relates to the amount of heat evolved per one mole or a whole # multiple – as in a balanced chemical equation. q molar ΔH = rxn (in units of kJ/mol) rxn moles reacting N-26 € Enthalpy of Reaction • Sometimes, however, knowing the heat evolved or consumed per gram is useful to know: qrxn gram ΔHrxn = (in units of J/g) grams reacting € N-27 Enthalpy of Reaction 7. -
Thermodynamics and Statistical Mechanics
Thermodynamics and Statistical Mechanics Richard Fitzpatrick Professor of Physics The University of Texas at Austin Contents 1 Introduction 7 1.1 IntendedAudience.................................. 7 1.2 MajorSources.................................... 7 1.3 Why Study Thermodynamics? ........................... 7 1.4 AtomicTheoryofMatter.............................. 7 1.5 What is Thermodynamics? . ........................... 8 1.6 NeedforStatisticalApproach............................ 8 1.7 MicroscopicandMacroscopicSystems....................... 10 1.8 Classical and Statistical Thermodynamics . .................... 10 1.9 ClassicalandQuantumApproaches......................... 11 2 Probability Theory 13 2.1 Introduction . .................................. 13 2.2 What is Probability? . ........................... 13 2.3 Combining Probabilities . ........................... 13 2.4 Two-StateSystem.................................. 15 2.5 CombinatorialAnalysis............................... 16 2.6 Binomial Probability Distribution . .................... 17 2.7 Mean,Variance,andStandardDeviation...................... 18 2.8 Application to Binomial Probability Distribution . ................ 19 2.9 Gaussian Probability Distribution . .................... 22 2.10 CentralLimitTheorem............................... 25 Exercises ....................................... 26 3 Statistical Mechanics 29 3.1 Introduction . .................................. 29 3.2 SpecificationofStateofMany-ParticleSystem................... 29 2 CONTENTS 3.3 Principle -
The First Law of Thermodynamics: Closed Systems Heat Transfer
The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy gained by the system must be exactly equal to the amount of energy lost by the surroundings. A closed system can exchange energy with its surroundings through heat and work transfer. In other words, work and heat are the forms that energy can be transferred across the system boundary. Based on kinetic theory, heat is defined as the energy associated with the random motions of atoms and molecules. Heat Transfer Heat is defined as the form of energy that is transferred between two systems by virtue of a temperature difference. Note: there cannot be any heat transfer between two systems that are at the same temperature. Note: It is the thermal (internal) energy that can be stored in a system. Heat is a form of energy in transition and as a result can only be identified at the system boundary. Heat has energy units kJ (or BTU). Rate of heat transfer is the amount of heat transferred per unit time. Heat is a directional (or vector) quantity; thus, it has magnitude, direction and point of action. Notation: – Q (kJ) amount of heat transfer – Q° (kW) rate of heat transfer (power) – q (kJ/kg) ‐ heat transfer per unit mass – q° (kW/kg) ‐ power per unit mass Sign convention: Heat Transfer to a system is positive, and heat transfer from a system is negative. It means any heat transfer that increases the energy of a system is positive, and heat transfer that decreases the energy of a system is negative. -
LECTURE 6 Properties of Ideal Gases Ideal Gases Are a Very Simple System of Noninteracting Particles
LECTURE 6 Properties of Ideal Gases Ideal gases are a very simple system of noninteracting particles. The only energy involved is the kinetic energy of the gas particles. There is no potential energy. Let’s study this system as a way to illustrate some of the concepts that we have been discussing such as internal energy, specific heat, etc. First of all, the internal energy of an ideal gas is solely a function of its temperature and is independent of its volume. E = E(T ) independent of V (1) Perhaps this is not surprising since the energy is solely kinetic and hence just depends on the temperature. The energy does not depend on interactions between the particles, so it doesn’t matter how close together the particles are, i.e., the density and volume don’t matter. One can prove that the energy is solely a function of the temperature in 2 different ways. One way is microscopic and uses phase space (Reif section 2.5); the other way is macroscopic and just uses the equation of state pV = νRT (Reif section 5.1). Let’s go over the microscopic proof. Let ri denote the position of the ith particle and let pi be it’s momentum. The number of states Ω(E) lying between the energies E and E + dE is proportional to the volume of phase space contained between the surface in phase space with energy E and the surface with energy E + dE: E+dE 3 3 3 3 Ω(E) ∝ d r1 ... d rN d p1 ..