Thermodynamic Potentials D

Total Page:16

File Type:pdf, Size:1020Kb

Thermodynamic Potentials D Thermodynamic Potentials D. Jaksch1 Goals • Understand the importance and relevance of different thermodynamic potentials and natural variables. • Learn how to derive and use thermodynamic relations like e.g. Maxwell relations. • Learn how to calculate averages for a given probability distribution. Thermodynamic Potentials The natural variables for the internal energy U are the system volume V and the entropy S, i.e. dU = T dS−pdV . If U is given as a function of S and V then it determines all thermodynamic properties of the system; the temperature and pressure are then given by its partial derivatives. By using a Legendre transformation we can define the Helmholtz free energy F = U − TS whose derivative is dF = dU − d(TS) = −SdT − pdV ; its natural variables are T and V . Similarly we have the Enthalpy H = U + pV with dH = T dS + V dp and the Gibbs free energy G = U + pV − TS with dG = −SdT + V dp. The variable pairs p; V and T;S are called conjugate variables. We will later introduce the chemical potential µ and number of particles N as another conjugate pair. In some systems the magnetic field B and the magnetization M will take the role of p and V . In low dimensional systems area or length take the role of the volume. Maxwell relations The Maxwell relations follow from the equality of mixed derivatives of the thermodynamic potentials with respect to their natural variables. The most common relations are @T @p @2U + = − = ; @V S @S V @S@V @T @V @2H + = + = ; @p S @S p @S@p @S @p @2F + = + = ; @V T @T V @T @V @S @V @2G − = + = : @p T @T p @T @p Additional Maxwell relations arise when µ and N are also considered. Thermodynamic quantities and equations You might find the following websites useful • https://en.wikipedia.org/wiki/List of thermodynamic properties • https://en.wikipedia.org/wiki/Table of thermodynamic equations Please note that the list of symbols appearing in thermodynamics is vast and sometimes used inconsistently. Therefore only those equations whose meaning is unambiguously defined on those websites should be used. As always, all the symbols you use need to be defined. 1Several of these problems are based on problem sets by Profs A. Boothroyd, A.A. Schekochihin, S.J. Blundell, and previous Oxford exam questions Problems 1. State which of the properties quasi-static, reversible, irreversible and isothermal applies to each of the following processes (in each case list all those properties which apply): (a) Slow expansion of an ideal gas in a thermally-isolated cylinder, as a piston is withdrawn. (b) The JouleKelvin process applied to a non-ideal gas. (c) A volcanic eruption. (d) The process of oxidation (rusting) of a steel nail immersed in a beaker of water maintained at standard temperature and pressure. 2. Show that the change in internal energy of a simple system between states (V1;T1) and (V2;T2) is given by Z T2 Z V2 @p ∆U = CV dT + T − p dV: T1 V1 @T V Boyle observed that the pressure of an ideal gas varies inversely with its volume at constant temperature. Give the most general possible equation of state which is consistent with this finding. Explain why the @T Joule expansion experiment implies that @V U = 0. Show further that these results taken together imply that the equation of state is pV = RT where R is a constant of proportionality. 3. Derive the following general relations @T 1 h @p i (i) @V = − C T @T − p U V V @T 1 @p (ii) @V = − C T @T S V V @T 1 h @V i (iii) @p = C T @T − V H p p In each case the quantity on the left hand side is the appropriate thing to consider for a particular type of expansion. State what type of expansion each refers to. Using these relations, verify that for an ideal gas @T @T = 0 and = 0 @V U @p H @T γ and that @V S leads to the familiar relation pV =const along an isentrope. 4. Use the First Law of Thermodynamics to show that @U C − C = p V − p ; @V T V βp where βp is the coefficient of volume expansivity. 5. For a stretched rubber band, it is observed experimentally that the tension f is proportional to the temperature T if the length L is held constant. Prove that: (a) the internal energy U is a function of temperature only; (b) adiabatic stretching of the band results in an increase in temperature; (c) the band will contract if warmed while kept under constant tension. You may assume that @L > 0 : @f T 6. For a fixed surface area, the surface tension of water varies linearly with temperature from 75×10−4N/m at 5◦C to 70×10−3N/m at 35◦C. Calculate the surface contributions to the entropy per unit area and the ◦ @S −3 2 @U −3 2 internal energy per unit area at 5 C. Solution: @A T = 0:167×10 J=Km , @A T = 121:3×10 J=m . An atomizer produces water droplets of diameter 0:1µm. A cloud of droplets at 35◦C coalesces to form a single drop of water of mass 1g. Estimate the temperature of the drop assuming no heat exchange with the surroundings. What is the increase in entropy in this process? The specific heat capacity of water is −3 Cp = 4200J/(K kg). Solution: ∆T = 1:73K, ∆S = 13:6 × 10 J/K. 7. The magnetization M of a paramagnetic material is given by M = χB/µ0, where B is the magnetic flux density and the susceptibility χ follows Curies law χ = C=T with C a constant. 2 If the heat capacity per unit volume at constant M is cM = a=T , show that the heat capacity per unit volume at constant B is a B2C cB = 2 1 + : T µ0a If a sample is initially at temperature T1 in an applied field of flux density B1, show that the temperature after adiabatic reduction of the field to zero is T T = 1 : 2 1=2 B2C 1 + 1 µ0a Class Problems 8. If θ is a continuous random variable which is uniformly distributed between 0 and π, write down an expression for p(θ). Hence find the value of the following averages: (i) hθi (vi) hsin(θ)i (ii) hθ − π=2i (vii) hj cos(θ)ji (iii) θ2 (viii) cos2(θ) (iv) hθni for n ≥ 0 (ix) sin2(θ) (v) hcos(θ)i (x) sin2(θ) + cos2(θ) Check that your answers are what you expect. 9. If particle velocities are distributed isotropically, how are their angles distributed? Is the angle between the velocity vector and a fixed axis (chosen by you) distributed uniformly? Why? Answer these questions for the case of a 2- and 3-dimensional world. 10. Consider an isotropic distribution of particle velocities: f(b) = f(v), where v = jbj is the particle speed. In 3D, what is the distribution of the speeds, f~(v)? 11. Calculate the following averages of velocity components in 3D in terms of averages of speed (hvi, v2 , etc.). Here the indices take on values i; j; k; l = x; y; z. 2 (i) hvii, (ii) hjviji, (iii) vi , (iv) hvivji, (v) hvivjvki, (vi) hvivjvkvli..
Recommended publications
  • Thermodynamics Notes
    Thermodynamics Notes Steven K. Krueger Department of Atmospheric Sciences, University of Utah August 2020 Contents 1 Introduction 1 1.1 What is thermodynamics? . .1 1.2 The atmosphere . .1 2 The Equation of State 1 2.1 State variables . .1 2.2 Charles' Law and absolute temperature . .2 2.3 Boyle's Law . .3 2.4 Equation of state of an ideal gas . .3 2.5 Mixtures of gases . .4 2.6 Ideal gas law: molecular viewpoint . .6 3 Conservation of Energy 8 3.1 Conservation of energy in mechanics . .8 3.2 Conservation of energy: A system of point masses . .8 3.3 Kinetic energy exchange in molecular collisions . .9 3.4 Working and Heating . .9 4 The Principles of Thermodynamics 11 4.1 Conservation of energy and the first law of thermodynamics . 11 4.1.1 Conservation of energy . 11 4.1.2 The first law of thermodynamics . 11 4.1.3 Work . 12 4.1.4 Energy transferred by heating . 13 4.2 Quantity of energy transferred by heating . 14 4.3 The first law of thermodynamics for an ideal gas . 15 4.4 Applications of the first law . 16 4.4.1 Isothermal process . 16 4.4.2 Isobaric process . 17 4.4.3 Isosteric process . 18 4.5 Adiabatic processes . 18 5 The Thermodynamics of Water Vapor and Moist Air 21 5.1 Thermal properties of water substance . 21 5.2 Equation of state of moist air . 21 5.3 Mixing ratio . 22 5.4 Moisture variables . 22 5.5 Changes of phase and latent heats .
    [Show full text]
  • ( ∂U ∂T ) = ∂CV ∂V = 0, Which Shows That CV Is Independent of V . 4
    so we have ∂ ∂U ∂ ∂U ∂C =0 = = V =0, ∂T ∂V ⇒ ∂V ∂T ∂V which shows that CV is independent of V . 4. Using Maxwell’s relations. Show that (∂H/∂p) = V T (∂V/∂T ) . T − p Start with dH = TdS+ Vdp. Now divide by dp, holding T constant: dH ∂H ∂S [at constant T ]= = T + V. dp ∂p ∂p T T Use the Maxwell relation (Table 9.1 of the text), ∂S ∂V = ∂p − ∂T T p to get the result ∂H ∂V = T + V. ∂p − ∂T T p 97 5. Pressure dependence of the heat capacity. (a) Show that, in general, for quasi-static processes, ∂C ∂2V p = T . ∂p − ∂T2 T p (b) Based on (a), show that (∂Cp/∂p)T = 0 for an ideal gas. (a) Begin with the definition of the heat capacity, δq dS C = = T , p dT dT for a quasi-static process. Take the derivative: ∂C ∂2S ∂2S p = T = T (1) ∂p ∂p∂T ∂T∂p T since S is a state function. Substitute the Maxwell relation ∂S ∂V = ∂p − ∂T T p into Equation (1) to get ∂C ∂2V p = T . ∂p − ∂T2 T p (b) For an ideal gas, V (T )=NkT/p,so ∂V Nk = , ∂T p p ∂2V =0, ∂T2 p and therefore, from part (a), ∂C p =0. ∂p T 98 (a) dU = TdS+ PdV + μdN + Fdx, dG = SdT + VdP+ Fdx, − ∂G F = , ∂x T,P 1 2 G(x)= (aT + b)xdx= 2 (aT + b)x . ∂S ∂F (b) = , ∂x − ∂T T,P x,P ∂S ∂F (c) = = ax, ∂x − ∂T − T,P x,P S(x)= ax dx = 1 ax2.
    [Show full text]
  • Thermodynamics
    ME346A Introduction to Statistical Mechanics { Wei Cai { Stanford University { Win 2011 Handout 6. Thermodynamics January 26, 2011 Contents 1 Laws of thermodynamics 2 1.1 The zeroth law . .3 1.2 The first law . .4 1.3 The second law . .5 1.3.1 Efficiency of Carnot engine . .5 1.3.2 Alternative statements of the second law . .7 1.4 The third law . .8 2 Mathematics of thermodynamics 9 2.1 Equation of state . .9 2.2 Gibbs-Duhem relation . 11 2.2.1 Homogeneous function . 11 2.2.2 Virial theorem / Euler theorem . 12 2.3 Maxwell relations . 13 2.4 Legendre transform . 15 2.5 Thermodynamic potentials . 16 3 Worked examples 21 3.1 Thermodynamic potentials and Maxwell's relation . 21 3.2 Properties of ideal gas . 24 3.3 Gas expansion . 28 4 Irreversible processes 32 4.1 Entropy and irreversibility . 32 4.2 Variational statement of second law . 32 1 In the 1st lecture, we will discuss the concepts of thermodynamics, namely its 4 laws. The most important concepts are the second law and the notion of Entropy. (reading assignment: Reif x 3.10, 3.11) In the 2nd lecture, We will discuss the mathematics of thermodynamics, i.e. the machinery to make quantitative predictions. We will deal with partial derivatives and Legendre transforms. (reading assignment: Reif x 4.1-4.7, 5.1-5.12) 1 Laws of thermodynamics Thermodynamics is a branch of science connected with the nature of heat and its conver- sion to mechanical, electrical and chemical energy. (The Webster pocket dictionary defines, Thermodynamics: physics of heat.) Historically, it grew out of efforts to construct more efficient heat engines | devices for ex- tracting useful work from expanding hot gases (http://www.answers.com/thermodynamics).
    [Show full text]
  • 7 Apr 2021 Thermodynamic Response Functions . L03–1 Review Of
    7 apr 2021 thermodynamic response functions . L03{1 Review of Thermodynamics. 3: Second-Order Quantities and Relationships Maxwell Relations • Idea: Each thermodynamic potential gives rise to several identities among its second derivatives, known as Maxwell relations, which express the integrability of the fundamental identity of thermodynamics for that potential, or equivalently the fact that the potential really is a thermodynamical state function. • Example: From the fundamental identity of thermodynamics written in terms of the Helmholtz free energy, dF = −S dT − p dV + :::, the fact that dF really is the differential of a state function implies that @ @F @ @F @S @p = ; or = : @V @T @T @V @V T;N @T V;N • Other Maxwell relations: From the same identity, if F = F (T; V; N) we get two more relations. Other potentials and/or pairs of variables can be used to obtain additional relations. For example, from the Gibbs free energy and the identity dG = −S dT + V dp + µ dN, we get three relations, including @ @G @ @G @S @V = ; or = − : @p @T @T @p @p T;N @T p;N • Applications: Some measurable quantities, response functions such as heat capacities and compressibilities, are second-order thermodynamical quantities (i.e., their definitions contain derivatives up to second order of thermodynamic potentials), and the Maxwell relations provide useful equations among them. Heat Capacities • Definitions: A heat capacity is a response function expressing how much a system's temperature changes when heat is transferred to it, or equivalently how much δQ is needed to obtain a given dT . The general definition is C = δQ=dT , where for any reversible transformation δQ = T dS, but the value of this quantity depends on the details of the transformation.
    [Show full text]
  • Module P7.4 Specific Heat, Latent Heat and Entropy
    FLEXIBLE LEARNING APPROACH TO PHYSICS Module P7.4 Specific heat, latent heat and entropy 1 Opening items 4 PVT-surfaces and changes of phase 1.1 Module introduction 4.1 The critical point 1.2 Fast track questions 4.2 The triple point 1.3 Ready to study? 4.3 The Clausius–Clapeyron equation 2 Heating solids and liquids 5 Entropy and the second law of thermodynamics 2.1 Heat, work and internal energy 5.1 The second law of thermodynamics 2.2 Changes of temperature: specific heat 5.2 Entropy: a function of state 2.3 Changes of phase: latent heat 5.3 The principle of entropy increase 2.4 Measuring specific heats and latent heats 5.4 The irreversibility of nature 3 Heating gases 6 Closing items 3.1 Ideal gases 6.1 Module summary 3.2 Principal specific heats: monatomic ideal gases 6.2 Achievements 3.3 Principal specific heats: other gases 6.3 Exit test 3.4 Isothermal and adiabatic processes Exit module FLAP P7.4 Specific heat, latent heat and entropy COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1 1 Opening items 1.1 Module introduction What happens when a substance is heated? Its temperature may rise; it may melt or evaporate; it may expand and do work1—1the net effect of the heating depends on the conditions under which the heating takes place. In this module we discuss the heating of solids, liquids and gases under a variety of conditions. We also look more generally at the problem of converting heat into useful work, and the related issue of the irreversibility of many natural processes.
    [Show full text]
  • Thermodynamic Potentials
    THERMODYNAMIC POTENTIALS, PHASE TRANSITION AND LOW TEMPERATURE PHYSICS Syllabus: Unit II - Thermodynamic potentials : Internal Energy; Enthalpy; Helmholtz free energy; Gibbs free energy and their significance; Maxwell's thermodynamic relations (using thermodynamic potentials) and their significance; TdS relations; Energy equations and Heat Capacity equations; Third law of thermodynamics (Nernst Heat theorem) Thermodynamics deals with the conversion of heat energy to other forms of energy or vice versa in general. A thermodynamic system is the quantity of matter under study which is in general macroscopic in nature. Examples: Gas, vapour, vapour in contact with liquid etc.. Thermodynamic stateor condition of a system is one which is described by the macroscopic physical quantities like pressure (P), volume (V), temperature (T) and entropy (S). The physical quantities like P, V, T and S are called thermodynamic variables. Any two of these variables are independent variables and the rest are dependent variables. A general relation between the thermodynamic variables is called equation of state. The relation between the variables that describe a thermodynamic system are given by first and second law of thermodynamics. According to first law of thermodynamics, when a substance absorbs an amount of heat dQ at constant pressure P, its internal energy increases by dU and the substance does work dW by increase in its volume by dV. Mathematically it is represented by 풅푸 = 풅푼 + 풅푾 = 풅푼 + 푷 풅푽….(1) If a substance absorbs an amount of heat dQ at a temperature T and if all changes that take place are perfectly reversible, then the change in entropy from the second 풅푸 law of thermodynamics is 풅푺 = or 풅푸 = 푻 풅푺….(2) 푻 From equations (1) and (2), 푻 풅푺 = 풅푼 + 푷 풅푽 This is the basic equation that connects the first and second laws of thermodynamics.
    [Show full text]
  • Equation of State - Wikipedia, the Free Encyclopedia 頁 1 / 8
    Equation of state - Wikipedia, the free encyclopedia 頁 1 / 8 Equation of state From Wikipedia, the free encyclopedia In physics and thermodynamics, an equation of state is a relation between state variables.[1] More specifically, an equation of state is a thermodynamic equation describing the state of matter under a given set of physical conditions. It is a constitutive equation which provides a mathematical relationship between two or more state functions associated with the matter, such as its temperature, pressure, volume, or internal energy. Equations of state are useful in describing the properties of fluids, mixtures of fluids, solids, and even the interior of stars. Thermodynamics Contents ■ 1 Overview ■ 2Historical ■ 2.1 Boyle's law (1662) ■ 2.2 Charles's law or Law of Charles and Gay-Lussac (1787) Branches ■ 2.3 Dalton's law of partial pressures (1801) ■ 2.4 The ideal gas law (1834) Classical · Statistical · Chemical ■ 2.5 Van der Waals equation of state (1873) Equilibrium / Non-equilibrium ■ 3 Major equations of state Thermofluids ■ 3.1 Classical ideal gas law Laws ■ 4 Cubic equations of state Zeroth · First · Second · Third ■ 4.1 Van der Waals equation of state ■ 4.2 Redlich–Kwong equation of state Systems ■ 4.3 Soave modification of Redlich-Kwong State: ■ 4.4 Peng–Robinson equation of state Equation of state ■ 4.5 Peng-Robinson-Stryjek-Vera equations of state Ideal gas · Real gas ■ 4.5.1 PRSV1 Phase of matter · Equilibrium ■ 4.5.2 PRSV2 Control volume · Instruments ■ 4.6 Elliott, Suresh, Donohue equation of state Processes:
    [Show full text]
  • Use of Equations of State and Equation of State Software Packages
    USE OF EQUATIONS OF STATE AND EQUATION OF STATE SOFTWARE PACKAGES Adam G. Hawley Darin L. George Southwest Research Institute 6220 Culebra Road San Antonio, TX 78238 Introduction Peng-Robinson (PR) Determination of fluid properties and phase The Peng-Robison (PR) EOS (Peng and Robinson, conditions of hydrocarbon mixtures is critical 1976) is referred to as a cubic equation of state, for accurate hydrocarbon measurement, because the basic equations can be rewritten as cubic representative sampling, and overall pipeline polynomials in specific volume. The Peng Robison operation. Fluid properties such as EOS is derived from the basic ideal gas law along with other corrections, to account for the behavior of compressibility and density are critical for flow a “real” gas. The Peng Robison EOS is very measurement and determination of the versatile and can be used to determine properties hydrocarbon due point is important to verify such as density, compressibility, and sound speed. that heavier hydrocarbons will not condense out The Peng Robison EOS can also be used to of a gas mixture in changing process conditions. determine phase boundaries and the phase conditions of hydrocarbon mixtures. In the oil and gas industry, equations of state (EOS) are typically used to determine the Soave-Redlich-Kwong (SRK) properties and the phase conditions of hydrocarbon mixtures. Equations of state are The Soave-Redlich-Kwaon (SRK) EOS (Soave, 1972) is a cubic equation of state, similar to the Peng mathematical correlations that relate properties Robison EOS. The main difference between the of hydrocarbons to pressure, temperature, and SRK and Peng Robison EOS is the different sets of fluid composition.
    [Show full text]
  • PHYS 521: Statistical Mechanics Homework #1
    PHYS 521: Statistical Mechanics Homework #1 Prakash Gautam April 17, 2018 1. A particular system obeys two equations of state 3As2 As3 T = (thermal equation of state);P = (mechanical equation of state): v v2 Where A is a constant. (a) Find µ as a function of s and v, and then find the fundamental equation. Solution: Given P and T the differential of each of them can be calculated as 6As 3As2 6As2 3As3 dT = ds − dv ) sdT = ds − dv v v2 v v2 3As2 2As3 3As2 2As3 dP = ds − dv ) vdP = ds − dv v2 v3 v v2 The Gibbs-Duhem relation in energy representation allows to calculate the value of µ. dµ = vdP − sdT 3As2 2As3 6As2 3As3 = ds − dv − ds + dv v[ v2 ] v ( v)2 3As2 As3 As3 = − ds − dv = −d v v2 v As3 This can be identified as the total derivative of v so the rel ( ) As3 As3 dµ = −d ) µ = − + k v v Where k is arbitrary constant. We can plug this back to Euler relation to find the fundamental equation as. u = T s − P v + µ 3As3 As3 As3 As3 = − − + k = + k v v v v As3 □ So the fundamental equation of the system is v + k. (b) Find the fundamental equation of this system by direct integration of the molar form of the equation. Solution: The differential form of internal energy is du = T ds − P dv 3As2 As3 = ds − dv v v2 1 As3 As before this is just the total differential of v so the relation leads to ( ) As3 As3 du = d ) u = + k v2 v This k should be the same arbitrary constant that we got in the previous problem.
    [Show full text]
  • Thermal and Statistical Physics (Part II) Examples Sheet 1 ————————————————————————————
    Michaelmas 2010 Thermal and Statistical Physics (Part II) Examples Sheet 1 ————————————————————————————- 1. Show that, for a van der Waals gas, the specific heat at constant volume, CV , obeys ∂C V = 0. ∂V T 2. The Gibbs free energy of an imperfect gas containing N molecules is given, in terms of its natural variables T , p and N, by p G = NkBT ln − NA(T ) p, p0 where p0 is a constant and A is a function of T only. Derive expressions in terms of T , p, V , and N for: (a) the equation of state of the gas; (b) the entropy, S; (c) the enthalpy, H; (d) the internal energy, U; (e) the Helmholtz free energy, F . Can all equilibrium thermodynamic information about the gas be obtained from a knowledge of: (i) F (T, V, N); (ii) the equation of state and U(T, p, N)? 3. The entropy of a monatomic ideal gas is given by the Sackur-Tetrode equation which can be written in the form: 3 2 V U / S(U, V, N)= Nk ln α , B N N ( ) where α is a constant to be derived later in the course. Invert this expression to get U(S, V, N). From this, obtain the equation of state expressing p as a function of V, N and T . 4. Use a Maxwell relation and the chain rule to show that for any substance the rate of change of T with p in a reversible adiabatic compression is given by ∂T T ∂V = . ∂p C ∂T S p p Find an equivalent expression for the adiabatic rate of change of T with V , and check that both results are valid for an ideal monatomic gas.
    [Show full text]
  • Thermodynamically Consistent Modeling and Simulation of Multi-Component Two-Phase Flow Model with Partial Miscibility
    THERMODYNAMICALLY CONSISTENT MODELING AND SIMULATION OF MULTI-COMPONENT TWO-PHASE FLOW MODEL WITH PARTIAL MISCIBILITY∗ JISHENG KOU† AND SHUYU SUN‡ Abstract. A general diffuse interface model with a realistic equation of state (e.g. Peng- Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is a latest alternative over the NPT-based framework to model the realistic fluids. The proposed model uses the Helmholtz free energy rather than Gibbs free energy in the NPT-based framework. Different from the classical routines, we combine the first law of thermodynamics and related thermodynamical relations to derive the entropy balance equation, and then we derive a transport equation of the Helmholtz free energy density. Furthermore, by using the second law of thermodynamics, we derive a set of unified equations for both interfaces and bulk phases that can describe the partial miscibility of two fluids. A relation between the pressure gradient and chemical potential gradients is established, and this relation leads to a new formulation of the momentum balance equation, which demonstrates that chemical potential gradients become the primary driving force of fluid motion. Moreover, we prove that the proposed model satisfies the total (free) energy dissipation with time. For numerical simulation of the proposed model, the key difficulties result from the strong nonlinearity of Helmholtz free energy density and tight coupling relations between molar densities and velocity. To resolve these problems, we propose a novel convex-concave splitting of Helmholtz free energy density and deal well with the coupling relations between molar densities and velocity through very careful physical observations with a mathematical rigor.
    [Show full text]
  • Maxwell Relations
    MAXWELLRELATIONS 7.I THE MAXWELL RELATIONS In Section 3.6 we observedthat quantities such as the isothermal compressibility, the coefficientof thermal expansion,and the molar heat capacities describe properties of physical interest. Each of these is essentiallya derivativeQx/0Y)r.r..,. in which the variablesare either extensiveor intensive thermodynaini'cparameters. with a wide range of extensive and intensive parametersfrom which to choose, in general systems,the numberof suchpossible derivatives is immense.But thire are azu azu ASAV AVAS (7.1) -tI aP\ | AT\ as),.*,.*,,...: \av)s.N,.&, (7.2) This relation is the prototype of a whole class of similar equalities known as the Maxwell relations. These relations arise from the equality of the mixed partial derivatives of the fundamental relation expressed in any of the various possible alternative representations. 181 182 Maxwell Relations Given a particular thermodynamicpotential, expressedin terms of its (l + 1) natural variables,there are t(t + I)/2 separatepairs of mixed second derivatives.Thus each potential yields t(t + l)/2 Maxwell rela- tions. For a single-componentsimple systemthe internal energyis a function : of three variables(t 2), and the three [: (2 . 3)/2] -arUTaSpurs of mixed second derivatives are A2U/ASAV : AzU/AV AS, AN : A2U / AN AS, and 02(J / AVA N : A2U / AN 0V. Thecompleteser of Maxwell relations for a single-componentsimple systemis given in the following listing, in which the first column states the potential from which the ar\ U S,V I -|r| aP\ \ M)',*: ,s/,,' (7.3) dU: TdS- PdV + p"dN ,S,N (!t\ (4\ (7.4) \ dNls.r, \ ds/r,r,o V,N _/ii\ (!L\ (7.5) \0Nls.v \0vls.x UITI: F T,V ('*),,.: (!t\ (7.6) \0Tlv.p dF: -SdT - PdV + p,dN T,N -\/ as\ a*) ,.,: (!"*),.
    [Show full text]