Search for Higgsinos in Final States with a Low-Momentum, Displaced Track

Total Page:16

File Type:pdf, Size:1020Kb

Search for Higgsinos in Final States with a Low-Momentum, Displaced Track Search for Higgsinos in final states with a low-momentum, displaced track von Moritz Wolf geboren am 04. März 1994 Masterarbeit im Studiengang Physik Universität Hamburg Institut für Experimentalphysik 2020 1. Gutachter: Prof. Dr. Peter Schleper 2. Gutachter: Jun.-Prof. Dr. Gregor Kasieczka Abstract Higgsinos are a class of supersymmetric particles that are of particular inter- est to searches at the LHC. They are featured in many SUSY models with masses on the order of the electroweak scale. A number of LHC searches tar- geting charged or neutral Higgsino decays in disappearing track and di-lepton searches, respectively, have set exclusion limits on the SUSY model parameters. However, a region in the parameter space with Higgsino mass differences be- tween 0:3 and 1:0 GeV remains constrained only by LEP results. This domain is of special interest from a phenomenological point of view as it is realized in natural SUSY scenarios. This thesis presents an analysis that establishes sensitivity to that region. In the examined signal models, the lightest chargino has a decay length in the detector of up to a few millimeters and its decay predominantly gives rise to a single, low-momentum pion. A soft and displaced track created by the pion is the crucial part of this analysis as it is used to enhance the signal sensitivity of a monojet-like analysis. Data corresponding to an integrated luminosity of 35:9 fb−1 collected by the CMS experiment in p proton-proton collisions at s = 13 TeV are analyzed. The observed event yields are consistent with the expected numbers of background events and ex- clusion limits are set in the plane of the chargino mass and mass difference of the Higgsino spectrum. For models with a mass splitting between the lightest chargino and the lightest neutralino of 0:8 GeV, charginos with masses up to 120 GeV are excluded. i Zusammenfassung Higgsinos sind supersymmetrische Elementarteilchen, die für Suchen nach neu- en Teilchen am LHC von besonderem Interesse sind. In vielen SUSY-Model- len werden für Higgsinos Massen nahe der elektroschwachen Skala vorherge- sagt. Zahlreiche LHC-Analysen konnten mithilfe von disappearing-track- und Di-Lepton-Suchen weite Teile des SUSY-Parameterraums ausschließen. Eine Region im Phasenraum mit Massendifferenzen der Higgsinos zwischen 0;3 und 1;0 GeV ist bis jetzt jedoch nur durch Resultate von LEP begrenzt. Aus phäno- menologischer Sicht ist dieser Bereich besonders interessant, da er Teil natür- licher SUSY-Szenarien ist. In dieser Arbeit wird eine Analyse vorgestellt, die in diesem Bereich sensitiv ist. Die untersuchten Signal-Modelle zeichnen sich dadurch aus, dass das leichteste Chargino eine mittlere Zerfallslänge von bis zu einigen Millimetern hat und der Zerfall in den meisten Fällen ein einzelnes Pi- on mit wenig Impuls hervorbringt. Wesentlich für diese Analyse ist eine stark gekrümmte und leicht versetzte Spur, die das Pion im Detektor hinterlässt. Sie wird benutzt, um eine Monojet-artige Analyse so zu erweitern, dass sie sensitiv auf den Signal-Prozess wird. Es werden Daten vom CMS-Experiment analysiert, die in Proton-Proton-Kollisionen bei einer Schwerpunktsenergie von p s = 13 TeV aufgezeichnet wurden und die einer integrierten Luminosität von 35;9 fb−1 entsprechen. Die beobachtete Anzahl von Ereignissen in dieser Analy- se deckt sich mit der erwarteten Anzahl von Untergrundereignissen. Es werden Ausschlussgrenzen in der Ebene der Chargino-Masse und der Massendifferenz des Higgsino-Spektrums festgelegt. Auf diese Weise können für Modelle mit einer Massendifferenz zwischen dem leichtesten Chargino und dem leichtesten Neutralino von 0;8 GeV Charginos mit Massen bis zu 120 GeV ausgeschlossen werden. ii Contents 1 Introduction1 2 Theoretical Background5 2.1 The Standard Model of Particle Physics . .5 2.1.1 Particle Content . .5 2.1.2 Mathematical Description . .8 2.1.3 Hints of Physics Beyond the SM . 14 2.2 Supersymmetry . 14 2.2.1 Natural SUSY and Light Higgsinos . 16 3 The CMS Experiment 19 3.1 The Large Hadron Collider . 19 3.1.1 Overview . 19 3.1.2 Proton-Proton Collisions . 21 3.2 The CMS Detector . 23 3.2.1 Coordinate System . 24 3.2.2 Tracking System and Magnet . 24 3.2.3 Calorimeters . 26 3.2.4 Muon System . 27 3.2.5 Trigger . 28 3.3 Particle Identification and Event Reconstruction . 29 3.3.1 Track Reconstruction . 29 3.3.2 Particle Flow Algorithm . 32 4 Analysis Strategy 35 4.1 Datasets . 37 iii Contents 4.2 Event and Track Observables . 38 5 Soft and Displaced Tracks 41 5.1 Helix Extrapolation . 41 5.2 Track-matching to Generated Particles . 42 5.3 Multivariate Classifier . 45 6 Analysis 53 6.1 Event Reconstruction and Selection . 53 6.2 Soft and Displaced Track Requirement . 55 6.3 Background Estimation . 63 6.4 Validation . 67 6.5 Predicted Event Yields and Uncertainties . 70 6.6 Observed Event Yields and Exclusion Limit . 72 7 Conclusion and Outlook 75 Appendix 79 List of Figures 81 List of Tables 83 Bibliography 85 iv 1 Introduction One of the strongest motivations to search for physics beyond the Standard Model (SM) is our current lack of a particle-based explanation for Dark Matter (DM). Mod- els incorporating supersymmetry (SUSY) extend the SM and predict the existence of new elementary particles that are linked to the already known particles. The lightest of those supersymmetric particles is, in numerous models, a viable DM candidate. A particularly interesting class of postulated particles are Higgsinos, supersymmetric partner particles of the SM Higgs boson. Higgsinos generally mix with gauginos to form mass eigenstates but in many cases suitable to explain DM, the lightest mass eigenstates are dominated by the Higgsino component. Many so-called natural SUSY models predict those Higgsinos to be relatively light, i.e. on the order of O (100 GeV). Higgsinos of such mass would be kinematically accessible to experiments at the LHC; however, their detection may prove challenging. The values of the masses of SUSY particles (the spectrum) in natural SUSY models 0 are typically such that two neutral and one charged Higgsino mass eigenstates, χe1, 0 ± χe2 and χe1 , are nearly degenerate but feature slight mass differences such that the lightest and heaviest of the three are electrically neutral, and the charged state takes an intermediate mass value. Therefore, when a charged Higgsino or heavier neutral Higgsino is produced, it decays to the lightest neutralino, which itself is invisible to the detector, along with additional low-momentum SM decay products that are possibly visible. To search for Higgsinos, the strategy strongly depends on the size 0 0 0 ± ± 0 0 of the mass differences, ∆m ≡ ∆m χe2; χe1 and ∆m ≡ ∆m χe1 ; χe1 . If ∆m is large enough, say ∆m0 > O (1 GeV), the decay often yields two leptons that can be reconstructed and used as a signal signature [1, 2]. In scenarios with more extreme 1 1 Introduction ± ± degeneracy, ∆m is very small, ∆m . 0:35 GeV, and the chargino becomes semi- stable and leaves a track in the detector before decaying. Disappearing tracks can hence be used to probe the SUSY parameter space with a very compressed mass spectrum [3, 4]. Figure 1.1 shows the current exclusion limits achieved with these ± 0 ± two search strategies in the plane of ∆m χe1 ; χe1 versus m χe1 . Also shown is the limit from direct searches conducted at the LHC’s predecessor, LEP. What is striking is that the parameter space with mass splittings between approximately 0:3 and 1 GeV remains constrained only by LEP results, as it is neither accessible to di-lepton searches at the LHC nor to disappearing track searches conducted so far. Figure 1.1: Current Higgsino exclusion limits obtained by ATLAS soft di-lepton and disappearing track searches and LEP limits. The region with mass split- tings between 0:3 and 1 GeV has not yet been probed at the LHC. [5] In this thesis, a strategy to search for Higgsinos with such a small mass splitting is presented, which targets the region that, so far, is lacking sensitivity. In this regime, the chargino decays predominantly, via on off-shell W boson, to a single pion [6]. The pion’s transverse momentum is of the order of the mass splitting, thus very soft, but often still reconstructable as a simple track. Notably, the chargino has a lifetime that leads to a decay length of up to a few millimeters and the pion is produced at a 2 vertex that is slightly displaced with respect to the primary interaction vertex. The soft and displaced track associated with the pion, as well as its kinematics, are used as handles to distinguish such events from SM background events. Figure 1.2 shows a Feynman diagram of the considered process with an additional jet from initial state radiation which enhances the sensitivity to the signal. Figure 1.2: Feynman diagram of a typical signal process. For mass splittings ± ∆m . 1 GeV the chargino decay is expected to yield a single pion. The LSP that is produced along with the chargino can be exchanged with another chargino or the second-lightest neutralino. [7] This thesis begins with a description of the theoretical background in Chapter 2. The experimental setup, namely, the CMS detector at the LHC, is described in Chapter 3. Chapter 4 summarizes the analysis strategy, while Chapter 5 takes a closer look at low-momentum displaced tracks. An analysis of data collected by CMS in 2016 is described in Chapter 6. Chapter 7 features the conclusions and an outlook. 3 2 Theoretical Background 2.1 The Standard Model of Particle Physics The Standard Model of particle physics (SM) describes all known elementary par- ticles, including those that carry three of the four known fundamental forces.
Recommended publications
  • Download -.:: Natural Sciences Publishing
    Quant. Phys. Lett. 5, No. 3, 33-47 (2016) 33 Quantum Physics Letters An International Journal http://dx.doi.org/10.18576/qpl/050302 About Electroweak Symmetry Breaking, Electroweak Vacuum and Dark Matter in a New Suggested Proposal of Completion of the Standard Model In Terms Of Energy Fluctuations of a Timeless Three-Dimensional Quantum Vacuum Davide Fiscaletti* and Amrit Sorli SpaceLife Institute, San Lorenzo in Campo (PU), Italy. Received: 21 Sep. 2016, Revised: 18 Oct. 2016, Accepted: 20 Oct. 2016. Published online: 1 Dec. 2016. Abstract: A model of a timeless three-dimensional quantum vacuum characterized by energy fluctuations corresponding to elementary processes of creation/annihilation of quanta is proposed which introduces interesting perspectives of completion of the Standard Model. By involving gravity ab initio, this model allows the Standard Model Higgs potential to be stabilised (in a picture where the Higgs field cannot be considered as a fundamental physical reality but as an emergent quantity from most elementary fluctuations of the quantum vacuum energy density), to generate electroweak symmetry breaking dynamically via dimensional transmutation, to explain dark matter and dark energy. Keywords: Standard Model, timeless three-dimensional quantum vacuum, fluctuations of the three-dimensional quantum vacuum, electroweak symmetry breaking, dark matter. 1 Introduction will we discover beyond the Higgs door? In the Standard Model with a light Higgs boson, an The discovery made by ATLAS and CMS at the Large important problem is that the electroweak potential is Hadron Collider of the 126 GeV scalar particle, which in destabilized by the top quark. Here, the simplest option in the light of available data can be identified with the Higgs order to stabilise the theory lies in introducing a scalar boson [1-6], seems to have completed the experimental particle with similar couplings.
    [Show full text]
  • Supersymmetric Dark Matter
    Supersymmetric dark matter G. Bélanger LAPTH- Annecy Plan | Dark matter : motivation | Introduction to supersymmetry | MSSM | Properties of neutralino | Status of LSP in various SUSY models | Other DM candidates z SUSY z Non-SUSY | DM : signals, direct detection, LHC Dark matter: a WIMP? | Strong evidence that DM dominates over visible matter. Data from rotation curves, clusters, supernovae, CMB all point to large DM component | DM a new particle? | SM is incomplete : arbitrary parameters, hierarchy problem z DM likely to be related to physics at weak scale, new physics at the weak scale can also solve EWSB z Stable particle protect by symmetry z Many solutions – supersymmetry is one best motivated alternative to SM | NP at electroweak scale could also explain baryonic asymetry in the universe Relic density of wimps | In early universe WIMPs are present in large number and they are in thermal equilibrium | As the universe expanded and cooled their density is reduced Freeze-out through pair annihilation | Eventually density is too low for annihilation process to keep up with expansion rate z Freeze-out temperature | LSP decouples from standard model particles, density depends only on expansion rate of the universe | Relic density | A relic density in agreement with present measurements (Ωh2 ~0.1) requires typical weak interactions cross-section Coannihilation | If M(NLSP)~M(LSP) then maintains thermal equilibrium between NLSP-LSP even after SUSY particles decouple from standard ones | Relic density then depends on rate for all processes
    [Show full text]
  • Higgsino DM Is Dead
    Cornering Higgsino at the LHC Satoshi Shirai (Kavli IPMU) Based on H. Fukuda, N. Nagata, H. Oide, H. Otono, and SS, “Higgsino Dark Matter in High-Scale Supersymmetry,” JHEP 1501 (2015) 029, “Higgsino Dark Matter or Not,” Phys.Lett. B781 (2018) 306 “Cornering Higgsino: Use of Soft Displaced Track ”, arXiv:1910.08065 1. Higgsino Dark Matter 2. Current Status of Higgsino @LHC mono-jet, dilepton, disappearing track 3. Prospect of Higgsino Use of soft track 4. Summary 2 DM Candidates • Axion • (Primordial) Black hole • WIMP • Others… 3 WIMP Dark Matter Weakly Interacting Massive Particle DM abundance DM Standard Model (SM) particle 500 GeV DM DM SM Time 4 WIMP Miracle 5 What is Higgsino? Higgsino is (pseudo)Dirac fermion Hypercharge |Y|=1/2 SU(2)doublet <1 TeV 6 Pure Higgsino Spectrum two Dirac Fermions ~ 300 MeV Radiative correction 7 Pure Higgsino DM is Dead DM is neutral Dirac Fermion HUGE spin-independent cross section 8 Pure Higgsino DM is Dead DM is neutral Dirac Fermion Purepure Higgsino Higgsino HUGE spin-independent cross section 9 Higgsino Spectrum (with gaugino) With Gauginos, fermion number is violated Dirac fermion into two Majorana fermions 10 Higgsino Spectrum (with gaugino) 11 Higgsino Spectrum (with gaugino) No SI elastic cross section via Z-boson 12 [N. Nagata & SS 2015] Gaugino induced Observables Mass splitting DM direct detection SM fermion EDM 13 Correlation These observables are controlled by gaugino mass Strong correlation among these observables for large tanb 14 Correlation These observables are controlled by gaugino mass Strong correlation among these observables for large tanb XENON1T constraint 15 Viable Higgsino Spectrum 16 Current Status of Higgsino @LHC 17 Collider Signals of DM p, e- DM DM is invisible p, e+ DM 18 Collider Signals of DM p, e- DM DM is invisible p, e+ DM Additional objects are needed to see DM.
    [Show full text]
  • Higgsino Models and Parameter Determination
    Light higgsino models and parameter determination Krzysztof Rolbiecki IFT-CSIC, Madrid in collaboration with: Mikael Berggren, Felix Brummer,¨ Jenny List, Gudrid Moortgat-Pick, Hale Sert and Tania Robens ECFA Linear Collider Workshop 2013 27–31 May 2013, DESY, Hamburg Krzysztof Rolbiecki (IFT-CSIC, Madrid) Higgsino LSP ECFA LC2013, 29 May 2013 1 / 21 SUSY @ LHC What does LHC tell us about 1st/2nd gen. squarks? ! quite heavy Gaugino and stop searches model dependent – limits weaker ATLAS SUSY Searches* - 95% CL Lower Limits ATLAS Preliminary Status: LHCP 2013 ∫Ldt = (4.4 - 20.7) fb-1 s = 7, 8 TeV miss -1 Model e, µ, τ, γ Jets ET ∫Ldt [fb ] Mass limit Reference ~ ~ ~ ~ MSUGRA/CMSSM 0 2-6 jets Yes 20.3 q, g 1.8 TeV m(q)=m(g) ATLAS-CONF-2013-047 ~ ~ ~ ~ MSUGRA/CMSSM 1 e, µ 4 jets Yes 5.8 q, g 1.24 TeV m(q)=m(g) ATLAS-CONF-2012-104 ~ ~ MSUGRA/CMSSM 0 7-10 jets Yes 20.3 g 1.1 TeV any m(q) ATLAS-CONF-2013-054 ~~ ~ ∼0 ~ ∼ qq, q→qχ 0 2-6 jets Yes 20.3 m(χ0 ) = 0 GeV ATLAS-CONF-2013-047 1 q 740 GeV 1 ~~ ~ ∼0 ~ ∼ gg, g→qqχ 0 2-6 jets Yes 20.3 m(χ0 ) = 0 GeV ATLAS-CONF-2013-047 1 g 1.3 TeV 1 ∼± ~ ∼± ~ ∼ ∼ ± ∼ ~ Gluino med. χ (g→qqχ ) 1 e, µ 2-4 jets Yes 4.7 g 900 GeV m(χ 0 ) < 200 GeV, m(χ ) = 0.5(m(χ 0 )+m( g)) 1208.4688 ~~ ∼ ∼ ∼ 1 1 → χ0χ 0 µ ~ χ 0 gg qqqqll(ll) 2 e, (SS) 3 jets Yes 20.7 g 1.1 TeV m( 1 ) < 650 GeV ATLAS-CONF-2013-007 ~ 1 1 ~ GMSB (l NLSP) 2 e, µ 2-4 jets Yes 4.7 g 1.24 TeV tanβ < 15 1208.4688 ~ ~ GMSB (l NLSP) 1-2 τ 0-2 jets Yes 20.7 tanβ >18 ATLAS-CONF-2013-026 Inclusive searches g 1.4 TeV ∼ γ ~ χ 0 GGM (bino NLSP) 2 0 Yes 4.8
    [Show full text]
  • Hep-Ph] 19 Nov 2018
    The discreet charm of higgsino dark matter { a pocket review Kamila Kowalska∗ and Enrico Maria Sessoloy National Centre for Nuclear Research, Ho_za69, 00-681 Warsaw, Poland Abstract We give a brief review of the current constraints and prospects for detection of higgsino dark matter in low-scale supersymmetry. In the first part we argue, after per- forming a survey of all potential dark matter particles in the MSSM, that the (nearly) pure higgsino is the only candidate emerging virtually unscathed from the wealth of observational data of recent years. In doing so by virtue of its gauge quantum numbers and electroweak symmetry breaking only, it maintains at the same time a relatively high degree of model-independence. In the second part we properly review the prospects for detection of a higgsino-like neutralino in direct underground dark matter searches, col- lider searches, and indirect astrophysical signals. We provide estimates for the typical scale of the superpartners and fine tuning in the context of traditional scenarios where the breaking of supersymmetry is mediated at about the scale of Grand Unification and where strong expectations for a timely detection of higgsinos in underground detectors are closely related to the measured 125 GeV mass of the Higgs boson at the LHC. arXiv:1802.04097v3 [hep-ph] 19 Nov 2018 ∗[email protected] [email protected] 1 Contents 1 Introduction2 2 Dark matter in the MSSM4 2.1 SU(2) singlets . .5 2.2 SU(2) doublets . .7 2.3 SU(2) adjoint triplet . .9 2.4 Mixed cases . .9 3 Phenomenology of higgsino dark matter 12 3.1 Prospects for detection in direct and indirect searches .
    [Show full text]
  • Introduction to Supersymmetry
    Introduction to Supersymmetry Pre-SUSY Summer School Corpus Christi, Texas May 15-18, 2019 Stephen P. Martin Northern Illinois University [email protected] 1 Topics: Why: Motivation for supersymmetry (SUSY) • What: SUSY Lagrangians, SUSY breaking and the Minimal • Supersymmetric Standard Model, superpartner decays Who: Sorry, not covered. • For some more details and a slightly better attempt at proper referencing: A supersymmetry primer, hep-ph/9709356, version 7, January 2016 • TASI 2011 lectures notes: two-component fermion notation and • supersymmetry, arXiv:1205.4076. If you find corrections, please do let me know! 2 Lecture 1: Motivation and Introduction to Supersymmetry Motivation: The Hierarchy Problem • Supermultiplets • Particle content of the Minimal Supersymmetric Standard Model • (MSSM) Need for “soft” breaking of supersymmetry • The Wess-Zumino Model • 3 People have cited many reasons why extensions of the Standard Model might involve supersymmetry (SUSY). Some of them are: A possible cold dark matter particle • A light Higgs boson, M = 125 GeV • h Unification of gauge couplings • Mathematical elegance, beauty • ⋆ “What does that even mean? No such thing!” – Some modern pundits ⋆ “We beg to differ.” – Einstein, Dirac, . However, for me, the single compelling reason is: The Hierarchy Problem • 4 An analogy: Coulomb self-energy correction to the electron’s mass A point-like electron would have an infinite classical electrostatic energy. Instead, suppose the electron is a solid sphere of uniform charge density and radius R. An undergraduate problem gives: 3e2 ∆ECoulomb = 20πǫ0R 2 Interpreting this as a correction ∆me = ∆ECoulomb/c to the electron mass: 15 0.86 10− meters m = m + (1 MeV/c2) × .
    [Show full text]
  • Arxiv:1412.5952V2 [Hep-Ph] 6 May 2015 Contents
    Prepared for submission to JHEP Hunting electroweakinos at future hadron colliders and direct detection experiments Giovanni Grilli di Cortona SISSA - International School for Advanced Studies, Via Bonomea 265, I-34136 Trieste, Italy INFN, Sezione di Trieste, via Valerio 2, I-34127 Trieste, Italy E-mail: [email protected] Abstract: We analyse the mass reach for electroweakinos at future hadron colliders and their interplay with direct detection experiments. Motivated by the LHC data, we focus on split supersymmetry models with different electroweakino spectra. We find for example that a 100 TeV collider may explore Winos up to 7 TeV in low scale gauge mediation ∼ models or thermal Wino dark matter around 3 TeV in models of anomaly mediation with long-lived Winos. We show moreover how collider searches and direct detection experiments have the potential to cover large part of the parameter space even in scenarios where the lightest neutralino does not contribute to the whole dark matter relic density. Keywords: ArXiv ePrint: arXiv:1412.5952v2 [hep-ph] 6 May 2015 Contents 1 Introduction1 2 Future reach at hadron colliders3 2.1 Wino-Bino simplified model4 2.2 Long-lived Wino6 2.3 GMSB Wino-Bino simplified model7 2.4 GMSB higgsino simplified model8 3 Interplay with Direct Dark Matter searches9 3.1 Models with universal gaugino masses 11 3.2 Anomaly Mediation 14 4 Conclusions 17 1 Introduction The LHC is getting ready to start its second run at a centre of mass energy of 13 TeV in 2015. In the first run ATLAS and CMS have discovered the Higgs boson [1,2] and have put a huge effort into looking for new physics.
    [Show full text]
  • General Neutralino NLSP with Gravitino Dark Matter Vs. Big Bang Nucleosynthesis
    General Neutralino NLSP with Gravitino Dark Matter vs. Big Bang Nucleosynthesis II. Institut fur¨ Theoretische Physik, Universit¨at Hamburg Deutsches Elektronen-Synchrotron DESY, Theory Group Diplomarbeit zur Erlangung des akademischen Grades Diplom-Physiker (diploma thesis - with correction) Verfasser: Jasper Hasenkamp Matrikelnummer: 5662889 Studienrichtung: Physik Eingereicht am: 31.3.2009 Betreuer(in): Dr. Laura Covi, DESY Zweitgutachter: Prof. Dr. Gun¨ ter Sigl, Universit¨at Hamburg ii Abstract We study the scenario of gravitino dark matter with a general neutralino being the next- to-lightest supersymmetric particle (NLSP). Therefore, we compute analytically all 2- and 3-body decays of the neutralino NLSP to determine the lifetime and the electro- magnetic and hadronic branching ratio of the neutralino decaying into the gravitino and Standard Model particles. We constrain the gravitino and neutralino NLSP mass via big bang nucleosynthesis and see how those bounds are relaxed for a Higgsino or a wino NLSP in comparison to the bino neutralino case. At neutralino masses & 1 TeV, a wino NLSP is favoured, since it decays rapidly via a newly found 4-vertex. The Higgsino component becomes important, when resonant annihilation via heavy Higgses can occur. We provide the full analytic results for the decay widths and the complete set of Feyn- man rules necessary for these computations. This thesis closes any gap in the study of gravitino dark matter scenarios with neutralino NLSP coming from approximations in the calculation of the neutralino decay rates and its hadronic branching ratio. Zusammenfassung Diese Diplomarbeit befasst sich mit dem Gravitino als Dunkler Materie, wobei ein allge- meines Neutralino das n¨achstleichteste supersymmetrische Teilchen (NLSP) ist.
    [Show full text]
  • Hidden SUSY at the LHC: the Light Higgsino-World Scenario and the Role of a Lepton Collider Howard Baer University of Oklahoma, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications, Department of Physics and Research Papers in Physics and Astronomy Astronomy 2011 Hidden SUSY at the LHC: the light higgsino-world scenario and the role of a lepton collider Howard Baer University of Oklahoma, [email protected] Vernon Barger University of Wisconsin, [email protected] Peisi Huang University of Wisconsin, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/physicsfacpub Baer, Howard; Barger, Vernon; and Huang, Peisi, "Hidden SUSY at the LHC: the light higgsino-world scenario and the role of a lepton collider" (2011). Faculty Publications, Department of Physics and Astronomy. 197. http://digitalcommons.unl.edu/physicsfacpub/197 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications, Department of Physics and Astronomy by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published for SISSA by Springer Received: August 4, 2011 Revised: October 10, 2011 Accepted: October 21, 2011 Published: November 8, 2011 Hidden SUSY at the LHC: the light higgsino-world JHEP11(2011)031 scenario and the role of a lepton collider Howard Baer,a Vernon Bargerb and Peisi Huangb aDept. of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, U.S.A. bDept. of Physics, University of Wisconsin, Madison, WI 53706, U.S.A. E-mail: [email protected], [email protected], [email protected] Abstract: While the SUSY flavor, CP and gravitino problems seem to favor a very heavy spectrum of matter scalars, fine-tuning in the electroweak sector prefers low values of superpotential mass µ.
    [Show full text]
  • Review Article the Discreet Charm of Higgsino Dark Matter: a Pocket Review
    Hindawi Advances in High Energy Physics Volume 2018, Article ID 6828560, 15 pages https://doi.org/10.1155/2018/6828560 Review Article The Discreet Charm of Higgsino Dark Matter: A Pocket Review Kamila Kowalska and Enrico Maria Sessolo National Centre for Nuclear Research, Hoza˙ 69, 00-681 Warsaw, Poland Correspondence should be addressed to Enrico Maria Sessolo; [email protected] Received 9 February 2018; Accepted 12 June 2018; Published 11 July 2018 Academic Editor: Yann Mambrini Copyright © 2018 Kamila Kowalska and Enrico Maria Sessolo. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Te publication of this article was funded by SCOAP3. We give a brief review of the current constraints and prospects for detection of higgsino dark matter in low-scale supersymmetry. In the frst part we argue, afer performing a survey of all potential dark matter particles in the MSSM, that the (nearly) pure higgsino is the only candidate emerging virtually unscathed from the wealth of observational data of recent years. In doing so by virtue of its gauge quantum numbers and electroweak symmetry breaking only, it maintains at the same time a relatively high degree of model-independence. In the second part we properly review the prospects for detection of a higgsino-like neutralino in direct underground dark matter searches, collider searches, and indirect astrophysical signals. We provide estimates for the typical scale of the superpartners and fne tuning in the context of traditional scenarios where the breaking of supersymmetry is mediated at about the scale of Grand Unifcation and where strong expectations for a timely detection of higgsinos in underground detectors are closely related to the measured 125 GeV mass of the Higgs boson at the LHC.
    [Show full text]
  • Arxiv:1910.08065V3 [Hep-Ph] 20 Feb 2020 Didate Is, Therefore, a Crucial Target for the DM Hunting
    KYUSHU-RCAPP-2019-05, UT-19-24, IPMU19-0145 Cornering Higgsino: Use of Soft Displaced Track Hajime Fukuda,1, 2 Natsumi Nagata,3 Hideyuki Oide,4 Hidetoshi Otono,5 and Satoshi Shirai6 1Theoretical Physics Group, Lawrence Berkeley National Laboratory, CA 94720, USA 2Berkeley Center for Theoretical Physics, Department of Physics, University of California, Berkeley, CA 94720, USA 3Department of Physics, University of Tokyo, Tokyo 113-0033, Japan 4Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551 5Research Center for Advanced Particle Physics, Kyushu University, Fukuoka 819-0395, Japan 6Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan (Dated: February 24, 2020) Higgsino has been intensively searched for in the LHC experiments in recent years. Currently, there is an uncharted region beyond the LEP Higgsino mass limit where the mass splitting between the neutral and charged Higgsinos is around 0:3{1 GeV, which is unexplored by either the soft di-lepton or disappearing track searches. This region is, however, of great importance from a phe- nomenological point of view, as many supersymmetric models predict such a mass spectrum. In this letter, we propose a possibility of filling this gap by using a soft micro-displaced track in addition to the mono-jet event selection, which allows us to discriminate a signature of the charged Higgsino decay from the Standard Model background. It is found that this new strategy is potentially sen- sitive to a Higgsino mass of . 180 (250) GeV at the LHC Run2 (HL-LHC) for a charged-neutral mass splitting of ' 0:5 GeV.
    [Show full text]
  • Supersymmetric Particle Searches
    Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update Supersymmetric Particle Searches m m The exclusion of particle masses within a mass range ( 1, 2) m −m will be denoted with the notation “none 1 2” in the VALUE column of the following Listings. The latest unpublished results are described in the “Supersymmetry: Experiment” review. See the related review(s): Supersymmetry, Part I (Theory) Supersymmetry, Part II (Experiment) CONTENTS: χ0 (Lightest Neutralino) mass limit e1 Accelerator limits for stable χ0 − e1 Bounds on χ0 from dark matter searches − e1 χ0-p elastic cross section − 1 eSpin-dependent interactions Spin-independent interactions Other bounds on χ0 from astrophysics and cosmology − e1 Unstable χ0 (Lightest Neutralino) mass limit − e1 χ0, χ0, χ0 (Neutralinos) mass limits e2 e3 e4 χ±, χ± (Charginos) mass limits e1 e2 Long-lived χ± (Chargino) mass limit ν (Sneutrino)e mass limit Chargede sleptons R-parity conserving e (Selectron) mass limit − R-partiy violating e e(Selectron) mass limit − R-parity conservinge µ (Smuon) mass limit − R-parity violating µ e(Smuon) mass limit − R-parity conservinge τ (Stau) mass limit − R-parity violating τ e(Stau) mass limit − Long-lived ℓ (Slepton)e mass limit − e q (Squark) mass limit e R-parity conserving q (Squark) mass limit − R-parity violating q e(Squark) mass limit − Long-lived q (Squark) masse limit b (Sbottom)e mass limit e R-parity conserving b (Sbottom) mass limit − e R-parity violating b (Sbottom) mass limit − e t (Stop) mass limit e R-parity conserving t (Stop) mass limit − R-parity violating t (Stop)e mass limit − Heavy g (Gluino) mass limite R-paritye conserving heavy g (Gluino) mass limit − R-parity violating heavy g e(Gluino) mass limit − Long-lived g (Gluino) mass limite Light G (Gravitino)e mass limits from collider experiments e Supersymmetry miscellaneous results HTTP://PDG.LBL.GOV Page 1 Created: 8/2/2019 16:43 Citation: M.
    [Show full text]