Effective Field Theory Analysis of Composite Higgsino-Like and Wino
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download -.:: Natural Sciences Publishing
Quant. Phys. Lett. 5, No. 3, 33-47 (2016) 33 Quantum Physics Letters An International Journal http://dx.doi.org/10.18576/qpl/050302 About Electroweak Symmetry Breaking, Electroweak Vacuum and Dark Matter in a New Suggested Proposal of Completion of the Standard Model In Terms Of Energy Fluctuations of a Timeless Three-Dimensional Quantum Vacuum Davide Fiscaletti* and Amrit Sorli SpaceLife Institute, San Lorenzo in Campo (PU), Italy. Received: 21 Sep. 2016, Revised: 18 Oct. 2016, Accepted: 20 Oct. 2016. Published online: 1 Dec. 2016. Abstract: A model of a timeless three-dimensional quantum vacuum characterized by energy fluctuations corresponding to elementary processes of creation/annihilation of quanta is proposed which introduces interesting perspectives of completion of the Standard Model. By involving gravity ab initio, this model allows the Standard Model Higgs potential to be stabilised (in a picture where the Higgs field cannot be considered as a fundamental physical reality but as an emergent quantity from most elementary fluctuations of the quantum vacuum energy density), to generate electroweak symmetry breaking dynamically via dimensional transmutation, to explain dark matter and dark energy. Keywords: Standard Model, timeless three-dimensional quantum vacuum, fluctuations of the three-dimensional quantum vacuum, electroweak symmetry breaking, dark matter. 1 Introduction will we discover beyond the Higgs door? In the Standard Model with a light Higgs boson, an The discovery made by ATLAS and CMS at the Large important problem is that the electroweak potential is Hadron Collider of the 126 GeV scalar particle, which in destabilized by the top quark. Here, the simplest option in the light of available data can be identified with the Higgs order to stabilise the theory lies in introducing a scalar boson [1-6], seems to have completed the experimental particle with similar couplings. -
Supersymmetric Dark Matter
Supersymmetric dark matter G. Bélanger LAPTH- Annecy Plan | Dark matter : motivation | Introduction to supersymmetry | MSSM | Properties of neutralino | Status of LSP in various SUSY models | Other DM candidates z SUSY z Non-SUSY | DM : signals, direct detection, LHC Dark matter: a WIMP? | Strong evidence that DM dominates over visible matter. Data from rotation curves, clusters, supernovae, CMB all point to large DM component | DM a new particle? | SM is incomplete : arbitrary parameters, hierarchy problem z DM likely to be related to physics at weak scale, new physics at the weak scale can also solve EWSB z Stable particle protect by symmetry z Many solutions – supersymmetry is one best motivated alternative to SM | NP at electroweak scale could also explain baryonic asymetry in the universe Relic density of wimps | In early universe WIMPs are present in large number and they are in thermal equilibrium | As the universe expanded and cooled their density is reduced Freeze-out through pair annihilation | Eventually density is too low for annihilation process to keep up with expansion rate z Freeze-out temperature | LSP decouples from standard model particles, density depends only on expansion rate of the universe | Relic density | A relic density in agreement with present measurements (Ωh2 ~0.1) requires typical weak interactions cross-section Coannihilation | If M(NLSP)~M(LSP) then maintains thermal equilibrium between NLSP-LSP even after SUSY particles decouple from standard ones | Relic density then depends on rate for all processes -
Effective Dirac Equations in Honeycomb Structures
Effective Dirac equations in honeycomb structures Effective Dirac equations in honeycomb structures Young Researchers Seminar, CERMICS, Ecole des Ponts ParisTech William Borrelli CEREMADE, Universit´eParis Dauphine 11 April 2018 It is self-adjoint on L2(R2; C2) and the spectrum is given by σ(D0) = R; σ(D) = (−∞; −m] [ [m; +1) The domain of the operator and form domain are H1(R2; C2) and 1 2 2 H 2 (R ; C ), respectively. Remark The negative spectrum is associated with antiparticles, in relativistic theories. Effective Dirac equations in honeycomb structures Dirac in 2D The 2D Dirac operator The 2D Dirac operator is defined as D = D0 +mσ3 = −i(σ1@1 + σ2@2) + mσ3: (1) where σk are the Pauli matrices and m ≥ 0 is the mass of the particle. It acts on C2-valued spinors. The domain of the operator and form domain are H1(R2; C2) and 1 2 2 H 2 (R ; C ), respectively. Remark The negative spectrum is associated with antiparticles, in relativistic theories. Effective Dirac equations in honeycomb structures Dirac in 2D The 2D Dirac operator The 2D Dirac operator is defined as D = D0 +mσ3 = −i(σ1@1 + σ2@2) + mσ3: (1) where σk are the Pauli matrices and m ≥ 0 is the mass of the particle. It acts on C2-valued spinors. It is self-adjoint on L2(R2; C2) and the spectrum is given by σ(D0) = R; σ(D) = (−∞; −m] [ [m; +1) Effective Dirac equations in honeycomb structures Dirac in 2D The 2D Dirac operator The 2D Dirac operator is defined as D = D0 +mσ3 = −i(σ1@1 + σ2@2) + mσ3: (1) where σk are the Pauli matrices and m ≥ 0 is the mass of the particle. -
Majorana Fermions in Condensed Matter Physics: the 1D Nanowire Case
Majorana Fermions in Condensed Matter Physics: The 1D Nanowire Case Philip Haupt, Hirsh Kamakari, Edward Thoeng, Aswin Vishnuradhan Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C., V6T 1Z1, Canada (Dated: November 24, 2018) Majorana fermions are fermions that are their own antiparticles. Although they remain elusive as elementary particles (how they were originally proposed), they have rapidly gained interest in condensed matter physics as emergent quasiparticles in certain systems like topological supercon- ductors. In this article, we briefly review the necessary theory and discuss the \recipe" to create Majorana particles. We then consider existing experimental realisations and their methodologies. I. MOTIVATION A). Kitaev used a simplified quantum wire model to show Ettore Majorana, in 1937, postulated the existence of how Majorana modes might manifest as an emergent an elementary particle which is its own antiparticle, so phenomena, which we will now discuss. Consider 1- called Majorana fermions [1]. It is predicted that the neu- dimensional tight binding chain with spinless fermions trinos are one such elementary particle, which is yet to and p-orbital hopping. The use of unphysical spinless be detected via extremely rare neutrino-less double beta- fermions calls into question the validity of the model, decay. The research on Majorana fermions in the past but, as has been subsequently realised, in the presence few years, however, have gained momentum in the com- of strong spin orbit coupling it is possible for electrons pletely different field of condensed matter physics. Arti- to be approximated as spinless in the presence of spin- ficially engineered low-dimensional nanostructures which orbit coupling as well as a Zeeman field [9]. -
$ Z $ Boson Mediated Dark Matter Beyond the Effective Theory
MCTP-16-27 FERMILAB-PUB-16-534-T Z boson mediated dark matter beyond the effective theory John Kearney Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, IL 60510 USA Nicholas Orlofsky and Aaron Pierce Michigan Center for Theoretical Physics (MCTP) Department of Physics, University of Michigan, Ann Arbor, MI 48109 (Dated: April 11, 2017) Direct detection bounds are beginning to constrain a very simple model of weakly interacting dark matter|a Majorana fermion with a coupling to the Z boson. In a particularly straightforward gauge-invariant realization, this coupling is introduced via a higher-dimensional operator. While attractive in its simplicity, this model generically induces a large ρ parameter. An ultraviolet completion that avoids an overly large contribution to ρ is the singlet-doublet model. We revisit this model, focusing on the Higgs blind spot region of parameter space where spin-independent interactions are absent. This model successfully reproduces dark matter with direct detection mediated by the Z boson, but whose cosmology may depend on additional couplings and states. Future direct detection experiments should effectively probe a significant portion of this parameter space, aside from a small coannihilating region. As such, Z-mediated thermal dark matter as realized in the singlet-doublet model represents an interesting target for future searches. I. INTRODUCTION Z, and their spin-dependent (SD) couplings, which at tree level arise from exchange of the Z. The latest bounds on SI scattering arise from PandaX Weakly interacting massive particles (WIMPs) re- [1] and LUX [2]. DM that interacts with the Z main an attractive thermal dark matter (DM) can- boson via vectorial couplings, g (¯χγ χ)Zµ, is very didate. -
Quantum Statistics: Is There an Effective Fermion Repulsion Or Boson Attraction? W
Quantum statistics: Is there an effective fermion repulsion or boson attraction? W. J. Mullin and G. Blaylock Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003 ͑Received 13 February 2003; accepted 16 May 2003͒ Physicists often claim that there is an effective repulsion between fermions, implied by the Pauli principle, and a corresponding effective attraction between bosons. We examine the origins and validity of such exchange force ideas and the areas where they are highly misleading. We propose that explanations of quantum statistics should avoid the idea of an effective force completely, and replace it with more appropriate physical insights, some of which are suggested here. © 2003 American Association of Physics Teachers. ͓DOI: 10.1119/1.1590658͔ ͒ϭ ͒ Ϫ␣ Ϫ ϩ ͒2 I. INTRODUCTION ͑x1 ,x2 ,t C͕f ͑x1 ,x2 exp͓ ͑x1 vt a Ϫ͑x ϩvtϪa͒2͔Ϫ f ͑x ,x ͒ The Pauli principle states that no two fermions can have 2 2 1 ϫ Ϫ␣ Ϫ ϩ ͒2Ϫ ϩ Ϫ ͒2 the same quantum numbers. The origin of this law is the exp͓ ͑x2 vt a ͑x1 vt a ͔͖, required antisymmetry of the multi-fermion wavefunction. ͑1͒ Most physicists have heard or read a shorthand way of ex- pressing the Pauli principle, which says something analogous where x1 and x2 are the particle coordinates, f (x1 ,x2) ϭ ͓ Ϫ ប͔ to fermions being ‘‘antisocial’’ and bosons ‘‘gregarious.’’ Of- exp imv(x1 x2)/ , C is a time-dependent factor, and the ten this intuitive approach involves the statement that there is packet width parameters ␣ and  are unequal. -
A Generalization of the One-Dimensional Boson-Fermion Duality Through the Path-Integral Formalsim
A Generalization of the One-Dimensional Boson-Fermion Duality Through the Path-Integral Formalism Satoshi Ohya Institute of Quantum Science, Nihon University, Kanda-Surugadai 1-8-14, Chiyoda, Tokyo 101-8308, Japan [email protected] (Dated: May 11, 2021) Abstract We study boson-fermion dualities in one-dimensional many-body problems of identical parti- cles interacting only through two-body contacts. By using the path-integral formalism as well as the configuration-space approach to indistinguishable particles, we find a generalization of the boson-fermion duality between the Lieb-Liniger model and the Cheon-Shigehara model. We present an explicit construction of n-boson and n-fermion models which are dual to each other and characterized by n−1 distinct (coordinate-dependent) coupling constants. These models enjoy the spectral equivalence, the boson-fermion mapping, and the strong-weak duality. We also discuss a scale-invariant generalization of the boson-fermion duality. arXiv:2105.04288v1 [quant-ph] 10 May 2021 1 1 Introduction Inhisseminalpaper[1] in 1960, Girardeau proved the one-to-one correspondence—the duality—between one-dimensional spinless bosons and fermions with hard-core interparticle interactions. By using this duality, he presented a celebrated example of the spectral equivalence between impenetrable bosons and free fermions. Since then, the one-dimensional boson-fermion duality has been a testing ground for studying strongly-interacting many-body problems, especially in the field of integrable models. So far there have been proposed several generalizations of the Girardeau’s finding, the most promi- nent of which was given by Cheon and Shigehara in 1998 [2]: they discovered the fermionic dual of the Lieb-Liniger model [3] by using the generalized pointlike interactions. -
Higgsino DM Is Dead
Cornering Higgsino at the LHC Satoshi Shirai (Kavli IPMU) Based on H. Fukuda, N. Nagata, H. Oide, H. Otono, and SS, “Higgsino Dark Matter in High-Scale Supersymmetry,” JHEP 1501 (2015) 029, “Higgsino Dark Matter or Not,” Phys.Lett. B781 (2018) 306 “Cornering Higgsino: Use of Soft Displaced Track ”, arXiv:1910.08065 1. Higgsino Dark Matter 2. Current Status of Higgsino @LHC mono-jet, dilepton, disappearing track 3. Prospect of Higgsino Use of soft track 4. Summary 2 DM Candidates • Axion • (Primordial) Black hole • WIMP • Others… 3 WIMP Dark Matter Weakly Interacting Massive Particle DM abundance DM Standard Model (SM) particle 500 GeV DM DM SM Time 4 WIMP Miracle 5 What is Higgsino? Higgsino is (pseudo)Dirac fermion Hypercharge |Y|=1/2 SU(2)doublet <1 TeV 6 Pure Higgsino Spectrum two Dirac Fermions ~ 300 MeV Radiative correction 7 Pure Higgsino DM is Dead DM is neutral Dirac Fermion HUGE spin-independent cross section 8 Pure Higgsino DM is Dead DM is neutral Dirac Fermion Purepure Higgsino Higgsino HUGE spin-independent cross section 9 Higgsino Spectrum (with gaugino) With Gauginos, fermion number is violated Dirac fermion into two Majorana fermions 10 Higgsino Spectrum (with gaugino) 11 Higgsino Spectrum (with gaugino) No SI elastic cross section via Z-boson 12 [N. Nagata & SS 2015] Gaugino induced Observables Mass splitting DM direct detection SM fermion EDM 13 Correlation These observables are controlled by gaugino mass Strong correlation among these observables for large tanb 14 Correlation These observables are controlled by gaugino mass Strong correlation among these observables for large tanb XENON1T constraint 15 Viable Higgsino Spectrum 16 Current Status of Higgsino @LHC 17 Collider Signals of DM p, e- DM DM is invisible p, e+ DM 18 Collider Signals of DM p, e- DM DM is invisible p, e+ DM Additional objects are needed to see DM. -
2 Lecture 1: Spinors, Their Properties and Spinor Prodcuts
2 Lecture 1: spinors, their properties and spinor prodcuts Consider a theory of a single massless Dirac fermion . The Lagrangian is = ¯ i@ˆ . (2.1) L ⇣ ⌘ The Dirac equation is i@ˆ =0, (2.2) which, in momentum space becomes pUˆ (p)=0, pVˆ (p)=0, (2.3) depending on whether we take positive-energy(particle) or negative-energy (anti-particle) solutions of the Dirac equation. Therefore, in the massless case no di↵erence appears in equations for paprticles and anti-particles. Finding one solution is therefore sufficient. The algebra is simplified if we take γ matrices in Weyl repreentation where µ µ 0 σ γ = µ . (2.4) " σ¯ 0 # and σµ =(1,~σ) andσ ¯µ =(1, ~ ). The Pauli matrices are − 01 0 i 10 σ = ,σ= − ,σ= . (2.5) 1 10 2 i 0 3 0 1 " # " # " − # The matrix γ5 is taken to be 10 γ5 = − . (2.6) " 01# We can use the matrix γ5 to construct projection operators on to upper and lower parts of the four-component spinors U and V . The projection operators are 1 γ 1+γ Pˆ = − 5 , Pˆ = 5 . (2.7) L 2 R 2 Let us write u (p) U(p)= L , (2.8) uR(p) ! where uL(p) and uR(p) are two-component spinors. Since µ 0 pµσ pˆ = µ , (2.9) " pµσ¯ 0(p) # andpU ˆ (p) = 0, the two-component spinors satisfy the following (Weyl) equations µ µ pµσ uR(p)=0,pµσ¯ uL(p)=0. (2.10) –3– Suppose that we have a left handed spinor uL(p) that satisfies the Weyl equation. -
The Bound States of Dirac Equation with a Scalar Potential
THE BOUND STATES OF DIRAC EQUATION WITH A SCALAR POTENTIAL BY VATSAL DWIVEDI THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Applied Mathematics in the Graduate College of the University of Illinois at Urbana-Champaign, 2015 Urbana, Illinois Adviser: Professor Jared Bronski Abstract We study the bound states of the 1 + 1 dimensional Dirac equation with a scalar potential, which can also be interpreted as a position dependent \mass", analytically as well as numerically. We derive a Pr¨ufer-like representation for the Dirac equation, which can be used to derive a condition for the existence of bound states in terms of the fixed point of the nonlinear Pr¨uferequation for the angle variable. Another condition was derived by interpreting the Dirac equation as a Hamiltonian flow on R4 and a shooting argument for the induced flow on the space of Lagrangian planes of R4, following a similar calculation by Jones (Ergodic Theor Dyn Syst, 8 (1988) 119-138). The two conditions are shown to be equivalent, and used to compute the bound states analytically and numerically, as well as to derive a Calogero-like upper bound on the number of bound states. The analytic computations are also compared to the bound states computed using techniques from supersymmetric quantum mechanics. ii Acknowledgments In the eternity that is the grad school, this project has been what one might call an impulsive endeavor. In the 6 months from its inception to its conclusion, it has, without doubt, greatly benefited from quite a few individuals, as well as entities, around me, to whom I owe my sincere regards and gratitude. -
Higgsino Models and Parameter Determination
Light higgsino models and parameter determination Krzysztof Rolbiecki IFT-CSIC, Madrid in collaboration with: Mikael Berggren, Felix Brummer,¨ Jenny List, Gudrid Moortgat-Pick, Hale Sert and Tania Robens ECFA Linear Collider Workshop 2013 27–31 May 2013, DESY, Hamburg Krzysztof Rolbiecki (IFT-CSIC, Madrid) Higgsino LSP ECFA LC2013, 29 May 2013 1 / 21 SUSY @ LHC What does LHC tell us about 1st/2nd gen. squarks? ! quite heavy Gaugino and stop searches model dependent – limits weaker ATLAS SUSY Searches* - 95% CL Lower Limits ATLAS Preliminary Status: LHCP 2013 ∫Ldt = (4.4 - 20.7) fb-1 s = 7, 8 TeV miss -1 Model e, µ, τ, γ Jets ET ∫Ldt [fb ] Mass limit Reference ~ ~ ~ ~ MSUGRA/CMSSM 0 2-6 jets Yes 20.3 q, g 1.8 TeV m(q)=m(g) ATLAS-CONF-2013-047 ~ ~ ~ ~ MSUGRA/CMSSM 1 e, µ 4 jets Yes 5.8 q, g 1.24 TeV m(q)=m(g) ATLAS-CONF-2012-104 ~ ~ MSUGRA/CMSSM 0 7-10 jets Yes 20.3 g 1.1 TeV any m(q) ATLAS-CONF-2013-054 ~~ ~ ∼0 ~ ∼ qq, q→qχ 0 2-6 jets Yes 20.3 m(χ0 ) = 0 GeV ATLAS-CONF-2013-047 1 q 740 GeV 1 ~~ ~ ∼0 ~ ∼ gg, g→qqχ 0 2-6 jets Yes 20.3 m(χ0 ) = 0 GeV ATLAS-CONF-2013-047 1 g 1.3 TeV 1 ∼± ~ ∼± ~ ∼ ∼ ± ∼ ~ Gluino med. χ (g→qqχ ) 1 e, µ 2-4 jets Yes 4.7 g 900 GeV m(χ 0 ) < 200 GeV, m(χ ) = 0.5(m(χ 0 )+m( g)) 1208.4688 ~~ ∼ ∼ ∼ 1 1 → χ0χ 0 µ ~ χ 0 gg qqqqll(ll) 2 e, (SS) 3 jets Yes 20.7 g 1.1 TeV m( 1 ) < 650 GeV ATLAS-CONF-2013-007 ~ 1 1 ~ GMSB (l NLSP) 2 e, µ 2-4 jets Yes 4.7 g 1.24 TeV tanβ < 15 1208.4688 ~ ~ GMSB (l NLSP) 1-2 τ 0-2 jets Yes 20.7 tanβ >18 ATLAS-CONF-2013-026 Inclusive searches g 1.4 TeV ∼ γ ~ χ 0 GGM (bino NLSP) 2 0 Yes 4.8 -
BCS Thermal Vacuum of Fermionic Superfluids and Its Perturbation Theory
www.nature.com/scientificreports OPEN BCS thermal vacuum of fermionic superfuids and its perturbation theory Received: 14 June 2018 Xu-Yang Hou1, Ziwen Huang1,4, Hao Guo1, Yan He2 & Chih-Chun Chien 3 Accepted: 30 July 2018 The thermal feld theory is applied to fermionic superfuids by doubling the degrees of freedom of the Published: xx xx xxxx BCS theory. We construct the two-mode states and the corresponding Bogoliubov transformation to obtain the BCS thermal vacuum. The expectation values with respect to the BCS thermal vacuum produce the statistical average of the thermodynamic quantities. The BCS thermal vacuum allows a quantum-mechanical perturbation theory with the BCS theory serving as the unperturbed state. We evaluate the leading-order corrections to the order parameter and other physical quantities from the perturbation theory. A direct evaluation of the pairing correlation as a function of temperature shows the pseudogap phenomenon, where the pairing persists when the order parameter vanishes, emerges from the perturbation theory. The correspondence between the thermal vacuum and purifcation of the density matrix allows a unitary transformation, and we found the geometric phase associated with the transformation in the parameter space. Quantum many-body systems can be described by quantum feld theories1–4. Some available frameworks for sys- tems at fnite temperatures include the Matsubara formalism using the imaginary time for equilibrium systems1,5 and the Keldysh formalism of time-contour path integrals3,6 for non-equilibrium systems. Tere are also alterna- tive formalisms. For instance, the thermal feld theory7–9 is built on the concept of thermal vacuum.