Genetic and Pharmacological Analysis of Prostanoid Receptor Function
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Strategies to Increase ß-Cell Mass Expansion
This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Strategies to increase -cell mass expansion Drynda, Robert Lech Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Strategies to increase β-cell mass expansion A thesis submitted by Robert Drynda For the degree of Doctor of Philosophy from King’s College London Diabetes Research Group Division of Diabetes & Nutritional Sciences Faculty of Life Sciences & Medicine King’s College London 2017 Table of contents Table of contents ................................................................................................. -
Effect of Prostanoids on Human Platelet Function: an Overview
International Journal of Molecular Sciences Review Effect of Prostanoids on Human Platelet Function: An Overview Steffen Braune, Jan-Heiner Küpper and Friedrich Jung * Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, 01968 Senftenberg, Germany; steff[email protected] (S.B.); [email protected] (J.-H.K.) * Correspondence: [email protected] Received: 23 October 2020; Accepted: 23 November 2020; Published: 27 November 2020 Abstract: Prostanoids are bioactive lipid mediators and take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. In this review, we focus on their influence on platelets, which are key elements in thrombosis and hemostasis. The function of platelets is influenced by mediators in the blood and the vascular wall. Activated platelets aggregate and release bioactive substances, thereby activating further neighbored platelets, which finally can lead to the formation of thrombi. Prostanoids regulate the function of blood platelets by both activating or inhibiting and so are involved in hemostasis. Each prostanoid has a unique activity profile and, thus, a specific profile of action. This article reviews the effects of the following prostanoids: prostaglandin-D2 (PGD2), prostaglandin-E1, -E2 and E3 (PGE1, PGE2, PGE3), prostaglandin F2α (PGF2α), prostacyclin (PGI2) and thromboxane-A2 (TXA2) on platelet activation and aggregation via their respective receptors. Keywords: prostacyclin; thromboxane; prostaglandin; platelets 1. Introduction Hemostasis is a complex process that requires the interplay of multiple physiological pathways. Cellular and molecular mechanisms interact to stop bleedings of injured blood vessels or to seal denuded sub-endothelium with localized clot formation (Figure1). -
PG F Receptor
REVIEW ARTICLE published: 14 October 2010 doi: 10.3389/fphar.2010.00116 PG F2α receptor: a promising therapeutic target for cardiovascular disease Jian Zhang, Yanjun Gong and Ying Yu* Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China Edited by: Prostaglandins (PGs), a group of key lipid mediators, are involved in numerous physiological Colin D. Funk, Queen’s University, and pathological processes including inflammation and cardiovascular homeostasis. Each PG Canada acts on its specific and distinct cell surface G protein-coupled receptors (GPCRs) or peroxisome Reviewed by: proliferator-activated receptors (PPARs). Prostaglandin F receptor (FP) is required for female Aida Habib, American University of 2α Beirut, Lebanon reproductive function such as luteolysis and parturition. It has recently been implicated in blood Duxin Sun, University of Michigan, pressure regulation, atherosclerosis and other inflammation-related disorders. The emerging USA role of FP in cardiovascular diseases is highlighted and potential therapeutic translation is *Correspondence: discussed in the current review. Ying Yu, Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Keywords: prostaglandin F2alpha, hypertension, atherosclerosis, FP receptor Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 294 Tai Yuan Road, Shanghai 200031, China. email: [email protected] INTRODUCTION through peroxidase activity (POX) of PGHS enzymes. Subsequently Prostanoids, including prostaglandin (PG) E2, PGD2, prostacy- the PGH2 is subject to metabolize to active prostanoids through clin (PGI2), thromboxane A2 (TxA2), and PGF2α, are generated individual PG synthases (Figure 1). -
Nonsteroidal Antiinflammatory Drugs Inhibiting Prostanoid Efflux: As Easy As ABC?
Nonsteroidal antiinflammatory drugs inhibiting prostanoid efflux: As easy as ABC? Timothy D. Warner*† and Jane A. Mitchell‡ *The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom; and ‡National Heart and Lung Institute, Imperial College School of Medicine, Dovehouse Street, London SW3 6LY, United Kingdom onsteroidal antiinflammatory may explain its antinociceptive proper- resistance proteins (MRP) form a sub- drugs (NSAIDs) and prosta- ties (7). Others have found therapeutic family within the ABC transporters. noids continue to be fascinat- effects of NSAID metabolites that are MRP1 is a high-affinity leukotriene C4 N ing research targets. Humans inactive on COX; sulindac sulfone is a transporter, and mice that harbor dele- have been using NSAIDs in one form or clear example. The NSAID sulindac is tions of this gene have an altered re- another, from folk remedies through to an inactive drug metabolized to a phar- sponse to inflammatory stimuli but are the products of modern pharmaceutical macologically active sulfide derivative, otherwise healthy and fertile. MRP2 is research, for thousands of years. How- which potently inhibits COX. Sulindac is the major transporter responsible for ever, we still have not characterized all also metabolized to a sulfone derivative the secretion of bilirubin glucuronides of the systems through which these that is inactive against COX. However, into bile (11). MRP1 and -4 may also be drugs produce their beneficial and like sulindac sulfide, sulindac sulfone involved in the transport of dehydroepi- harmful effects (1, 2). We are certain, both promotes cellular apoptosis and androsterone 3-sulfate (the most abun- from seminal work carried out in the dant circulating steroid in humans), and 1960s and early 1970s, that NSAIDs MRP4 transports conjugated steroids have the common property of inhibiting Some NSAIDs and bile acids (12). -
Antiplatelet Effects of Prostacyclin Analogues: Which One to Choose in Case of Thrombosis Or Bleeding? Sylwester P
INTERVENTIONAL CARDIOLOGY Cardiology Journal 20XX, Vol. XX, No. X, XXX–XXX DOI: 10.5603/CJ.a2020.0164 Copyright © 20XX Via Medica REVIEW ARTICLE ISSN 1897–5593 eISSN 1898–018X Antiplatelet effects of prostacyclin analogues: Which one to choose in case of thrombosis or bleeding? Sylwester P. Rogula1*, Hubert M. Mutwil1*, Aleksandra Gąsecka1, Marcin Kurzyna2, Krzysztof J. Filipiak1 11st Chair and Department of Cardiology, Medical University of Warsaw, Poland 2Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology, Center of Postgraduate Education Medical, European Health Center Otwock, Poland Abstract Prostacyclin and analogues are successfully used in the treatment of pulmonary arterial hypertension (PAH) due to their vasodilatory effect on pulmonary arteries. Besides vasodilatory effect, prostacyclin analogues inhibit platelets, but their antiplatelet effect is not thoroughly established. The antiplatelet effect of prostacyclin analogues may be beneficial in case of increased risk of thromboembolic events, or undesirable in case of increased risk of bleeding. Since prostacyclin and analogues differ regarding their potency and form of administration, they might also inhibit platelets to a different extent. This review summarizes the recent evidence on the antiplatelet effects of prostacyclin and analogue in the treatment of PAH, this is important to consider when choosing the optimal treatment regimen in tailoring to an individual patients’ needs. (Cardiol J 20XX; XX, X: xx–xx) Key words: prostacyclin analogues, pulmonary arterial hypertension, platelets, antiplatelet effect, thrombosis, bleeding Introduction tiproliferative effects [4]. The main indication for PGI2 and analogues is advanced pulmonary arterial Since 1935 when prostaglandin was isolated hypertension (PAH) and peripheral vascular disor- for the first time [1], many scientists have focused ders [5]. -
Prostacyclin Therapies for the Treatment of Pulmonary Arterial Hypertension
Eur Respir J 2008; 31: 891–901 DOI: 10.1183/09031936.00097107 CopyrightßERS Journals Ltd 2008 SERIES ‘‘PULMONARY HYPERTENSION: BASIC CONCEPTS FOR PRACTICAL MANAGEMENT’’ Edited by M.M. Hoeper and A.T. Dinh-Xuan Number 2 in this Series Prostacyclin therapies for the treatment of pulmonary arterial hypertension M. Gomberg-Maitland* and H. Olschewski# ABSTRACT: Prostacyclin and its analogues (prostanoids) are potent vasodilators and possess AFFILIATIONS antithrombotic, antiproliferative and anti-inflammatory properties. Pulmonary hypertension (PH) *Dept of Cardiology, University of Chicago Hospitals, Chicago, IL, USA. is associated with vasoconstriction, thrombosis and proliferation, and the lack of endogenous #Dept of Pulmonology, Medical prostacyclin may considerably contribute to this condition. This supports a strong rationale for University Graz, Graz, Austria. prostanoid use as therapy for this disease. The first experiences of prostanoid therapy in PH patients were published in 1980. CORRESPONDENCE H. Olschewski Epoprostenol, a synthetic analogue of prostacyclin, and the chemically stable analogues Dept of Pulmonology iloprost, beraprost and treprostinil were tested in randomised controlled trials. The biological Medical University Graz actions are mainly mediated by activation of specific receptors of the target cells; however, new Auenbruggerplatz 20 data suggest effects on additional intracellular pathways. In the USA and some European Graz 8010 Austria countries, intravenous infusion of epoprostenol and treprostinil, as well as subcutaneous infusion Fax: 43 3163853578 of treprostinil and inhalation of iloprost, have been approved for therapy of pulmonary arterial E-mail: horst.olschewski@ hypertension. Iloprost infusion and beraprost tablets have been approved in few other countries. meduni-graz.at Ongoing clinical studies investigate oral treprostinil, inhaled treprostinil and the combination of Received: inhaled iloprost and sildenafil in pulmonary arterial hypertension. -
Analysis and Comparison of Dynamic Mrna Expression Changes in the Equine and Porcine Endometrium During the Estrous Cycle
Inaugural-Dissertation zur Erlangung der Doktorwürde (Dr. rer. biol. vet.) der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Analysis and comparison of dynamic mRNA expression changes in the equine and porcine endometrium during the estrous cycle von: Simone Mariella Gebhardt aus München München 2017 Aus dem Veterinärwissenschaftlichen Department der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Lehrstuhl für Molekulare Tierzucht und Biotechnologie Arbeit angefertigt unter der Leitung von: Univ.-Prof. Dr. Eckhard Wolf Mitbetreuung durch: Priv.-Doz. Dr. Stefan Bauersachs Gedruckt mit Genehmigung der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Dekan: Univ.-Prof. Dr. Reinhard K. Straubinger, PhD Berichterstatter: Univ.-Prof. Dr. Eckhard Wolf Korreferent/en: Univ.-Prof. Dr. Rolf Mansfeld Tag der Promotion: 29.07.2017 CONTENTS CONTENTS CONTENTS .......................................................................................................... I ABBREVIATIONS ............................................................................................ V I. INTRODUCTION ................................................................................. 1 Morphological changes of the equine endometrium throughout the estrous cycle .... 1 Morphological changes of the porcine endometrium throughout the estrous cycle .. 2 Uterus ......................................................................................................................... 3 Endometrium ............................................................................................................. -
Supplementary Table 2
Supplementary Table 2. Differentially Expressed Genes following Sham treatment relative to Untreated Controls Fold Change Accession Name Symbol 3 h 12 h NM_013121 CD28 antigen Cd28 12.82 BG665360 FMS-like tyrosine kinase 1 Flt1 9.63 NM_012701 Adrenergic receptor, beta 1 Adrb1 8.24 0.46 U20796 Nuclear receptor subfamily 1, group D, member 2 Nr1d2 7.22 NM_017116 Calpain 2 Capn2 6.41 BE097282 Guanine nucleotide binding protein, alpha 12 Gna12 6.21 NM_053328 Basic helix-loop-helix domain containing, class B2 Bhlhb2 5.79 NM_053831 Guanylate cyclase 2f Gucy2f 5.71 AW251703 Tumor necrosis factor receptor superfamily, member 12a Tnfrsf12a 5.57 NM_021691 Twist homolog 2 (Drosophila) Twist2 5.42 NM_133550 Fc receptor, IgE, low affinity II, alpha polypeptide Fcer2a 4.93 NM_031120 Signal sequence receptor, gamma Ssr3 4.84 NM_053544 Secreted frizzled-related protein 4 Sfrp4 4.73 NM_053910 Pleckstrin homology, Sec7 and coiled/coil domains 1 Pscd1 4.69 BE113233 Suppressor of cytokine signaling 2 Socs2 4.68 NM_053949 Potassium voltage-gated channel, subfamily H (eag- Kcnh2 4.60 related), member 2 NM_017305 Glutamate cysteine ligase, modifier subunit Gclm 4.59 NM_017309 Protein phospatase 3, regulatory subunit B, alpha Ppp3r1 4.54 isoform,type 1 NM_012765 5-hydroxytryptamine (serotonin) receptor 2C Htr2c 4.46 NM_017218 V-erb-b2 erythroblastic leukemia viral oncogene homolog Erbb3 4.42 3 (avian) AW918369 Zinc finger protein 191 Zfp191 4.38 NM_031034 Guanine nucleotide binding protein, alpha 12 Gna12 4.38 NM_017020 Interleukin 6 receptor Il6r 4.37 AJ002942 -
Initial, Transient, and Specific Interaction Between G Protein
Sato T. et al. Medical Research Archives, vol. 6, issue 9, September 2018 Page 1 of 25 ARTICLE Initial, transient, and specific interaction between G protein-coupled receptor and target G protein in parallel signal processing: a case of olfactory discrimination of cancer-induced odors Takaaki Sato1, Mutsumi Matsukawa2, Yoichi Mizutani3, Toshio Iijima4, Hiroyoshi Matsumura5 Authors’ affiliations: 1 Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Osaka, Japan 2 Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan 3 Department of Medical Engineering, Faculty of Health Science, Aino University, Osaka, Japan 4 Graduate School of Life Sciences, Tohoku University, Sendai, Japan 5 College of Life Sciences, Ritsumeikan University, Kusatsu, Japan * Corresponding author: Takaaki Sato, Biomedical Research Institute, National Institute of Ad- vanced Industrial Science and Technology, 1-8-31 Midorioka, Ikeda, Osaka 563-8577, Japan, E-mail: [email protected] Abstract: G protein-coupled receptors (GPCRs) detect and distinguish between various subtypes of extracellular sig- nals, such as neurotransmitters, hormones, light, and odorous chemicals. As determinants for robust and appropriate cellular responses, common and unique features of interactions between GPCRs and their target G proteins provide insights into structure-based drug design for treatment of GPCR-related diseases. Re- cently, we found that the hydrophobic core buried between GPCR helix 8 and TM1–2 is essential for acti- vation of both specific and nonspecific G proteins. Furthermore, the 2nd residue of helix 8 is responsible for initial, transient, and specific interaction with a target G protein. Analysis of human and murine olfactory receptors (ORs) and other class-A GPCRs revealed that several amino acids, such as Glu, Gln, and Asp, are conserved at this position. -
Prostaglandinmoieties That Determine Receptorbinding Specificity in The
Prostaglandin moieties that determine receptor binding specificity in the bovine corpus luteum L. E. Anderson, M. K. Schultz and M. C. Wiltbank 'Endocrinology-Reproductive Physiology Program and Department ofDairy Science, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI 53706 USA; and 2Department ofStatistics, University of Wisconsin-Madison, Madison, WI 53706, USA This study provided a pharmacological evaluation of prostaglandin binding to bovine luteal plasma membrane. It was found that [3H]PGF2\g=a\, [3H]PGE2, [3H]PGE1 and [3H]PGD2 all bound with high affinity to luteal plasma membrane but had different specificities. Binding of [3H]PGF2\g=a\and [3H]PGD2 was inhibited by non-radioactive PGF2\g=a\(IC50 values of 21 and 9 nmol l\m=-\1,respectively), PGD2 (35 and 21 nmol l\m=-\1),and PGE2 (223 and 81 nmol l\m=-\1),but not by PGE1 (> 10 000 and 5616 nmol l\m=-\1).In contrast, [3H]PGE1 was inhibited by non-radioactive PGE1 (14 nmol l\m=-\1) and PGE2 (7 nmol l\m=-\1), but minimally by PGD2 (2316 nmol l\m=-\1)and PGF2\g=a\(595 nmol l\m=-\1).Binding of [3H]PGE2 was inhibited by all four prostaglandins, but slopes of the dissociation curves indicated two binding sites. Binding of [3H]PGE1 was inhibited, resulting in low IC50 values, by pharmacological agonists that are specific for EP3 receptor and possibly EP2 receptor. High affinity binding of [3H]PGF2\g=a\required a C15 hydroxyl group and a C1 carboxylic acid that are present on all physiological prostaglandins. -
Treprostinil
Clinical Policy: Treprostinil (Orenitram, Remodulin, Tyvaso) Reference Number: CP.PHAR.199 Effective Date: 03.16 Last Review Date: 02.21 Coding Implications Line of Business: Commercial, HIM, Medicaid Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description Treprostinil (Orenitram®, Remodulin®, Tyvaso®) is a prostacyclin analog. FDA Approved Indication(s) Orenitram, Remodulin, and Tyvaso are indicated for the treatment of pulmonary arterial hypertension (PAH) (World Health Organization [WHO] Group 1) to improve exercise ability. Orenitram is also indicated to delay disease progression. Remodulin is also indicated to reduce the rate of clinical deterioration in patients with PAH requiring transition from Flolan® (epoprostenol sodium). The risks and benefits of each drug should be carefully considered prior to transition. Studies establishing effectiveness included predominately patients with New York Heart Association (NYHA) Functional Class II-IV symptoms and etiologies of idiopathic or heritable PAH, PAH associated with congenital systemic-to-pulmonary shunts, or PAH associated with connective tissue diseases. Nearly all controlled clinical experience with inhaled treprostinil has been on a background of bosentan (an endothelin receptor antagonist) or sildenafil (a phosphodiesterase type 5 inhibitor) with study duration of 12 weeks. Policy/Criteria Provider must submit documentation (such as office chart notes, lab results or other clinical information) supporting that member has met all approval criteria. It is the policy of health plans affiliated with Centene Corporation® that Orenitram, Remodulin, and Tyvaso are medically necessary when the following criteria are met: I. Initial Approval Criteria A. Pulmonary Arterial Hypertension (must meet all): 1. Diagnosis of PAH; 2. -
Prostacyclin Synthesis by COX-2 Endothelial Cells
Roles of Cyclooxygenase (COX)-1 and COX-2 in Prostanoid Production by Human Endothelial Cells: Selective Up-Regulation of Prostacyclin Synthesis by COX-2 This information is current as of October 2, 2021. Gillian E. Caughey, Leslie G. Cleland, Peter S. Penglis, Jennifer R. Gamble and Michael J. James J Immunol 2001; 167:2831-2838; ; doi: 10.4049/jimmunol.167.5.2831 http://www.jimmunol.org/content/167/5/2831 Downloaded from References This article cites 36 articles, 23 of which you can access for free at: http://www.jimmunol.org/content/167/5/2831.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 2, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Roles of Cyclooxygenase (COX)-1 and COX-2 in Prostanoid Production by Human Endothelial Cells: Selective Up-Regulation of Prostacyclin Synthesis by COX-21 Gillian E. Caughey,2* Leslie G.