International Union of Basic and Clinical Pharmacology. CIX

Total Page:16

File Type:pdf, Size:1020Kb

International Union of Basic and Clinical Pharmacology. CIX 1521-0081/72/4/910–968$35.00 https://doi.org/10.1124/pr.120.019331 PHARMACOLOGICAL REVIEWS Pharmacol Rev 72:910–968, October 2020 Copyright © 2020 The Author(s) This is an open access article distributed under the CC BY Attribution 4.0 International license. ASSOCIATE EDITOR: ELIOT H. OHLSTEIN International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E2 Receptors (EP1–4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions Xavier Norel,* Yukihiko Sugimoto,* Gulsev Ozen, Heba Abdelazeem, Yasmine Amgoud, Amel Bouhadoun, Wesam Bassiouni, Marie Goepp, Salma Mani, Hasanga D. Manikpurage, Amira Senbel, Dan Longrois, Akos Heinemann,* Chengcan Yao,* and Lucie H. Clapp* Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.) Abstract ...................................................................................912 Significance Statement. ..................................................................912 I. Introduction . ..............................................................................913 A. Updated Aspects of General Characteristics of Prostaglandin E2 Receptors 1–4 and Prostacyclin Receptors .................................................................913 1. Prostaglandin E2 Receptor 1 . ......................................................913 a. Prostaglandin E2 receptor 1 signaling . ..........................................913 2. Prostaglandin E2 Receptors 2 and 4 . ................................................915 b. Prostaglandin E2 receptor 2 and prostaglandin E2 receptor 4 signaling ...........915 3. Prostaglandin E2 Receptor 3 . ......................................................916 c. Prostaglandin E2 receptor 3 signaling . ..........................................916 4. Prostacyclin Receptor . ............................................................917 d. Prostacyclin receptor signaling. ................................................917 B. Single-Nucleotide Polymorphisms and Dimerization of Prostaglandin E2 Receptors 1–4 and Prostacyclin Receptors. ......................................................917 C. Crystal Structures of Human Prostaglandin E2 Receptor 3 and Prostaglandin E2 Receptor 4 .............................................................................918 D. Allosteric Modulators and Biased Ligands ..............................................918 II. Immune System . ........................................................................918 A. Effects of Prostaglandin E2 Receptors 1–4 and Prostacyclin Receptor on Human and Mouse Immune Cells. ..................................................................918 1. T Lymphocytes . ..................................................................918 Address correspondence to: Xavier Norel, Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, 75018 Paris, France. E-mail: [email protected] This work was supported in part by Medical Research Council (MRC) UK [MR/R008167/1 to C.Y.], Cancer Research United Kingdom (CRUK) [C63480/A25246 to C.Y.], grants from the Japan Agency for Medical Research and Development, and Grants-in-Aid for Scientific Research [22116003, 24390017, 15H05905, 17H03990, and 19K22503] from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to Y.S.), and European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant [665850 for an educational grant to H.A.]. *Asterisk indicates members of the NC-IUPHAR Prostanoid Receptors Subcommittee. https://doi.org/10.1124/pr.120.019331. 910 EP1–4 and IP Receptors in Human and Rodents 911 2. Innate Lymphoid Cells. ............................................................919 3. Dendritic Cells......................................................................919 4. Macrophages .......................................................................920 5. Neutrophils. ........................................................................920 6. Eosinophils and Mast Cells . ......................................................921 7. Hematopoietic Stem/Progenitor Cell and Leukemia . ...............................921 B. Roles of Prostaglandin E2 in Human Autoimmune Diseases and Relevant Mouse Models. ..............................................................................921 1. Multiple Sclerosis. ..................................................................922 2. Rheumatoid Arthritis . ............................................................922 3. Inflammatory Bowel Disease and Colon Cancer. .....................................922 4. Lung Inflammation .................................................................923 5. Skin Inflammation and Cancer......................................................924 III. Cardiovascular System. ..................................................................924 A. Healthy Condition . ..................................................................924 1. Vascular Tone Regulation ...........................................................924 B. Cardiovascular Diseases................................................................925 1. Hypertension .......................................................................925 2. Diabetes ............................................................................926 3. Abdominal Aortic Aneurysm . ......................................................927 4. Obesity .............................................................................928 5. Atherosclerosis . ..................................................................928 6. Cerebral Stroke. ..................................................................930 7. Arrhythmia. ........................................................................931 8. Pulmonary Circulation and Hypertension. ..........................................931 IV. Thrombosis . ..............................................................................933 A. Role of Prostaglandin E2 on Platelet Function ..........................................933 1. Expression of Prostaglandin E2 Receptors in Platelets ...............................933 2. Prostaglandin E2 and Prostaglandin E2 Receptor 2 . ...............................933 3. Prostaglandin E2 and Prostaglandin E2 Receptor 3 . ...............................934 4. Prostaglandin E2 and Prostaglandin E2 Receptor 4 . ...............................934 B. Role of Prostacyclin on Platelet Function ...............................................934 V. Central and Peripheral Nervous System....................................................935 A. Central Nervous System . ............................................................935 1. Alzheimer Disease ..................................................................935 2. Parkinson Disease ..................................................................936 3. Huntington Disease.................................................................936 4. Multiple Sclerosis in Central Nervous System . .....................................936 ABBREVIATIONS: AA, arachidonic acid; AAA, abdominal aortic aneurysm; AC, adenylate cyclase; AD, Alzheimer disease; Akt, protein kinase B; ALS, amyotrophic lateral sclerosis; Ang-II, angiotensin 2; APPS, Swedish amyloid precursor protein; Ab, b amyloid; BMP, bone morphogenetic protein; BMSC, bone marrow stromal cell; CCL, chemokine ligand; CD, cluster of differentiation; CES1, carboxylesterase 1; CML, chronic myelogenous leukemia; CNS, central nervous system; COPD, chronic obstructive pulmonary disease; COX, cyclooxygenase; CRC, colorectal cancer; CREB, cAMP response element-binding protein; CSC, cigarette smoke condensate; CSF, cerebrospinal fluid; CXCL, C-X-C motif chemokine ligand; DC, dendritic cell; DRG, dorsal root ganglion; DSS, dextran sodium sulfate; EAE, experimental autoimmune encephalomyelitis; EP, prostaglandin E2 receptor; Epac, exchange protein directly activated by cAMP; ERK, extracellular receptor kinase; FP, prostaglandin F receptor; GM-CSF, granulocyte-macrophage colony-stimulating factor; HBEC, human bronchial epithelial cell; HD, Hun- tington disease; HEK, human endothelial kidney; HPC, hematopoietic progenitor cell; HSC, hematopoietic stem cell; IBD, inflammatory bowel disease; IFN, interferon; IL, interleukin;
Recommended publications
  • Strategies to Increase ß-Cell Mass Expansion
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Strategies to increase -cell mass expansion Drynda, Robert Lech Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Strategies to increase β-cell mass expansion A thesis submitted by Robert Drynda For the degree of Doctor of Philosophy from King’s College London Diabetes Research Group Division of Diabetes & Nutritional Sciences Faculty of Life Sciences & Medicine King’s College London 2017 Table of contents Table of contents .................................................................................................
    [Show full text]
  • Pain Management E-Book
    VetEdPlus E-BOOK RESOURCES Pain Management E-Book WHAT’S INSIDE Gabapentin and Amantadine for Chronic Pain: Is Your Dose Right? Grapiprant for Control of Osteoarthritis Pain in Dogs Use of Acupuncture for Pain Management Regional Anesthesia for the Dentistry and Oral Surgery Patient A SUPPLEMENT TO Laser Therapy for Treatment of Joint Disease in Dogs and Cats Manipulative Therapies for Hip and Back Hypomobility in Dogs E-BOOK PEER REVIEWED CONTINUING EDUCATION Gabapentin and Amantadine for Chronic Pain: Is Your Dose Right? Tamara Grubb, DVM, PhD, DACVAA Associate Professor, Anesthesia and Analgesia Washington State University College of Veterinary Medicine Pain is not always a bad thing, and all pain is not Untreated or undertreated pain can cause myriad the same. Acute (protective) pain differs from adverse effects, including but not limited to chronic (maladaptive) pain in terms of function insomnia, anorexia, immunosuppression, and treatment. This article describes the types of cachexia, delayed wound healing, increased pain pain, the reasons why chronic pain can be sensation, hypertension, and behavior changes difficult to treat, and the use of gabapentin and that can lead to changes in the human–animal amantadine for treatment of chronic pain. bond.2 Hence, we administer analgesic drugs to patients with acute pain, not to eliminate the protective portion but to control the pain ACUTE PAIN beyond that needed for protection (i.e., the pain Acute pain in response to tissue damage is often that negatively affects normal physiologic called protective pain because it causes the processes and healing). This latter type of pain patient to withdraw tissue that is being damaged decreases quality of life without providing any to protect it from further injury (e.g., a dog adaptive protective mechanisms and is thus withdrawing a paw after it steps on something called maladaptive pain.
    [Show full text]
  • A Review of the Effects of Pain and Analgesia on Immune System Function and Inflammation: Relevance for Preclinical Studies
    Comparative Medicine Vol 69, No 6 Copyright 2019 December 2019 by the American Association for Laboratory Animal Science Pages 520–534 Overview A Review of the Effects of Pain and Analgesia on Immune System Function and Inflammation: Relevance for Preclinical Studies George J DeMarco1* and Elizabeth A Nunamaker2 One of the most significant challenges facing investigators, laboratory animal veterinarians, and IACUCs, is how to bal- ance appropriate analgesic use, animal welfare, and analgesic impact on experimental results. This is particularly true for in vivo studies on immune system function and inflammatory disease. Often times the effects of analgesic drugs on a particu- lar immune function or model are incomplete or don’t exist. Further complicating the picture is evidence of the very tight integration and bidirectional functionality between the immune system and branches of the nervous system involved in nociception and pain. These relationships have advanced the concept of understanding pain as a protective neuroimmune function and recognizing pathologic pain as a neuroimmune disease. This review strives to summarize extant literature on the effects of pain and analgesia on immune system function and inflammation in the context of preclinical in vivo studies. The authors hope this work will help to guide selection of analgesics for preclinical studies of inflammatory disease and immune system function. Abbreviations and acronyms: CB,Endocannabinoid receptor; CD,Crohn disease; CFA, Complete Freund adjuvant; CGRP,Calcitonin gene-related
    [Show full text]
  • Grapiprant: an EP4 Prostaglandin Receptor Antagonist and Novel Therapy for Pain and Inflammation
    DOI: 10.1002/vms3.13 Review Grapiprant: an EP4 prostaglandin receptor antagonist and novel therapy for pain and inflammation † Kristin Kirkby Shaw , Lesley C. Rausch-Derra* and Linda Rhodes* † *Aratana Therapeutics, Inc., Kansas City, Kansas, USA and Animal Surgical Clinic of Seattle, Seattle, Washington, USA Abstract There are five active prostanoid metabolites of arachidonic acid (AA) that have widespread and varied physio- logic functions throughout the body, including regulation of gastrointestinal mucosal blood flow, renal haemo- dynamics and primary haemostasis. Each prostanoid has at least one distinct receptor that mediates its action. Prostaglandin E2 (PGE2) is a prostanoid that serves important homeostatic functions, yet is also responsible for regulating pain and inflammation. PGE2 binds to four receptors, of which one, the EP4 receptor, is primar- ily responsible for the pain and inflammation associated with osteoarthritis (OA). The deleterious and patho- logic actions of PGE2 are inhibited in varying degrees by steroids, aspirin and cyclo-oxygenase inhibiting NSAIDs; however, administration of these drugs causes decreased production of PGE2, thereby decreasing or eliminating the homeostatic functions of the molecule. By inhibiting just the EP4 receptor, the homeostatic function of PGE2 is better maintained. This manuscript will introduce a new class of pharmaceuticals known as the piprant class. Piprants are prostaglandin receptor antagonists (PRA). This article will include basic physiol- ogy of AA, prostanoids and piprants, will review available evidence for the relevance of EP4 PRAs in rodent models of pain and inflammation, and will reference available data for an EP4 PRA in dogs and cats. Piprants are currently in development for veterinary patients and the purpose of this manuscript is to introduce veteri- narians to the class of drugs, with emphasis on an EP4 PRA and its potential role in the control of pain and inflammation associated with OA in dogs and cats.
    [Show full text]
  • GALLIPRANT; INN: Grapiprant
    9 November 2017 EMA/747932/2017 Veterinary Medicines Division Committee for Medicinal Products for Veterinary Use CVMP assessment report for GALLIPRANT (EMEA/V/C/004222/0000) International non-proprietary name: grapiprant Assessment report as adopted by the CVMP with all information of a commercially confidential nature deleted. 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2018. Reproduction is authorised provided the source is acknowledged. Introduction ........................................................................................................................... 4 Scientific advice ........................................................................................................................ 4 MUMS/limited market status ...................................................................................................... 4 Part 1 - Administrative particulars ......................................................................................... 5 Detailed description of the pharmacovigilance system ................................................................... 5 Manufacturing authorisations and inspection status ....................................................................... 5 Overall conclusions on administrative particulars .........................................................................
    [Show full text]
  • Hip Dysplasia: Understanding a Very Misunderstood Puppy Abnormality
    PET OWNER SERIES Congenital Hip Dysplasia: Understanding a very misunderstood puppy abnormality It is worth noting at the outset that all orthopedic conditions and post-operative recoveries are made worse by an obese or over-weight body condition. Since dogs come in all shapes and sizes, even within one breed, body weight is a difficult variable to guide. Body "condition" is easier to evaluate and recognize when "ideal". Also worth noting is that carrying excess fat tissue is not “bad” just because the animal is “heavy”, but probably more importantly because fat tissue is pro-inflammatory. It is an active, dynamic group of cells throughout the body that, when in excess, accelerates many degenerative processes leading to disease and injury. A lifetime-study of a large group of dogs demonstrated that lean dogs lived almost two years longer than their genetically similar overweight counterparts! The "ideal" body condition is leaner than you think. Very few dogs these days are ideal (65% are overweight or obese), so our frame of reference is skewed. To evaluate body condition, you use your eyes and hands. You should be able to feel the ribs, pelvic bones and shoulder bones easily, but not see them. You should be able to see (or feel in the fluffy dogs) a "waist" behind the ribs when viewed from the top. You should be able to see the belly tuck up behind the ribs when viewed from the side. Hip dysplasia is a common developmental problem in large breed dogs that is both hereditary and affected by nutrition, body weight and activity level.
    [Show full text]
  • Effect of Prostanoids on Human Platelet Function: an Overview
    International Journal of Molecular Sciences Review Effect of Prostanoids on Human Platelet Function: An Overview Steffen Braune, Jan-Heiner Küpper and Friedrich Jung * Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, 01968 Senftenberg, Germany; steff[email protected] (S.B.); [email protected] (J.-H.K.) * Correspondence: [email protected] Received: 23 October 2020; Accepted: 23 November 2020; Published: 27 November 2020 Abstract: Prostanoids are bioactive lipid mediators and take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. In this review, we focus on their influence on platelets, which are key elements in thrombosis and hemostasis. The function of platelets is influenced by mediators in the blood and the vascular wall. Activated platelets aggregate and release bioactive substances, thereby activating further neighbored platelets, which finally can lead to the formation of thrombi. Prostanoids regulate the function of blood platelets by both activating or inhibiting and so are involved in hemostasis. Each prostanoid has a unique activity profile and, thus, a specific profile of action. This article reviews the effects of the following prostanoids: prostaglandin-D2 (PGD2), prostaglandin-E1, -E2 and E3 (PGE1, PGE2, PGE3), prostaglandin F2α (PGF2α), prostacyclin (PGI2) and thromboxane-A2 (TXA2) on platelet activation and aggregation via their respective receptors. Keywords: prostacyclin; thromboxane; prostaglandin; platelets 1. Introduction Hemostasis is a complex process that requires the interplay of multiple physiological pathways. Cellular and molecular mechanisms interact to stop bleedings of injured blood vessels or to seal denuded sub-endothelium with localized clot formation (Figure1).
    [Show full text]
  • PG F Receptor
    REVIEW ARTICLE published: 14 October 2010 doi: 10.3389/fphar.2010.00116 PG F2α receptor: a promising therapeutic target for cardiovascular disease Jian Zhang, Yanjun Gong and Ying Yu* Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China Edited by: Prostaglandins (PGs), a group of key lipid mediators, are involved in numerous physiological Colin D. Funk, Queen’s University, and pathological processes including inflammation and cardiovascular homeostasis. Each PG Canada acts on its specific and distinct cell surface G protein-coupled receptors (GPCRs) or peroxisome Reviewed by: proliferator-activated receptors (PPARs). Prostaglandin F receptor (FP) is required for female Aida Habib, American University of 2α Beirut, Lebanon reproductive function such as luteolysis and parturition. It has recently been implicated in blood Duxin Sun, University of Michigan, pressure regulation, atherosclerosis and other inflammation-related disorders. The emerging USA role of FP in cardiovascular diseases is highlighted and potential therapeutic translation is *Correspondence: discussed in the current review. Ying Yu, Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Keywords: prostaglandin F2alpha, hypertension, atherosclerosis, FP receptor Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 294 Tai Yuan Road, Shanghai 200031, China. email: [email protected] INTRODUCTION through peroxidase activity (POX) of PGHS enzymes. Subsequently Prostanoids, including prostaglandin (PG) E2, PGD2, prostacy- the PGH2 is subject to metabolize to active prostanoids through clin (PGI2), thromboxane A2 (TxA2), and PGF2α, are generated individual PG synthases (Figure 1).
    [Show full text]
  • New Ideas, New Voices”
    American Academy of Veterinary Pharmacology and Therapeutics 21th Biennial Symposium “New Ideas, New Voices” Overland Park Convention Center, Overland Park, Kansas August 23-26, 2019 1 TABLE OF CONTENTS Scheduled Program ....................................................................................................................................... 3 SPONSORS ................................................................................................................................................... 6 Tom Powers Memorial Keynote Address .................................................................................................. 9 SESSION 1: New Ideas, New Voices ........................................................................................................ 14 SESSION 2: Graduate Student Presentations ......................................................................................... 33 Oral Presentations.................................................................................................................................. 33 Poster Abstracts ..................................................................................................................................... 34 SESSION 3: Antimicrobials and Diagnostic Laboratories .................................................................... 52 SESSION 4: Graduate skills and training ............................................................................................... 64 SESSION 5: Start-ups and New Business Ideas .....................................................................................
    [Show full text]
  • Galliprant (Grapiprant Tablets) for Oral Use in Dogs Only 20 Mg, 60 Mg
    GALLIPRANT- grapiprant tablet Elanco US Inc. ---------- Galliprant® (grapiprant tablets) For oral use in dogs only 20 mg, 60 mg and 100 mg flavored tablets A prostaglandin E2 (PGE2) EP4 receptor antagonist; a non-cyclooxygenase inhibiting, non- steroidal anti-inflammatory drug Caution: Federal (USA) law restricts this drug to use by or on the order of a licensed veterinarian. Description: GALLIPRANT (grapiprant tablets) is a prostaglandin E2 (PGE2) EP4 receptor antagonist; a non- cyclooxygenase (COX) inhibiting, non-steroidal anti-inflammatory drug (NSAID) in the piprant class. GALLIPRANT is a flavored, oval, biconvex, beige to brown in color, scored tablet debossed with a “G” that contains grapiprant and desiccated pork liver as the flavoring agent. The molecular weight of grapiprant is 491.61 Daltons. The empirical formula is C26H29N5O3S. Grapiprant is N-[[[2-[4-(2-Ethyl-4,6-dimethyl-1H-imidazo[4,5-c] pyridin-1- yl)phenyl]ethyl]amino]carbonyl]-4 methylbenzenesulfonamide. The structural formula is: Indication: GALLIPRANT (grapiprant tablets) is indicated for the control of pain and inflammation associated with osteoarthritis in dogs. Dosage and Administration: Always provide “Information for Dog Owners” Sheet with prescription. Use the lowest effective dose for the shortest duration consistent with individual response. The dose of GALLIPRANT (grapiprant tablets) is 0.9 mg/lb (2 mg/kg) once daily. Only the 20 mg and 60 mg tablets of GALLIPRANT are scored. The dosage should be calculated in half tablet increments. Dogs less than 8 lbs. (3.6 kgs) cannot be accurately dosed. Dosing Chart Dose Weight in pounds Weight in 20 mg tablet 60 mg tablet 100 mg tablet kilograms 8-15 3.6-6.8 0.5 0.9 mg/lb (2 15.1-30 6.9-13.6 1 mg/kg) once 30.1-45 13.7-20.4 0.5 daily 45.1-75 20.5-34 1 75.1-150 34.1-68 1 The 100 mg tablet is not scored and should not be broken in half.
    [Show full text]
  • Analysis and Comparison of Dynamic Mrna Expression Changes in the Equine and Porcine Endometrium During the Estrous Cycle
    Inaugural-Dissertation zur Erlangung der Doktorwürde (Dr. rer. biol. vet.) der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Analysis and comparison of dynamic mRNA expression changes in the equine and porcine endometrium during the estrous cycle von: Simone Mariella Gebhardt aus München München 2017 Aus dem Veterinärwissenschaftlichen Department der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Lehrstuhl für Molekulare Tierzucht und Biotechnologie Arbeit angefertigt unter der Leitung von: Univ.-Prof. Dr. Eckhard Wolf Mitbetreuung durch: Priv.-Doz. Dr. Stefan Bauersachs Gedruckt mit Genehmigung der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Dekan: Univ.-Prof. Dr. Reinhard K. Straubinger, PhD Berichterstatter: Univ.-Prof. Dr. Eckhard Wolf Korreferent/en: Univ.-Prof. Dr. Rolf Mansfeld Tag der Promotion: 29.07.2017 CONTENTS CONTENTS CONTENTS .......................................................................................................... I ABBREVIATIONS ............................................................................................ V I. INTRODUCTION ................................................................................. 1 Morphological changes of the equine endometrium throughout the estrous cycle .... 1 Morphological changes of the porcine endometrium throughout the estrous cycle .. 2 Uterus ......................................................................................................................... 3 Endometrium .............................................................................................................
    [Show full text]
  • Supplementary Table 2
    Supplementary Table 2. Differentially Expressed Genes following Sham treatment relative to Untreated Controls Fold Change Accession Name Symbol 3 h 12 h NM_013121 CD28 antigen Cd28 12.82 BG665360 FMS-like tyrosine kinase 1 Flt1 9.63 NM_012701 Adrenergic receptor, beta 1 Adrb1 8.24 0.46 U20796 Nuclear receptor subfamily 1, group D, member 2 Nr1d2 7.22 NM_017116 Calpain 2 Capn2 6.41 BE097282 Guanine nucleotide binding protein, alpha 12 Gna12 6.21 NM_053328 Basic helix-loop-helix domain containing, class B2 Bhlhb2 5.79 NM_053831 Guanylate cyclase 2f Gucy2f 5.71 AW251703 Tumor necrosis factor receptor superfamily, member 12a Tnfrsf12a 5.57 NM_021691 Twist homolog 2 (Drosophila) Twist2 5.42 NM_133550 Fc receptor, IgE, low affinity II, alpha polypeptide Fcer2a 4.93 NM_031120 Signal sequence receptor, gamma Ssr3 4.84 NM_053544 Secreted frizzled-related protein 4 Sfrp4 4.73 NM_053910 Pleckstrin homology, Sec7 and coiled/coil domains 1 Pscd1 4.69 BE113233 Suppressor of cytokine signaling 2 Socs2 4.68 NM_053949 Potassium voltage-gated channel, subfamily H (eag- Kcnh2 4.60 related), member 2 NM_017305 Glutamate cysteine ligase, modifier subunit Gclm 4.59 NM_017309 Protein phospatase 3, regulatory subunit B, alpha Ppp3r1 4.54 isoform,type 1 NM_012765 5-hydroxytryptamine (serotonin) receptor 2C Htr2c 4.46 NM_017218 V-erb-b2 erythroblastic leukemia viral oncogene homolog Erbb3 4.42 3 (avian) AW918369 Zinc finger protein 191 Zfp191 4.38 NM_031034 Guanine nucleotide binding protein, alpha 12 Gna12 4.38 NM_017020 Interleukin 6 receptor Il6r 4.37 AJ002942
    [Show full text]