This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/
Strategies to increase -cell mass expansion
Drynda, Robert Lech
Awarding institution:
King's College London
The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement.
END USER LICENCE AGREEMENT
Unless another licence is stated on the immediately following page this work is licensed
under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
licence. https://creativecommons.org/licenses/by-nc-nd/4.0/
You are free to copy, distribute and transmit the work
Under the following conditions:
Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes.
No Derivative Works - You may not alter, transform, or build upon this work.
Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above.
Take down policy
If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim.
Download date: 02. Oct. 2021
Strategies to increase β-cell mass
expansion
A thesis submitted by
Robert Drynda
For the degree of Doctor of Philosophy from
King’s College London
Diabetes Research Group
Division of Diabetes & Nutritional Sciences
Faculty of Life Sciences & Medicine
King’s College London
2017
Table of contents
Table of contents .................................................................................................. 2 Abstract................................................................................................................. 6 List of abbreviations.............................................................................................. 7 List of figures....................................................................................................... 11 List of tables........................................................................................................ 13 Acknowledgements............................................................................................. 14 Chapter 1............................................................................................................ 15 Introduction......................................................................................................... 15 1.1 β-cells and diabetes...................................................................................... 16
1.1.1Islets of Langerhans............................................................................. 16
1.1.2Insulin secretion and action.................................................................. 16 1.1.3Diabetes............................................................................................... 18
1.2 Hormonal control of β-cell adaptation to pregnancy ..................................... 20
1.2.1Lactogenic hormones........................................................................... 21
1.2.2Hepatocyte Growth Factor signalling ................................................... 24 1.2.3Glucocorticoids..................................................................................... 25 1.2.4Oestradiol............................................................................................. 26
1.3 Placenta functions ........................................................................................ 27 1.4 The role of chemokines during pregnancy.................................................... 28 1.5 G protein-coupled receptors ......................................................................... 30
1.5.1GPCR signalling................................................................................... 31
1.5.2G proteins............................................................................................. 34 1.5.3Proteins modulating GPCR functions................................................... 36
2
1.5.4Signalling independent of G proteins ................................................... 37
1.6 WNT signalling ............................................................................................. 38
1.6.1WNT proteins and their receptors ........................................................ 38
1.6.2Canonical WNT/β-catenin signaling ..................................................... 38 1.6.3Regulation of the WNT pathway by R-spondins................................... 40
1.7 Aims and objectives...................................................................................... 44 Chapter 2............................................................................................................ 45 Materials and methods........................................................................................ 45 2.1 Animals......................................................................................................... 46
2.1.1Mice for pancreatic islet BrdU staining................................................. 46
2.1.2Mice for placental GPCR ligand secretome and GPCRome analysis .. 47
2.2 Immunofluorescence staining....................................................................... 47
2.2.1Analysis of pancreatic β-cell proliferation............................................. 48
2.2.2Analysis of pancreatic β-cell area ........................................................ 48
2.3 Isolation of mouse pancreatic islets.............................................................. 49 2.4 RNA isolation................................................................................................ 49
2.4.1Total RNA isolation from mouse pancreatic islets and pancreatic MIN6 β-cells........................................................................................................... 50 2.4.2Determination of RNA concentration.................................................... 50
2.5 cDNA synthesis ............................................................................................ 51 2.6 Quantitative real-time polymerase chain reaction (qRT-PCR)...................... 52
2.6.1Normalization against mouse housekeeping gene............................... 53
2.6.2Screening for mRNA expression.......................................................... 55 2.6.3DNA agarose gel electrophoresis......................................................... 56 2.6.4Gene expression quantification............................................................ 56
2.7 Analysis of RSPO4 protein concentration in mouse plasma during
pregnancy……………………………………………………………………………….57
3
2.8 Culturing MIN6 β-cells .................................................................................. 57 2.9 MIN6 β-cell proliferation assay ..................................................................... 58 2.10 MIN6 β-cell apoptosis assay....................................................................... 61 2.11 Measuring insulin secretion from MIN6 cells............................................... 63 2.12 Insulin radioimmunoassay........................................................................... 64 2.13 Statistical analysis....................................................................................... 66
Chapter 3............................................................................................................ 67 Analysis of mouse pancreatic β-cell proliferation during pregnancy ................... 67 3.1 Introduction................................................................................................... 68 3.2 Methods........................................................................................................ 69 3.3 Results.......................................................................................................... 70
3.3.1Changes in pancreatic β-cell replication during pregnancy.................. 70
3.3.2Loss of β-cells post-partum.................................................................. 73
3.4 Discussion .................................................................................................... 75 Chapter 4............................................................................................................ 79 Analysis of the mouse placental GPCR ligand secretome and pancreatic islet GPCRome during pregnancy.............................................................................. 79
4.1 Introduction................................................................................................... 80 4.2 Methods........................................................................................................ 82 4.3 Results.......................................................................................................... 83
4.3.1Analysis of the mouse placenta GPCR ligand secretome during
pregnancy..................................................................................................... 83 4.3.2Analysis of the mouse pancreatic islet GPCRome during pregnancy .. 87
4.4 Discussion .................................................................................................... 96 Chapter 5.......................................................................................................... 109 A potential role for R-spondin 4 in β-cell adaptations to pregnancy.................. 109 5.1 Introduction................................................................................................. 110 5.2 Methods...................................................................................................... 112
4
5.3 Results........................................................................................................ 113 5.4 Discussion .................................................................................................. 121
Chapter 6.......................................................................................................... 125 General discussion ........................................................................................... 125 6.1 General discussion..................................................................................... 126 6.2 Future perspectives.................................................................................... 130
Appendix I......................................................................................................... 132 Appendix II........................................................................................................ 133 Appendix III....................................................................................................... 148 Appendix IV....................................................................................................... 160
References…………………………………………………………………………….184
5
Abstract
Aim: Failure of the functional β-cell mass to adapt to compensate for peripheral insulin resistance leads to the development of type 2 diabetes and gestational diabetes. The overall aim of this thesis was to study mechanisms regulating β-cell mass expansion, using pregnancy in mice as an experimental model in which the β-cell mass increases during gestation and returns to normal levels post-partum. The mechanisms underlying this adaptation are not well understood, although placental signals are thought to be involved. The first objective of the project was to analyse changes in the β-cell mass during pregnancy, and post-partum. The second objective was to quantify the expression of islet β-cell G protein-coupled receptors (GPCRs) and their placental ligands to identify novel placental signals potentially involved in β-cell adaptation to pregnancy. The third objective was to examine the effects of one of the novel placental signals, R-spondin 4 (RSPO4), on β-cell function. Methods: β-cell proliferation was quantified using immunohistochemical staining of pancreatic sections labelled with 5-bromo-2'-deoxyuridine (BrdU), a thymidine analogue. β-cell identity was confirmed by co-immunostaining for insulin and quantified by morphometric analysis. Islet GPCR and placental ligand mRNAs were quantified using a non-biased quantitative real time PCR (qRT-PCR) array
approach. The effects of RSPO4 on insulin secretion, β-cell proliferation and
survival were evaluated using radioimmunoassay, BrdU incorporation and caspase 3/7 apoptosis assays, respectively. Results: Mouse β-cells proliferated during pregnancy, peaking around gestational day 12, are the newly-formed β-cells which were not selectively lost post-partum. Placental expression of GPCR ligands was upregulated on day 12, and islet GPCR expression was differentially regulated during pregnancy. One candidate placental GPCR ligand, RSPO4, had pro-proliferative and insulinotropic effects in β-cells, consistent with an adaptive function during pregnancy. Conclusion: The placenta synthesizes many GPCR ligands, such as RSPO4, which have the potential to influence β-cell function during pregnancy, and which may have therapeutic potential in treating diabetes.
6
List of abbreviations
AKAP AKT (PKB) AP-2
A kinase anchoring protein Protein kinase B β2-adaptins
ATP
Adenosine triphosphate
Bcl6
B-cell lymphoma 6 protein Body mass index
BMI BrdU cAMP CaSR CCL11 CCL21 CCL7 CDK1 CDK4 CHOP C-MET C-MYC CNS
5-bromo-2'-deoxyuridine Cyclic adenosine monophosphate Calcium sensing receptor Eotaxin Chemokine (C-C motif) ligand 21 Chemotactic protein-3 Cyclin-dependent kinase 1 Cyclin-dependent kinase 4 CCAAT-enhancer-binding homologous protein Hepatocyte growth factor receptor V-Myc avian myelocytomatosis viral oncogene homolog Central nervous system
CPT-1 CX3CL1 DAG
Carnitine palmitoyltransferase 1 Fractalkine Diacylglycerol
EDTA ELISA ER
Ethylenediaminetetraacetate Enzyme-linked immunosorbent assay Endoplasmic reticulum
ERK
Extracellular signal–regulated kinase (MAPK) Fibroblast growth factor
FGF FITC
Fluorescein isothiocyanate
7
FoxO1 GAD65 GAPs GDM
Forkhead box protein O1 Glutamic acid decarboxylase GTPase-activating proteins Gestational diabetes mellitus
GH
Growth hormone
GLP1 GLUT GPCR GR
Glucagon-like peptide 1 receptor Glucose transporter G protein coupled receptor Glucocorticoid receptor
GSIS
Glucose stimulated insulin secretion Glycated haemoglobin
HbA1c HCC-1 HCC-4 HGF
Hemofiltrate CC chemokine-1 Hemofiltrate CC chemokine-4 Hepatocyte growth factor Human pituitary growth hormone Human placental growth hormone Hepatocyte nuclear factor-4α Human placental lactogen
hGH-N hGH-V HNF-4α hPL HTR1D
Serotonin receptor 1d (5-hydroksytryptamine receptor 1d)
HTR2B
Serotonin receptor 2b (5-hydroksytryptamine receptor 2b)
IGF-1 IHC
Insulin-like growth factor 1 Immunohistochemistry
Interleukin 1β
IL-1β INF-γ IPGTT IP3
Interferon γ
Intraperitoneal glucose tolerance test Inositol 1,4,5-trisphosphate Insulin receptor substrate
IRS
8
Jak2
Janus kinase 2
LTB4 LTB4R1 MafA
Leukotriene B4 Leukotriene B4 receptor 1 V-Maf masculoaponeurotic fibrosarcoma oncogene homologue A
MAPK
Mitogen activated protein kinase Macrophage-derived chemokine Major histocompatibility complex Macrophage inflammatory protein-1β Dual-specificity phosphoprotein phosphatase 1 Neurogenic differentiation 1
MDC MHC MIP-1β MKP-1 NeuroD1 NHERF2 NOD mice
Na+/H+ exchanger regulatory factor 2 Non-obese diabetic mice (type 1 diabetes mellitus model)
p18
Cyclin-dependend kinase 4 inhibitor C (CDKN2C) Cyclin-dependent kinase inhibitor 1 Cyclin-dependent kinase inhibitor 1B Cyclin-dependent kinase inhibitor 1C Pancreatic and duodenal homebox
p21 p27 p57 Pdx-1 PGC-1α
Peroxisome proliferator-activated receptor γ coactivator
1-α
PA
Phosphatidic acid
PDZ
Post-synaptic density of 95 kDa (PSD95)-disc large-zona occludens (PDZ)
PI
Phosphatidylinositol
PIP2 PI3K PIBF PKA PKC
Phosphatidylinositol 4,5-bisphosphate Phosphatidylinozytol 3-kinase Progesterone induced blocking factor 1 Protein kinase A Protein kinase C
9
PL
Placental lactogen
PLD
Phospholipase D
PPARα
PRL
Peroxisome proliferator-activated receptor α Prolactin
PRLR PTH1R PTH2R Rasd1 RSPO4 SAT
Prolactin receptor Parathyroid hormone 1 receptor Parathyroid hormone 2 receptor Dexamethasone-induced ras-related protein 1 R-spondin 4 Subcutaneous adipose tissue Standard error of the means Sarcoendoplasmic reticulum Ca2+-ATPase 2 SH2-plekstrin homology domain Signal transducer and activator of transcription 3 Signal transducer and activator 5 Type 1 diabetes mellitus
SEM SERCA2 SHC STAT3 STAT5 T1DM T2DM T3DM TGF-β1 TNF-α TPH1/2 TRB3 Tris
Type 2 diabetes mellitus Type 3 diabetes mellitus
Transforming growth factor β Tumour necrosis factor α
Tryptophan hydroxylase 1 and 2 Tribble 3 Tris(hydroxymethyl)aminomethane Under-carboxylated osteocalcin Uncoupling protein 2