Bone-Specific Master Transcription Factor Runx2 Regulates Signaling and Metabolism Related Programs in Osteoprogenitors

Total Page:16

File Type:pdf, Size:1020Kb

Bone-Specific Master Transcription Factor Runx2 Regulates Signaling and Metabolism Related Programs in Osteoprogenitors ISSN 0233-7657. Biopolymers and Cell. 2010. Vol. 26. N 4 Bone-specific master transcription factor Runx2 regulates signaling and metabolism related programs in osteoprogenitors N. M. Teplyuk1, 2, V. I. Teplyuk2 1University of Massachusetts Medical School 55, Lake Ave North, 01655, Worcester, MA, USA 2Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine 150, Zabolotnogo str., Kiev, Ukraine, 03680 [email protected] Aim. Runx2 (AML3) transcription factor is the key regulator of osteoblastic lineage progression and is indispensable for the formation of mineral bones. Runx2 expression increases during differentiation of osteoblasts to induce osteoblast-specific genes necessary for the production and deposition of bone mineral matrix. However, Runx2 is also expressed at a lower level in early osteoprogenitors, where its function is less understood. Here we study how Runx2 determines the early stages of osteoblastic commitment using the model system of Runx2 re-introduction in mouse calvaria cells with Runx2 null background. Method. Affymetrix analysis, Western blot analysis and quantitative real-time reverse transcriptase PCR (qRT-PCR) analysis were employed. Results. Gene expression profiling by Affymetrix microarrays revealed that along with the induction of extracellular matrix and bone mineral deposition related phenotypic markers, Runx2 regulates several cell programs related to signaling and metabolism in the early osteoprogenitors. Particularly, Runx2 regulates transcription of genes involved in G-protein coupled signaling network, FGF and BMP/TGF beta signaling pathways and in biogenesis and metabolism pathways of steroid hormones. Conclusion. The data indicate that the lineage specific program, regulated by the master regulatory transcription factor, includes the regulation of cellular signaling and metabolism which may allow the committed cell to react and behave differently in the same microenvironment. Keywords: osteoblast progenitors, Runx2, signaling. Introduction. Bone development, repair and remode- transcription or by epigenetic remodeling of gene regu- ling homeostasis require constant differentiation of latory sequences [3]. mesenchymal stem cells through osteoprogenitors to Multiple Runx2 target genes are responsible for bo- mature osteoblasts and osteocytes. Consistent with the ne mineral production at the late stages of osteoblasts recent discoveries that a cell fate can be programmed maturation. However, Runx2 expression starts very by only few master transcriptional regulators, the cell early along osteoblastic lineage, and its role at the early fate along osteoblastic lineage is regulated by Runx2 steps of osteogenic commitment is scarcely understo- and Osterix factors, both indispensable for bone for- od. This research is focused on the fundamental me- mation [1, 2]. chanisms of osteoprogenitors programming by Runx2. Runx2 factor regulates expression of multiple tar- We have compared the transcriptomes of Runx2 null get genes via direct activation and repression of genes osteoprogenitor cells before and after their reconsti- tution with wild type Runx2 protein or its non-func- Ó Institute of Molecular Biology and Genetics NAS of Ukraine, 2010 tional mutant using Affymetrix microarrays. We have 273 TEPLYUK N. M., TEPLYUK V. I.. found that several clusters of functionally related genes Western blot analysis. Cell lysates were prepared respond to Runx2 re-introduction. They include the from cell pellets that were boiled in 100 ml of Direct genes related to the osteoblast-specific signaling net- Lysis buffer (50 mM Tris-HCl, pH 6.8, 2 % SDS, 10 % work, hormones biosynthesis and general metabolism. Glycerol, 12 % Urea, 25 mM MG132, 100 mM DTT These genes define osteoblast cell identity in the bone and 1 ´ Complete protease inhibitors) («Roche», USA). microenvironment. Aliquots of each lysate (5 ml) were separated in 10 % Materials and methods. Cell culture and adeno- sodium dodecyl sulfate (SDS)-polyacrylamide gel virus infections. Runx2 null calvaria osteoprogenitors electrophoresis (PAGE). Proteins were transferred cell line was developed previously from the fetal cal- using semi-wet blotting to nitrocellulose membranes varial region of Runx2 knock-out mice by stable inte- («Millipore», USA). Phosphatase buffered saline gration of Tert [4]. Runx2 null cells were maintained in (PBS) with 5 % non-fat milk was used for 1 h at room aMEM supplemented with 10 % fetal bovine serum temperature to block non-specific protein binding. (FBS) («Atlanta Biologicals», USA), 30 mM penicil- Primary and secondary antibodies were used at 1:2,000 lin-streptîmycin and 100 mM L-glutamine at 37 °C and dilutions for 1 h room temperature in PBS/0.1 % 5 % CO2 humidified atmosphere. Adenoviral vectors Tween (PBST) with 1 % milk. Signal was detected with containing cDNAs of full length Runx2 and its C- ECL (Perkin Elmer Western Lighting Chemilumines- terminal deletion mutants 1–361 (DC) were each cence Reagent Plus, «Perkin Elmer», USA). RUNX2- transferred into the AdenoVatorTM expression construct specific mouse monoclonal antibodies were a generous («Qbiogene», USA) from the corresponding pcDNA gift of Dr. Yoshiaki Ito (Institute for Molecular and expression vectors described previously. Cellular Biology, Singapore). CDK2 rabbit polyclonal Cells were plated for infections in 6-well plates antibodies (SC-163) were purchased from Santa Cruz (12.5×104 cells/well). After 24 h, cells were infected Biotechnology, Santa Cruz, USA. with 100 MOI of each virus in 600 ml of aMEM media Quantitative real-time reverse transcriptase PCR complemented with 1 % FBS for 4 h. Upon addition of (qRT-PCR) analysis. qRT-PCR was performed to vali- 400 ml media containing 1 % FBS, cells were incubated date changes for the sub-set of Runx2 responsive ge- for additional 10 h. nes. Specific qPCR primers were designed using Pri- Affymetrix analysis. Total RNA for Affymetrix mer 3 software. Total RNA for qRT-PCR assays was analysis (and subsequent qRT-PCR validation) was isolated as described, subjected to DNaseI digestion isolated with Trizol reagent and purified using the and purified using an RNA purification kit («Zy- RNeasy Mini Kit («Qiagen», USA). Analysis of gene mogen», USA). Aliquots of RNA (1 mg) were used for expression using Mouse Genome 430 2.0 Array was reverse transcription (First strand cDNA synthesis kit, performed as described earlier [5]. Data processing and «Invitrogen», USA) with random hexamer primers. sample comparisons were performed using an open Quantitative PCR was performed with Power SYBR source library for statistical analysis (BioConductor Green PCR Master Mix («Applied Biosystems», USA) library for R environment; http://www.bioconductor. using an automated system (Applied Biosystems 7300 org). Following Robust Multi-array Average expres- Real Time PCR System) with 0.5 pmoles/ml of the spe- sion measurement (RMA) and background correction, cific gene primers. the array values were subjected to quantile normaliza- Results and discussion. Functional clustering of tion assuming identical signal distributions in each of Runx2 responsive genes in osteoprogenitors. To inves- the arrays. Statistically significant differences between tigate Runx2 involvement in the programming of os- probe sets were evaluated using Student’s T test (p < teoprogenitors, we used the model system of early < 0.05). Functional annotation of Affymetrix probe sets mouse calvaria osteoprogenitors with Runx2 null back- and gene ontology relationships between groups of co- ground. These cells are blocked at the very early stage regulated genes were assessed using the Database for of osteogenic lineage because of the absence of Runx2 Annotation, Visualization and Integrated Discovery gene; although they deposit collagen into extracel- (DAVID 2.0) (http://david.abcc.ncifcrf.gov) [6]. lular matrix, they do not express other phenotypic mar- 274 BONE-SPECIFIC MASTER TRANSCRIPTION FACTOR RUNX2 A Runx2-WT Runx2-D361 GFP-EV Fig. 1. Runx2 overex- pression in Runx2 null mouse calvaria cells: A – Runx2 wild type (WT), C-terminal truncated B C Runx2 mutant (aa 1– 361, DC) or GFP control Protein: RNA: protein were expressed via adenoviral infections 1 l 1 l 6 6 a T a T 3 s 3 n n s u -W D ig -W D ig u in Runx2 null cells (åqu- r 2 - s 2 - -s ir i x 2 - x 2 v v n x P n x P al infection efficiency o u n F u n F o u u N N R R G R R G was determined by GFP signal); B, C – åxoge- Runx2 Runx2 nous Runx2 protein and RNA expression levels were detected by Wes- Cdk2 Gapdh tern blot and RT-PCR respectively kers and are not able to differentiate and mineralize in Early osteoblast phenotypic genes are induced by osteogenic media (ascorbic acid and beta-glycero- Runx2 in osteoblasts progenitors. As we expected, the phosphate). After cells reconstitution with exogenous- functional clustering of results has shown that the ly expressed Runx2 protein the block is released and genes of the early/middle osteoblast differentiation cells progress along osteoblatic lineage, differentiate to encoding Osteocalcin, Osteopontin, some collagens normal osteoblasts and mineralize in osteogenic media. and Matrix metalloproteinases, were robustly induced To assess the global changes in gene expression du- by Runx2 within 1 day after Runx2 re-introduction ring the osteoblatic lineage the genome-wide Affy- (Fig. 2). The genes characteristic for the late diffe- metrix expression profiling was performed with the rentiation stage encoding Bone sialoprotein, Alkaline
Recommended publications
  • Strategies to Increase ß-Cell Mass Expansion
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Strategies to increase -cell mass expansion Drynda, Robert Lech Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Strategies to increase β-cell mass expansion A thesis submitted by Robert Drynda For the degree of Doctor of Philosophy from King’s College London Diabetes Research Group Division of Diabetes & Nutritional Sciences Faculty of Life Sciences & Medicine King’s College London 2017 Table of contents Table of contents .................................................................................................
    [Show full text]
  • Serum Levels of Spexin and Kisspeptin Negatively Correlate with Obesity and Insulin Resistance in Women
    Physiol. Res. 67: 45-56, 2018 https://doi.org/10.33549/physiolres.933467 Serum Levels of Spexin and Kisspeptin Negatively Correlate With Obesity and Insulin Resistance in Women P. A. KOŁODZIEJSKI1, E. PRUSZYŃSKA-OSZMAŁEK1, E. KOREK4, M. SASSEK1, D. SZCZEPANKIEWICZ1, P. KACZMAREK1, L. NOGOWSKI1, P. MAĆKOWIAK1, K. W. NOWAK1, H. KRAUSS4, M. Z. STROWSKI2,3 1Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland, 2Department of Hepatology and Gastroenterology & The Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, Charité-University Medicine Berlin, Berlin, Germany, 3Department of Internal Medicine, Park-Klinik Weissensee, Berlin, Germany, 4Department of Physiology, Karol Marcinkowski University of Medical Science, Poznan, Poland Received August 18, 2016 Accepted June 19, 2017 On-line November 10, 2017 Summary Corresponding author Spexin (SPX) and kisspeptin (KISS) are novel peptides relevant in P. A. Kolodziejski, Department of Animal Physiology and the context of regulation of metabolism, food intake, puberty and Biochemistry, Poznan University of Life Sciences, Wolynska Street reproduction. Here, we studied changes of serum SPX and KISS 28, 60-637 Poznan, Poland. E-mail: [email protected] levels in female non-obese volunteers (BMI<25 kg/m2) and obese patients (BMI>35 kg/m2). Correlations between SPX or Introduction KISS with BMI, McAuley index, QUICKI, HOMA IR, serum levels of insulin, glucagon, leptin, adiponectin, orexin-A, obestatin, Kisspeptin (KISS) and spexin (SPX) are peptides ghrelin and GLP-1 were assessed. Obese patients had lower SPX involved in regulation of body weight, metabolism and and KISS levels as compared to non-obese volunteers (SPX: sexual functions. In 2014, Kim and coworkers showed that 4.48±0.19 ng/ml vs.
    [Show full text]
  • Galanin Stimulates Cortisol Secretion from Human Adrenocortical Cells
    859-864 9/11/07 11:36 Page 859 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 20: 859-864, 2007 859 Galanin stimulates cortisol secretion from human adrenocortical cells through the activation of galanin receptor subtype 1 coupled to the adenylate cyclase-dependent signaling cascade ANNA S. BELLONI1, LUDWIK K. MALENDOWICZ2, MARCIN RUCINSKI2, DIEGO GUIDOLIN1 and GASTONE G. NUSSDORFER1 1Department of Human Anatomy and Physiology, School of Medicine, University of Padua, I-35121 Padua, Italy; 2Department of Histology and Embryology, Poznan School of Medicine, PL-60781 Poznan, Poland Received September 10, 2007; Accepted October 5, 2007 Abstract. Previous studies showed that galanin receptors are Introduction expressed in the rat adrenal, and galanin modulates gluco- corticoid secretion in this species. Hence, we investigated the Galanin is a regulatory peptide (30 amino acid residues in expression of the various galanin receptor subtypes (GAL-R1, humans) originally isolated from pig intestine (1) which is GAL-R2 and GAL-R3) in the human adrenocortical cells, and widely distributed in the central and peripheral nervous the possible involvement of galanin in the control of cortisol system, where it acts as a neurotransmitter/neuromodulator. secretion. Reverse transcription-polymerase chain reaction In the gut, galanin modulates insulin release and intestine detected the expression of GAL-R1 (but not GAL-R2 and contractility (2,3). Galanin acts through three distinct subtypes GAL-R3) in the inner zones of the human adrenal cortex. The of G protein-coupled receptors, referred to as GAL-R1, GAL-R2 galanin concentration dependently enhanced basal, but not and GAL-R3 (4). ACTH-stimulated secretion of cortisol from dispersed inner Evidence suggests that galanin is involved in the functional adrenocortical cells (maximal effective concentration, 10-8 M).
    [Show full text]
  • Characterization of a High-Affinity Galanin Receptor in the Rat
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 4231-4235, May 1993 Neurobiology Characterization of a high-affinity galanin receptor in the rat anterior pituitary: Absence of biological effect and reduced membrane binding of the antagonist M15 differentiate it from the brain/gut receptor (galanin fragment/hemolytic plaque technique/prolactin) DAVID WYNICK*, DAVID M. SMITH*, MOHAMMAD GHATEI*, KAREN AKINSANYA*, RANJEV BHOGAL*, PAUL PURKISSt, PETER BYFIELDt, NOBORU YANAIHARAt, AND STEPHEN R. BLOOM* *Department of Medicine, Hammersmith Hospital, London W12 ONN, United Kingdom; tHaemostasis Research Group, Clinical Research Centre, Harrow, Middlesex, HAl 3UJ, United Kingdom; and tDepartment of Bio-organic Chemistry, University of Shizuoka, Shizuoka, Japan Communicated by L. L. Iversen, December 30, 1992 (received for review November 24, 1992) ABSTRACT Structure-activity studies demonstrate that anterior pituitary, where it has been shown to be estrogen galanin fragments 1-15 and 2-29 are fully active, whereas inducible (5). fragment 3-29 has been reported to be inactive, in a number Various studies have demonstrated effects of galanin on ofdifferent in vivo models. M15, a chimeric peptide comprising basal and stimulated release of prolactin (6, 7), growth galanin 1-13 and substance P 5-11, has recently been found to hormone (8-11), and luteinizing hormone (12, 13) either from be a potent galanin antagonist. Direct effects of galanin at the dispersed pituitary cells or at the hypothalamic level modu- level of the pituitary have been defined, yet, paradoxically, a lating dopamine, somatostatin (SRIF; somatotropin release- number of studies have been unable to demonstrate galanin inhibiting factor), and gonadotropin-releasing hormone binding to an anterior pituitary receptor.
    [Show full text]
  • Quantigene Flowrna Probe Sets Currently Available
    QuantiGene FlowRNA Probe Sets Currently Available Accession No. Species Symbol Gene Name Catalog No. NM_003452 Human ZNF189 zinc finger protein 189 VA1-10009 NM_000057 Human BLM Bloom syndrome VA1-10010 NM_005269 Human GLI glioma-associated oncogene homolog (zinc finger protein) VA1-10011 NM_002614 Human PDZK1 PDZ domain containing 1 VA1-10015 NM_003225 Human TFF1 Trefoil factor 1 (breast cancer, estrogen-inducible sequence expressed in) VA1-10016 NM_002276 Human KRT19 keratin 19 VA1-10022 NM_002659 Human PLAUR plasminogen activator, urokinase receptor VA1-10025 NM_017669 Human ERCC6L excision repair cross-complementing rodent repair deficiency, complementation group 6-like VA1-10029 NM_017699 Human SIDT1 SID1 transmembrane family, member 1 VA1-10032 NM_000077 Human CDKN2A cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4) VA1-10040 NM_003150 Human STAT3 signal transducer and activator of transcripton 3 (acute-phase response factor) VA1-10046 NM_004707 Human ATG12 ATG12 autophagy related 12 homolog (S. cerevisiae) VA1-10047 NM_000737 Human CGB chorionic gonadotropin, beta polypeptide VA1-10048 NM_001017420 Human ESCO2 establishment of cohesion 1 homolog 2 (S. cerevisiae) VA1-10050 NM_197978 Human HEMGN hemogen VA1-10051 NM_001738 Human CA1 Carbonic anhydrase I VA1-10052 NM_000184 Human HBG2 Hemoglobin, gamma G VA1-10053 NM_005330 Human HBE1 Hemoglobin, epsilon 1 VA1-10054 NR_003367 Human PVT1 Pvt1 oncogene homolog (mouse) VA1-10061 NM_000454 Human SOD1 Superoxide dismutase 1, soluble (amyotrophic lateral sclerosis 1 (adult))
    [Show full text]
  • Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes
    Tohoku J. Exp. Med., 2011,Differential 223, 161-176 Gene Expression in OPCs, Oligodendrocytes and Type II Astrocytes 161 Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes Jian-Guo Hu,1,2,* Yan-Xia Wang,3,* Jian-Sheng Zhou,2 Chang-Jie Chen,4 Feng-Chao Wang,1 Xing-Wu Li1 and He-Zuo Lü1,2 1Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China 2Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China 3Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China 4Department of Laboratory Medicine, Bengbu Medical College, Bengbu, P.R. China Oligodendrocyte precursor cells (OPCs) are bipotential progenitor cells that can differentiate into myelin-forming oligodendrocytes or functionally undetermined type II astrocytes. Transplantation of OPCs is an attractive therapy for demyelinating diseases. However, due to their bipotential differentiation potential, the majority of OPCs differentiate into astrocytes at transplanted sites. It is therefore important to understand the molecular mechanisms that regulate the transition from OPCs to oligodendrocytes or astrocytes. In this study, we isolated OPCs from the spinal cords of rat embryos (16 days old) and induced them to differentiate into oligodendrocytes or type II astrocytes in the absence or presence of 10% fetal bovine serum, respectively. RNAs were extracted from each cell population and hybridized to GeneChip with 28,700 rat genes. Using the criterion of fold change > 4 in the expression level, we identified 83 genes that were up-regulated and 89 genes that were down-regulated in oligodendrocytes, and 92 genes that were up-regulated and 86 that were down-regulated in type II astrocytes compared with OPCs.
    [Show full text]
  • The Galanin and Galanin Receptor Subtypes, Its Regulatory Role in the Biological and Pathological Functions
    Physiol. Res. 66: 729-740, 2017 REVIEW The Galanin and Galanin Receptor Subtypes, its Regulatory Role in the Biological and Pathological Functions J. ŠÍPKOVÁ1, I. KRAMÁRIKOVÁ1, S. HYNIE1, V. KLENEROVÁ1 1Laboratory of Neuropharmacology, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic Received December 16, 2016 Accepted March 31, 2017 On-line July 18, 2017 Summary Corresponding author The multitalented neuropeptide galanin was first discovered V. Klenerová, Laboratory of Neuropharmacology, Institute of 30 years ago but initially no biologic activity was found. Further Medical Biochemistry and Laboratory Diagnostics, First Faculty of research studies discovered the presence of galanin in the brain Medicine, Charles University, Albertov 4, 128 00 Prague 2, Czech and some peripheral tissues, and galanin was identified as Republic. Tel/Fax: +420 224 968 166, +420 224 968 142. a modulator of neurotransmission in the central and peripheral E-mail: [email protected] nervous system. Over the last decade there were performed very intensive studies of the neuronal actions and also of nonneuronal Introduction actions of galanin. Other galanin family peptides have been described, namely galanin, galanin-like peptide, galanin-message The galaninergic system is one of the specific associated peptide and alarin. The effect of these peptides is signaling systems involved in neurotransmission and mediated through three galanin receptors subtypes, GalR1, GalR2 neuromodulation. The principal molecule of this system and GalR3 belonging to G protein coupled receptors, and is the neuropeptide galanin. Galanin molecule was firstly signaling via multiple transduction pathways, including inhibition described more than thirty years ago in the porcine of cyclic AMP/protein kinase A (GalR1, GalR3) and stimulation of intestine (Tatemoto et al.
    [Show full text]
  • Identification of a Novel Synaptic G Protein-Coupled Receptor Controlling Nicotine Dependence and Withdrawal
    Identification of a novel synaptic G protein-coupled receptor controlling nicotine dependence and withdrawal Inaugural-Dissertation to obtain the academic degree Doctor rerum naturalium (Dr. rer. nat.) Submitted to the Department of Biology, Chemistry and Pharmacy of the Freie Universität Berlin by Beatriz Antolin Fontes from Girona, Spain Berlin, March 2014 This work was carried out in the period from June 2010 until March 2014 under the supervision of Dr. Inés Ibañez-Tallon and Prof. Dr. Constance Scharff at the Max- Delbrück-Center for Molecular Medicine (MDC) in Berlin and at The Rockefeller University in New York. 1st Reviewer: Dr. Inés Ibañez-Tallon 2nd Reviewer: Prof. Dr. Constance Scharff Date of defense: 18.06.2014 Scientific Acknowledgments I would like to express my sincere gratitude to all the people who made this thesis possible: - My supervisor Dr. Inés Ibañez-Tallon: For your advice, support and supervision throughout the years. Thank you for believing in me from the first moment, for giving me the opportunity to do research in different outstanding environments and specially, for transmitting always motivation and inspiration. I could not wish for a better supervisor. - My supervisor Prof. Dr. Constance Scharff from the Freie Universität Berlin: For your supervision and advice. - Prof. Dr. Nathaniel Heintz: For your valuable support and for so many useful and constructive recommendations on this project. - My fellow lab members, both current and past: Dr. Silke Frahm-Barske, Dr. Marta Slimak, Dr. Jessica Ables, Dr. Andreas Görlich, Dr. Sebastian Auer, Branka Kampfrath, Cuidong Wang, Syed Shehab, Dr. Martin Laqua, Dr. Julio Santos-Torres, Susanne Wojtke, Monika Schwarz-Harsi, and all Prof.
    [Show full text]
  • Co-Regulation of Hormone Receptors, Neuropeptides, and Steroidogenic Enzymes 2 Across the Vertebrate Social Behavior Network 3 4 Brent M
    bioRxiv preprint doi: https://doi.org/10.1101/435024; this version posted October 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Co-regulation of hormone receptors, neuropeptides, and steroidogenic enzymes 2 across the vertebrate social behavior network 3 4 Brent M. Horton1, T. Brandt Ryder2, Ignacio T. Moore3, Christopher N. 5 Balakrishnan4,* 6 1Millersville University, Department of Biology 7 2Smithsonian Conservation Biology Institute, Migratory Bird Center 8 3Virginia Tech, Department of Biological Sciences 9 4East Carolina University, Department of Biology 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 bioRxiv preprint doi: https://doi.org/10.1101/435024; this version posted October 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Running Title: Gene expression in the social behavior network 2 Keywords: dominance, systems biology, songbird, territoriality, genome 3 Corresponding Author: 4 Christopher Balakrishnan 5 East Carolina University 6 Department of Biology 7 Howell Science Complex 8 Greenville, NC, USA 27858 9 [email protected] 10 2 bioRxiv preprint doi: https://doi.org/10.1101/435024; this version posted October 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Design, Synthesis and Characterization of Galanin Receptor Selective Ligands
    !" #$"% "!&$$ ' () * ( +",-& . #/0!$ !$ 1 &2 . &2 "3 ( &. 4 . ( ( ( . &5 ( &6 ( ( 4 ( ( 4 & 0 & ( & 2 & " # (3 7#""8&9 (. : 4 4 & # 4 4 "& ( . : & ! # : & ; &7!/<8 4 & 9 ( ( & !" #$"% =00 && 0 > ? == = = "!/@@$ 9-/%@/"%,;/%#"$ 9-/%@/"%,;/%##% # $% # ("$,/" Design, Synthesis and Characterization of Galanin Receptor Selective Ligands Kristin Webling Abstract Galanin is a 29/30 amino acid long bioactive peptide discovered over 30 years ago when C-terminally amidated peptides were isolated from porcine intestines. The name galanin originates from a combination of the first and last amino acids - G from glycine and the rest from alanine. The first 15 amino acids are highly conserved throughout species, which indicates that the N-terminus is important for receptor recognition and binding. Galanin exerts its effects by binding to three different G protein-coupled receptors, which all differ according to regional distribution,
    [Show full text]
  • The Second Galanin Receptor Galr2 Plays a Key Role in Neurite Outgrowth from Adult Sensory Neurons
    416 • The Journal of Neuroscience, January 15, 2003 • 23(2):416–421 The Second Galanin Receptor GalR2 Plays a Key Role in Neurite Outgrowth from Adult Sensory Neurons Sally-Ann Mahoney,1 Richard Hosking,1 Sarah Farrant,1 Fiona E. Holmes,1 Arie S. Jacoby,2 John Shine,2 Tiina P. Iismaa,2 Malcolm K. Scott,3 Ralf Schmidt,4 and David Wynick1 1University Research Centre for Neuroendocrinology, Bristol University, Bristol BS2 8HW, United Kingdom, 2The Garvan Institute of Medical Research, Sydney, NSW 2010, Australia, 3Johnson & Johnson Pharmaceutical Research Institute, Spring House, Pennsylvania 19477-0776, and 4AstraZeneca R&D Montreal, Montreal, Quebec H4S 1Z9, Canada Expression of the neuropeptide galanin is markedly upregulated within the adult dorsal root ganglion (DRG) after peripheral nerve injury. We demonstrated previously that the rate of peripheral nerve regeneration is reduced in galanin knock-out mice, with similar deficits observed in neurite outgrowth from cultured mutant DRG neurons. Here, we show that the addition of galanin peptide signifi- cantly enhanced neurite outgrowth from wild-type sensory neurons and fully rescued the observed deficits in mutant cultures. Further- more,neuriteoutgrowthinwild-typecultureswasreducedtolevelsobservedinthemutantsbytheadditionofthegalaninantagonistM35 [galanin(1–13)bradykinin(2–9)]. Study of the first galanin receptor (GalR1) knock-out animals demonstrated no differences in neurite outgrowth compared with wild-type animals. Similarly, use of a GalR1-specific antagonist had no effect on neuritogenesis. In contrast, use of a GalR2-specific agonist had equipotent effects on neuritogenesis to galanin peptide, and inhibition of PKC reduced neurite outgrowth from wild-type sensory neurons to that observed in galanin knock-out cultures.
    [Show full text]
  • New Insights Into Metabolic Homeostasis Keith Tan
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2015 Activity Based Profiling: New Insights into Metabolic Homeostasis Keith Tan Follow this and additional works at: http://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons Recommended Citation Tan, Keith, "Activity Based Profiling: New Insights into Metabolic Homeostasis" (2015). Student Theses and Dissertations. Paper 285. This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. ACTIVITY BASED PROFILING: NEW INSIGHTS INTO METABOLIC HOMEOSTASIS A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Keith Tan June 2015 © Copyright by Keith Tan 2015 ACTIVITY BASED PROFILING: NEW INSIGHTS INTO METABOLIC HOMEOSTASIS Keith Tan, Ph.D. The Rockefeller University 2015 There is mounting evidence that demonstrates that body weight and energy homeostasis is tightly regulated by a physiological system. This system consists of sensing and effector components that primarily reside in the central nervous system and disruption to these components can lead to obesity and metabolic disorders. Although many neural substrates have been identified in the past decades, there is reason to believe that there are numerous unidentified neural populations that play a role in energy balance. Besides regulating caloric consumption and energy expenditure, neural components that control energy homeostasis are also tightly intertwined with circadian rhythmicity but this aspect has received less attention.
    [Show full text]