Hypothetical Orchestrated Cooperation Between Dopaminergic and Kinin Receptors for the Regulation of Common Functions*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Strategies to Increase ß-Cell Mass Expansion
This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Strategies to increase -cell mass expansion Drynda, Robert Lech Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Strategies to increase β-cell mass expansion A thesis submitted by Robert Drynda For the degree of Doctor of Philosophy from King’s College London Diabetes Research Group Division of Diabetes & Nutritional Sciences Faculty of Life Sciences & Medicine King’s College London 2017 Table of contents Table of contents ................................................................................................. -
Endothelin System and Therapeutic Application of Endothelin Receptor
xperim ACCESS Freely available online & E en OPEN l ta a l ic P in h l a C r m f o a c l a o n l o r g u y o J Journal of ISSN: 2161-1459 Clinical & Experimental Pharmacology Research Article Endothelin System and Therapeutic Application of Endothelin Receptor Antagonists Abebe Basazn Mekuria, Zemene Demelash Kifle*, Mohammedbrhan Abdelwuhab Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia ABSTRACT Endothelin is a 21 amino acid molecule endogenous potent vasoconstrictor peptide. Endothelin is synthesized in vascular endothelial and smooth muscle cells, as well as in neural, renal, pulmonic, and inflammatory cells. It acts through a seven transmembrane endothelin receptor A (ETA) and endothelin receptor B (ETB) receptors belongs to G protein-coupled rhodopsin-type receptor superfamily. This peptide involved in pathogenesis of cardiovascular disorder like (heart failure, arterial hypertension, myocardial infraction and atherosclerosis), renal failure, pulmonary arterial hypertension and it also involved in pathogenesis of cancer. Potentially endothelin receptor antagonist helps the treatment of the above disorder. Currently, there are a lot of trails both per-clinical and clinical on endothelin antagonist for various cardiovascular, pulmonary and cancer disorder. Some are approved by FAD for the treatment. These agents are including both selective and non-selective endothelin receptor antagonist (ETA/B). Currently, Bosentan, Ambrisentan, and Macitentan approved -
The Histamine H4 Receptor: a Novel Target for Safe Anti-Inflammatory
GASTRO ISSN 2377-8369 Open Journal http://dx.doi.org/10.17140/GOJ-1-103 Review The Histamine H4 Receptor: A Novel Target *Corresponding author Maristella Adami, PhD for Safe Anti-inflammatory Drugs? Department of Neuroscience University of Parma Via Volturno 39 43125 Parma Italy * 1 Tel. +39 0521 903943 Maristella Adami and Gabriella Coruzzi Fax: +39 0521 903852 E-mail: [email protected] Department of Neuroscience, University of Parma, Via Volturno 39, 43125 Parma, Italy Volume 1 : Issue 1 1retired Article Ref. #: 1000GOJ1103 Article History Received: May 30th, 2014 ABSTRACT Accepted: June 12th, 2014 th Published: July 16 , 2014 The functional role of histamine H4 receptors (H4Rs) in the Gastrointestinal (GI) tract is reviewed, with particular reference to their involvement in the regulation of gastric mucosal defense and inflammation. 4H Rs have been detected in different cell types of the gut, including Citation immune cells, paracrine cells, endocrine cells and neurons, from different animal species and Adami M, Coruzzi G. The Histamine H4 Receptor: a novel target for safe anti- humans; moreover, H4R expression was reported to be altered in some pathological conditions, inflammatory drugs?. Gastro Open J. such as colitis and cancer. Functional studies have demonstrated protective effects of H4R an- 2014; 1(1): 7-12. doi: 10.17140/GOJ- tagonists in several experimental models of gastric mucosal damage and intestinal inflamma- 1-103 tion, suggesting a potential therapeutic role of drugs targeting this new receptor subtype in GI disorders, such as allergic enteropathy, Inflammatory Bowel Disease (IBD), Irritable Bowel Syndrome (IBS) and cancer. KEYWORDS: Histamine H4 receptor; Stomach; Intestine. -
Bone-Specific Master Transcription Factor Runx2 Regulates Signaling and Metabolism Related Programs in Osteoprogenitors
ISSN 0233-7657. Biopolymers and Cell. 2010. Vol. 26. N 4 Bone-specific master transcription factor Runx2 regulates signaling and metabolism related programs in osteoprogenitors N. M. Teplyuk1, 2, V. I. Teplyuk2 1University of Massachusetts Medical School 55, Lake Ave North, 01655, Worcester, MA, USA 2Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine 150, Zabolotnogo str., Kiev, Ukraine, 03680 [email protected] Aim. Runx2 (AML3) transcription factor is the key regulator of osteoblastic lineage progression and is indispensable for the formation of mineral bones. Runx2 expression increases during differentiation of osteoblasts to induce osteoblast-specific genes necessary for the production and deposition of bone mineral matrix. However, Runx2 is also expressed at a lower level in early osteoprogenitors, where its function is less understood. Here we study how Runx2 determines the early stages of osteoblastic commitment using the model system of Runx2 re-introduction in mouse calvaria cells with Runx2 null background. Method. Affymetrix analysis, Western blot analysis and quantitative real-time reverse transcriptase PCR (qRT-PCR) analysis were employed. Results. Gene expression profiling by Affymetrix microarrays revealed that along with the induction of extracellular matrix and bone mineral deposition related phenotypic markers, Runx2 regulates several cell programs related to signaling and metabolism in the early osteoprogenitors. Particularly, Runx2 regulates transcription of genes involved in G-protein coupled signaling network, FGF and BMP/TGF beta signaling pathways and in biogenesis and metabolism pathways of steroid hormones. Conclusion. The data indicate that the lineage specific program, regulated by the master regulatory transcription factor, includes the regulation of cellular signaling and metabolism which may allow the committed cell to react and behave differently in the same microenvironment. -
Endothelial-Protective Effects of a G-Protein-Biased Sphingosine-1 Phosphate Receptor-1 Agonist, SAR247799, in Type-2 Diabetes R
medRxiv preprint doi: https://doi.org/10.1101/2020.05.15.20103101; this version posted May 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 Endothelial-protective effects of a G-protein-biased sphingosine-1 phosphate receptor-1 agonist, SAR247799, in type-2 diabetes rats and a randomized placebo-controlled patient trial. Luc Bergougnan1, Grit Andersen2, Leona Plum-Mörschel3, Maria Francesca Evaristi1, Bruno Poirier1, Agnes Tardat4, Marcel Ermer3, Theresa Herbrand2, Jorge Arrubla2, Hans Veit Coester2, Roberto Sansone5, Christian Heiss6, Olivier Vitse4, Fabrice Hurbin4, Rania Boiron1, Xavier Benain4, David Radzik1, Philip Janiak1, Anthony J Muslin7, Lionel Hovsepian1, Stephane Kirkesseli1, Paul Deutsch8, Ashfaq A Parkar8 1 Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France; 2 Profil Institut für Stoffwechselforschung GmbH, Hellersbergstraße 9, 41460 Neuss, Germany; 3 Profil Mainz GmbH & Co. KG, Malakoff-Passage, Rheinstraße 4C, Eingang via Templerstraße, D-55116 Mainz, Germany; 4 Sanofi R&D, 371 Rue du Professeur Blayac, 34080 Montpellier, France; 5 University Hospital Düsseldorf, Division of Cardiology, Pulmonary diseases and Vascular medicine, 40225 Düsseldorf, Germany; 6 Department of Clinical and Experimental Medicine, University of Surrey, Stag Hill, Guildford GU2 7XH, UK; 7 Sanofi US Services, 640 Memorial Drive, Cambridge MA 02139, USA; 8 Sanofi US Services, 55 Corporate Drive, Bridgewater, NJ 08807, USA. The authors confirm that the Principal Investigators for the clinical study were Grit Anderson and Leona Plum- Mörschel and that they had direct clinical responsibility for patients at the Neuss and Mainz sites, respectively. -
Multiplex Gpcr Internalization Assay Using Reverse Transduction on Adenoviral Vector Immobilized Microparticles S
MULTIPLEX GPCR INTERNALIZATION ASSAY USING REVERSE TRANSDUCTION ON ADENOVIRAL VECTOR IMMOBILIZED MICROPARTICLES S. Han1,2, H.J. Bae1,2, W. Park3 and S. Kwon1,2* 1Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center (ISRC), Seoul National University, SOUTH KOREA 2Center for Nanoparticle Research, Institute for Basic Science (IBS), SOUTH KOREA and 3Department of Electronics and Radio Engineering, Institute for Laser Engineering, Kyung Hee University, SOUTH KOREA ABSTRACT We present a new multiplexing method for high-throughput cell-based assays in a microtiter well based on reverse transduction of cells by adenoviral vectors immobilized on encoded microparticles. Our particle-based approach spatially confines the gene delivery to cells seeded on the particles and provides the code for identifying the delivered gene, thus easily achieving a multiplex cell microarray in a microtiter well by means of a single pipetting without the cross- expression of genes and the positional identification. Utilizing this method with adenoviral vectors having a G-protein coupled recpeptor (GPCR) gene, we demonstrated 3-plex GPCR internalization assay. KEYWORDS: Multiplex GPCR assay, Reverse transduction, Adenovirus, Encoded microparticle INTRODUCTION G-protein coupled receptors (GPCRs) in the cell membrane are major drug targets in pharmaceutical industry since they interact with a huge variety of endogenous ligands and trigger intracellular functions related to many physiological processes or diseases [1]. Many cell-based assay strategies have been developed to identify GPCR-targeted drugs with more biologically relevant data. Since typical cell-based assays are performed in the microtiter wells and it allows only one type of receptor for each well, multiplex cellular assay technologies have emerged to run high-throughput compound screening with over several hundreds of GPCRs. -
Lysophosphatidic Acid and Its Receptors: Pharmacology and Therapeutic Potential in Atherosclerosis and Vascular Disease
JPT-107404; No of Pages 13 Pharmacology & Therapeutics xxx (2019) xxx Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Lysophosphatidic acid and its receptors: pharmacology and therapeutic potential in atherosclerosis and vascular disease Ying Zhou a, Peter J. Little a,b, Hang T. Ta a,c, Suowen Xu d, Danielle Kamato a,b,⁎ a School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia b Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China c Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St Lucia, QLD 4072, Australia d Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA article info abstract Available online xxxx Lysophosphatidic acid (LPA) is a collective name for a set of bioactive lipid species. Via six widely distributed G protein-coupled receptors (GPCRs), LPA elicits a plethora of biological responses, contributing to inflammation, Keywords: thrombosis and atherosclerosis. There have recently been considerable advances in GPCR signaling especially Lysophosphatidic acid recognition of the extended role for GPCR transactivation of tyrosine and serine/threonine kinase growth factor G-protein coupled receptors receptors. This review covers LPA signaling pathways in the light of new information. The use of transgenic and Atherosclerosis gene knockout animals, gene manipulated cells, pharmacological LPA receptor agonists and antagonists have Gproteins fi β-arrestins provided many insights into the biological signi cance of LPA and individual LPA receptors in the progression Transactivation of atherosclerosis and vascular diseases. -
Neurotensin Activates Gabaergic Interneurons in the Prefrontal Cortex
The Journal of Neuroscience, February 16, 2005 • 25(7):1629–1636 • 1629 Behavioral/Systems/Cognitive Neurotensin Activates GABAergic Interneurons in the Prefrontal Cortex Kimberly A. Petrie,1 Dennis Schmidt,1 Michael Bubser,1 Jim Fadel,1 Robert E. Carraway,2 and Ariel Y. Deutch1 1Departments of Pharmacology and Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee 37212, and 2Department of Physiology, University of Massachusetts Medical Center, Worcester, Massachusetts 01655 Converging data suggest a dysfunction of prefrontal cortical GABAergic interneurons in schizophrenia. Morphological and physiological studies indicate that cortical GABA cells are modulated by a variety of afferents. The peptide transmitter neurotensin may be one such modulator of interneurons. In the rat prefrontal cortex (PFC), neurotensin is exclusively localized to dopamine axons and has been suggested to be decreased in schizophrenia. However, the effects of neurotensin on cortical interneurons are poorly understood. We used in vivo microdialysis in freely moving rats to assess whether neurotensin regulates PFC GABAergic interneurons. Intra-PFC administra- tion of neurotensin concentration-dependently increased extracellular GABA levels; this effect was impulse dependent, being blocked by treatment with tetrodotoxin. The ability of neurotensin to increase GABA levels in the PFC was also blocked by pretreatment with 2-[1-(7-chloro-4-quinolinyl)-5-(2,6-dimethoxyphenyl)pyrazole-3-yl)carbonylamino]tricyclo(3.3.1.1.3.7)decan-2-carboxylic acid (SR48692), a high-affinity neurotensin receptor 1 (NTR1) antagonist. This finding is consistent with our observation that NTR1 was localized to GABAergic interneurons in the PFC, particularly parvalbumin-containing interneurons. Because neurotensin is exclusively localized to dopamine axons in the PFC, we also determined whether neurotensin plays a role in the ability of dopamine agonists to increase extracellular GABA levels. -
Molecular Dissection of G-Protein Coupled Receptor Signaling and Oligomerization
MOLECULAR DISSECTION OF G-PROTEIN COUPLED RECEPTOR SIGNALING AND OLIGOMERIZATION BY MICHAEL RIZZO A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Biology December, 2019 Winston-Salem, North Carolina Approved By: Erik C. Johnson, Ph.D. Advisor Wayne E. Pratt, Ph.D. Chair Pat C. Lord, Ph.D. Gloria K. Muday, Ph.D. Ke Zhang, Ph.D. ACKNOWLEDGEMENTS I would first like to thank my advisor, Dr. Erik Johnson, for his support, expertise, and leadership during my time in his lab. Without him, the work herein would not be possible. I would also like to thank the members of my committee, Dr. Gloria Muday, Dr. Ke Zhang, Dr. Wayne Pratt, and Dr. Pat Lord, for their guidance and advice that helped improve the quality of the research presented here. I would also like to thank members of the Johnson lab, both past and present, for being valuable colleagues and friends. I would especially like to thank Dr. Jason Braco, Dr. Jon Fisher, Dr. Jake Saunders, and Becky Perry, all of whom spent a great deal of time offering me advice, proofreading grants and manuscripts, and overall supporting me through the ups and downs of the research process. Finally, I would like to thank my family, both for instilling in me a passion for knowledge and education, and for their continued support. In particular, I would like to thank my wife Emerald – I am forever indebted to you for your support throughout this process, and I will never forget the sacrifices you made to help me get to where I am today. -
Stress Impairs 5-HT2A Receptor-Mediated Serotonergic Facilitation of GABA Release in Juvenile Rat Basolateral Amygdala
Neuropsychopharmacology (2009) 34, 410–423 & 2009 Nature Publishing Group All rights reserved 0893-133X/09 $32.00 www.neuropsychopharmacology.org Stress Impairs 5-HT2A Receptor-Mediated Serotonergic Facilitation of GABA Release in Juvenile Rat Basolateral Amygdala 1,2 1 3 4 1 ,1,2 Xiaolong Jiang , Guoqiang Xing , Chunhui Yang , Ajay Verma , Lei Zhang and He Li* 1 Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; 2 3 Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Section on Neuropathology, Clinical Brain 4 Disorders Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA The occurrence of stress and anxiety disorders has been closely associated with alterations of the amygdala GABAergic system. In these disorders, dysregulation of the serotonergic system, a very important modulator of the amygdala GABAergic system, is also well recognized. The present study, utilizing a learned helplessness stress rat model, was designed to determine whether stress is capable of altering serotonergic modulation of the amygdala GABAergic system. In control rats, administration of 5-HT or a-methyl-5-HT, a 5-HT2 receptor agonist, to basolateral amygdala (BLA) slices dramatically enhanced frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). This effect was blocked by selective 5-HT2A receptor antagonists while a selective 5-HT2B receptor agonist and a selective 5-HT2C receptor agonist were without effect on sIPSCs. Double immunofluorescence labeling demonstrated that the 5-HT2A receptor is primarily localized to parvalbumin-containing BLA interneurons. -
Galanin Stimulates Cortisol Secretion from Human Adrenocortical Cells
859-864 9/11/07 11:36 Page 859 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 20: 859-864, 2007 859 Galanin stimulates cortisol secretion from human adrenocortical cells through the activation of galanin receptor subtype 1 coupled to the adenylate cyclase-dependent signaling cascade ANNA S. BELLONI1, LUDWIK K. MALENDOWICZ2, MARCIN RUCINSKI2, DIEGO GUIDOLIN1 and GASTONE G. NUSSDORFER1 1Department of Human Anatomy and Physiology, School of Medicine, University of Padua, I-35121 Padua, Italy; 2Department of Histology and Embryology, Poznan School of Medicine, PL-60781 Poznan, Poland Received September 10, 2007; Accepted October 5, 2007 Abstract. Previous studies showed that galanin receptors are Introduction expressed in the rat adrenal, and galanin modulates gluco- corticoid secretion in this species. Hence, we investigated the Galanin is a regulatory peptide (30 amino acid residues in expression of the various galanin receptor subtypes (GAL-R1, humans) originally isolated from pig intestine (1) which is GAL-R2 and GAL-R3) in the human adrenocortical cells, and widely distributed in the central and peripheral nervous the possible involvement of galanin in the control of cortisol system, where it acts as a neurotransmitter/neuromodulator. secretion. Reverse transcription-polymerase chain reaction In the gut, galanin modulates insulin release and intestine detected the expression of GAL-R1 (but not GAL-R2 and contractility (2,3). Galanin acts through three distinct subtypes GAL-R3) in the inner zones of the human adrenal cortex. The of G protein-coupled receptors, referred to as GAL-R1, GAL-R2 galanin concentration dependently enhanced basal, but not and GAL-R3 (4). ACTH-stimulated secretion of cortisol from dispersed inner Evidence suggests that galanin is involved in the functional adrenocortical cells (maximal effective concentration, 10-8 M). -
Characterization of a High-Affinity Galanin Receptor in the Rat
Proc. Natl. Acad. Sci. USA Vol. 90, pp. 4231-4235, May 1993 Neurobiology Characterization of a high-affinity galanin receptor in the rat anterior pituitary: Absence of biological effect and reduced membrane binding of the antagonist M15 differentiate it from the brain/gut receptor (galanin fragment/hemolytic plaque technique/prolactin) DAVID WYNICK*, DAVID M. SMITH*, MOHAMMAD GHATEI*, KAREN AKINSANYA*, RANJEV BHOGAL*, PAUL PURKISSt, PETER BYFIELDt, NOBORU YANAIHARAt, AND STEPHEN R. BLOOM* *Department of Medicine, Hammersmith Hospital, London W12 ONN, United Kingdom; tHaemostasis Research Group, Clinical Research Centre, Harrow, Middlesex, HAl 3UJ, United Kingdom; and tDepartment of Bio-organic Chemistry, University of Shizuoka, Shizuoka, Japan Communicated by L. L. Iversen, December 30, 1992 (received for review November 24, 1992) ABSTRACT Structure-activity studies demonstrate that anterior pituitary, where it has been shown to be estrogen galanin fragments 1-15 and 2-29 are fully active, whereas inducible (5). fragment 3-29 has been reported to be inactive, in a number Various studies have demonstrated effects of galanin on ofdifferent in vivo models. M15, a chimeric peptide comprising basal and stimulated release of prolactin (6, 7), growth galanin 1-13 and substance P 5-11, has recently been found to hormone (8-11), and luteinizing hormone (12, 13) either from be a potent galanin antagonist. Direct effects of galanin at the dispersed pituitary cells or at the hypothalamic level modu- level of the pituitary have been defined, yet, paradoxically, a lating dopamine, somatostatin (SRIF; somatotropin release- number of studies have been unable to demonstrate galanin inhibiting factor), and gonadotropin-releasing hormone binding to an anterior pituitary receptor.