
<p>This electronic thesis or dissertation has been downloaded from the King’s Research Portal at <a href="/goto?url=https://kclpure.kcl.ac.uk/portal/" target="_blank">https://kclpure.kcl.ac.uk/portal/ </a></p><p><strong>Strategies to increase -cell mass expansion </strong></p><p>Drynda, Robert Lech </p><p><em>Awarding institution: </em></p><p>King's College London </p><p><strong>The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. </strong></p><p><strong>END USER LICENCE AGREEMENT </strong></p><p><strong>Unless another licence is stated on the immediately following page </strong>this work is licensed </p><p>under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International </p><p>licence. <a href="/goto?url=https://creativecommons.org/licenses/by-nc-nd/4.0/" target="_blank">https://creativecommons.org/licenses/by-nc-nd/4.0/ </a></p><p>You are free to copy, distribute and transmit the work </p><p>Under the following conditions: </p><p></p><p>Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. </p><p></p><p>No Derivative Works - You may not alter, transform, or build upon this work. <br>Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. </p><p><strong>Take down policy </strong></p><p>If you believe that this document breaches copyright please contact <a href="mailto:[email protected]" target="_blank"><strong>[email protected] </strong></a>providing details, and we will remove access to the work immediately and investigate your claim. </p><p>Download date: 02. Oct. 2021 </p><p><strong>Strategies to increase β-cell mass </strong></p><p><strong>expansion </strong></p><p>A thesis submitted by <br>Robert Drynda </p><p>For the degree of Doctor of Philosophy from </p><p>King’s College London </p><p>Diabetes Research Group <br>Division of Diabetes & Nutritional Sciences <br>Faculty of Life Sciences & Medicine </p><p>King’s College London </p><p>2017 </p><p><strong>Table of contents </strong></p><p><a href="#3_0">Table of contents .................................................................................................. 2 </a><a href="#7_0">Abstract................................................................................................................. 6 </a><a href="#8_0">List of abbreviation</a><a href="#8_0">s</a><a href="#8_0">.</a><a href="#8_0">............................................................................................. 7 </a><a href="#12_0">List of figures....................................................................................................... 11 </a><a href="#14_0">List of tables........................................................................................................ 13 </a><a href="#15_0">Acknowledgements............................................................................................. 14 </a><a href="#16_0">Chapter </a><a href="#16_0">1</a><a href="#16_0">.</a><a href="#16_0">........................................................................................................... 15 </a><a href="#16_1">Introductio</a><a href="#16_1">n</a><a href="#16_1">.</a><a href="#16_1">........................................................................................................ 15 </a><a href="#17_0">1.1 </a><a href="#17_0">β</a><a href="#17_0">-cells and diabetes...................................................................................... 16 </a><br>1.1.1Islets of Langerhans............................................................................. 16 </p><p>1.1.2Insulin secretion and action.................................................................. 16 1.1.3Diabetes............................................................................................... 18 <br><a href="#21_0">1.2 </a><a href="#21_0">Hormonal control of β</a><a href="#21_0">-cell adaptation to pregnancy ..................................... 20 </a><br>1.2.1Lactogenic hormones........................................................................... 21 </p><p>1.2.2Hepatocyte Growth Factor signalling ................................................... 24 1.2.3Glucocorticoids..................................................................................... 25 1.2.4Oestradiol............................................................................................. 26 <br><a href="#28_0">1.3 Placenta functions ........................................................................................ 27 </a><a href="#29_0">1.4 The role of chemokines during pregnancy.................................................... 28 </a><a href="#0_0">1.5 G protein-coupled receptors ......................................................................... 30 </a><br>1.5.1GPCR signalling................................................................................... 31 </p><p>1.5.2G proteins............................................................................................. 34 1.5.3Proteins modulating GPCR functions................................................... 36 </p><p>2</p><p>1.5.4Signalling independent of G proteins ................................................... 37 <br><a href="#0_4">1.6 WNT signalling ............................................................................................. 38 </a><br>1.6.1WNT proteins and their receptors ........................................................ 38 </p><p>1.6.2Canonical WNT/β-catenin signaling ..................................................... 38 1.6.3Regulation of the WNT pathway by R-spondins................................... 40 <br><a href="#0_1">1.7 Aims and objectives...................................................................................... 44 </a><a href="#0_1">Chapter </a><a href="#0_1">2</a><a href="#0_1">.</a><a href="#0_1">........................................................................................................... 45 </a><a href="#0_7">Materials and methods........................................................................................ 45 </a><a href="#0_8">2.1 Animals.........................................................................................................</a><a href="#0_8"> </a><a href="#0_8">46 </a><br>2.1.1Mice for pancreatic islet BrdU staining................................................. 46 </p><p>2.1.2Mice for placental GPCR ligand secretome and GPCRome analysis .. 47 <br><a href="#0_11">2.2 Immunofluorescence stainin</a><a href="#0_11">g</a><a href="#0_11">.</a><a href="#0_11">......................................................................</a><a href="#0_11"> </a><a href="#0_11">47 </a><br>2.2.1Analysis of pancreatic β-cell proliferation............................................. 48 </p><p>2.2.2Analysis of pancreatic β-cell area ........................................................ 48 <br><a href="#0_4">2.3 Isolation of mouse pancreatic islet</a><a href="#0_4">s</a><a href="#0_4">.</a><a href="#0_4">............................................................. 49 </a><a href="#0_14">2.4 RNA isolation................................................................................................</a><a href="#0_14"> </a><a href="#0_14">49 </a><br><a href="#0_15">2.4.</a><a href="#0_15">1</a><a href="#0_15">T</a><a href="#0_15">otal RNA isolation from mouse pancreatic islets and pancreatic MIN6 </a><a href="#0_15">β</a><a href="#0_15">-cells.</a><a href="#0_15">.</a><a href="#0_15">.</a><a href="#0_15">........................................................................................................ 50 </a>2.4.2Determination of RNA concentration.................................................... 50 </p><p><a href="#0_4">2.5 cDNA synthesis ............................................................................................ 51 </a><a href="#0_1">2.6 Quantitative real-time polymerase chain reaction (qRT-PCR</a><a href="#0_1">)</a><a href="#0_1">.</a><a href="#0_1">..................... 52 </a><br>2.6.1Normalization against mouse housekeeping gene............................... 53 </p><p>2.6.2Screening for mRNA expression.......................................................... 55 2.6.3DNA agarose gel electrophoresis......................................................... 56 2.6.4Gene expression quantification............................................................ 56 <br><a href="#0_1">2.7 Analysis of RSPO4 protein concentration in mouse plasma during </a></p><p><a href="#0_1">pregnancy……………………………………………………………………………….</a><a href="#0_1">57 </a></p><p>3</p><p><a href="#0_18">2.8 </a><a href="#0_18">Culturing MIN6 β</a><a href="#0_18">-cells .................................................................................. 57 </a><a href="#0_19">2.9 </a><a href="#0_19">MIN6 β</a><a href="#0_19">-cell proliferation assay ..................................................................... 58 </a><a href="#0_1">2.10 </a><a href="#0_1">MIN6 β</a><a href="#0_1">-cell apoptosis assa</a><a href="#0_1">y</a><a href="#0_1">.</a><a href="#0_1">...................................................................... 61 </a><a href="#0_1">2.11 Measuring insulin secretion from MIN6 cells............................................... 63 </a><a href="#0_20">2.12 Insulin radioimmunoassay........................................................................... 64 </a><a href="#0_21">2.13 Statistical analysis....................................................................................... 66 </a></p><p><a href="#0_1">Chapter </a><a href="#0_1">3</a><a href="#0_1">.</a><a href="#0_1">........................................................................................................... 67 </a><a href="#0_7">Analysis of mouse pancreatic β</a><a href="#0_7">-cell proliferation during pregnancy ................... 67 </a><a href="#0_8">3.1 Introduction...................................................................................................</a><a href="#0_8"> </a><a href="#0_8">68 </a><a href="#0_15">3.2 Methods........................................................................................................</a><a href="#0_15"> </a><a href="#0_15">69 </a><a href="#0_1">3.3 Results..........................................................................................................</a><a href="#0_1"> </a><a href="#0_1">70 </a><br>3.3.1Changes in pancreatic β-cell replication during pregnancy.................. 70 </p><p>3.3.2Loss of β-cells post-partum.................................................................. 73 <br><a href="#0_1">3.4 Discussion</a><a href="#0_1"> </a><a href="#0_1">.................................................................................................... 75 </a><a href="#0_1">Chapter </a><a href="#0_1">4</a><a href="#0_1">.</a><a href="#0_1">........................................................................................................... 79 </a><a href="#0_7">Analysis of the mouse placental GPCR ligand secretome and pancreatic islet </a><a href="#0_7">GPCRome during pregnanc</a><a href="#0_7">y</a><a href="#0_7">.</a><a href="#0_7">............................................................................. 79 </a></p><p><a href="#0_23">4.1 Introduction...................................................................................................</a><a href="#0_23"> </a><a href="#0_23">80 </a><a href="#0_1">4.2 Methods........................................................................................................</a><a href="#0_1"> </a><a href="#0_1">82 </a><a href="#0_24">4.3 Results..........................................................................................................</a><a href="#0_24"> </a><a href="#0_24">83 </a><br>4.3.1Analysis of the mouse placenta GPCR ligand secretome during </p><p>pregnancy..................................................................................................... 83 4.3.2Analysis of the mouse pancreatic islet GPCRome during pregnancy .. 87 <br><a href="#0_1">4.4 Discussion</a><a href="#0_1"> </a><a href="#0_1">.................................................................................................... 96 </a><a href="#0_1">Chapter </a><a href="#0_1">5</a><a href="#0_1">.</a><a href="#0_1">......................................................................................................... 109 </a><a href="#0_7">A potential role for R-</a><a href="#0_7">spondin 4 in β</a><a href="#0_7">-cell adaptations to pregnanc</a><a href="#0_7">y</a><a href="#0_7">.</a><a href="#0_7">................. 109 </a><a href="#0_26">5.1 Introduction.................................................................................................</a><a href="#0_26"> </a><a href="#0_26">110 </a><a href="#0_1">5.2 Methods......................................................................................................</a><a href="#0_1"> </a><a href="#0_1">112 </a></p><p>4</p><p><a href="#0_1">5.3 Results........................................................................................................</a><a href="#0_1"> </a><a href="#0_1">113 </a><a href="#0_1">5.4 Discussion</a><a href="#0_1"> </a><a href="#0_1">.................................................................................................. 121 </a></p><p><a href="#0_1">Chapter </a><a href="#0_1">6</a><a href="#0_1">.</a><a href="#0_1">......................................................................................................... 125 </a><a href="#0_7">General discussion ........................................................................................... 125 </a><a href="#0_23">6.1 General discussio</a><a href="#0_23">n</a><a href="#0_23">.</a><a href="#0_23">....................................................................................</a><a href="#0_23"> </a><a href="#0_23">126 </a><a href="#0_27">6.2 Future perspective</a><a href="#0_27">s</a><a href="#0_27">.</a><a href="#0_27">...................................................................................</a><a href="#0_27"> </a><a href="#0_27">130 </a></p><p><a href="#0_1">Appendix </a><a href="#0_1">I</a><a href="#0_1">.</a><a href="#0_1">........................................................................................................ 132 </a><a href="#0_1">Appendix I</a><a href="#0_1">I</a><a href="#0_1">.</a><a href="#0_1">....................................................................................................... 133 </a><a href="#0_1">Appendix II</a><a href="#0_1">I</a><a href="#0_1">.</a><a href="#0_1">...................................................................................................... 148 </a><a href="#0_1">Appendix IV....................................................................................................... 160 </a></p><p>Reference<a href="#0_1">s</a><a href="#0_1">…………………………………………………………………………….</a><a href="#0_1">184 </a></p><p>5</p><p><strong>Abstract </strong></p><p><strong>Aim</strong>: Failure of the functional β-cell mass to adapt to compensate for peripheral insulin resistance leads to the development of type 2 diabetes and gestational diabetes. The overall aim of this thesis was to study mechanisms regulating β-cell mass expansion, using pregnancy in mice as an experimental model in which the β-cell mass increases during gestation and returns to normal levels post-partum. The mechanisms underlying this adaptation are not well understood, although placental signals are thought to be involved. The first objective of the project was to analyse changes in the β-cell mass during pregnancy, and post-partum. The second objective was to quantify the expression of islet β-cell G protein-coupled receptors (GPCRs) and their placental ligands to identify novel placental signals potentially involved in β-cell adaptation to pregnancy. The third objective was to examine the effects of one of the novel placental signals, R-spondin 4 (RSPO4), on β-cell function. <strong>Methods</strong>: β-cell proliferation was quantified using immunohistochemical staining of pancreatic sections labelled with 5-bromo-2'-deoxyuridine (BrdU), a thymidine analogue. β-cell identity was confirmed by co-immunostaining for insulin and quantified by morphometric analysis. Islet GPCR and placental ligand mRNAs were quantified using a non-biased quantitative real time PCR (qRT-PCR) array </p><p>approach. The effects of RSPO4 on insulin secretion, β-cell proliferation and </p><p>survival were evaluated using radioimmunoassay, BrdU incorporation and caspase 3/7 apoptosis assays, respectively. <strong>Results</strong>: Mouse β-cells proliferated during pregnancy, peaking around gestational day 12, are the newly-formed β-cells which were not selectively lost post-partum. Placental expression of GPCR ligands was upregulated on day 12, and islet GPCR expression was differentially regulated during pregnancy. One candidate placental GPCR ligand, RSPO4, had pro-proliferative and insulinotropic effects in β-cells, consistent with an adaptive function during pregnancy. <strong>Conclusion</strong>: The placenta synthesizes many GPCR ligands, such as RSPO4, which have the potential to influence β-cell function during pregnancy, and which may have therapeutic potential in treating diabetes. </p><p>6</p><p><strong>List of abbreviations </strong></p><p><strong>AKAP AKT (PKB) AP-2 </strong></p><p>A kinase anchoring protein Protein kinase B β2-adaptins </p><p><strong>ATP </strong></p><p>Adenosine triphosphate </p><p><strong>Bcl6 </strong></p><p>B-cell lymphoma 6 protein Body mass index </p><p><strong>BMI BrdU cAMP CaSR CCL11 CCL21 CCL7 CDK1 CDK4 CHOP C-MET C-MYC CNS </strong></p><p>5-bromo-2'-deoxyuridine Cyclic adenosine monophosphate Calcium sensing receptor Eotaxin Chemokine (C-C motif) ligand 21 Chemotactic protein-3 Cyclin-dependent kinase 1 Cyclin-dependent kinase 4 CCAAT-enhancer-binding homologous protein Hepatocyte growth factor receptor V-Myc avian myelocytomatosis viral oncogene homolog Central nervous system </p><p><strong>CPT-1 CX3CL1 DAG </strong></p><p>Carnitine palmitoyltransferase 1 Fractalkine Diacylglycerol </p><p><strong>EDTA ELISA ER </strong></p><p>Ethylenediaminetetraacetate Enzyme-linked immunosorbent assay Endoplasmic reticulum </p><p><strong>ERK </strong></p><p>Extracellular signal–regulated kinase (MAPK) Fibroblast growth factor </p><p><strong>FGF FITC </strong></p><p>Fluorescein isothiocyanate </p><p>7</p><p><strong>FoxO1 GAD65 GAPs GDM </strong></p><p>Forkhead box protein O1 Glutamic acid decarboxylase GTPase-activating proteins Gestational diabetes mellitus </p><p><strong>GH </strong></p><p>Growth hormone </p><p><strong>GLP1 GLUT GPCR GR </strong></p><p>Glucagon-like peptide 1 receptor Glucose transporter G protein coupled receptor Glucocorticoid receptor </p><p><strong>GSIS </strong></p><p>Glucose stimulated insulin secretion Glycated haemoglobin </p><p><strong>HbA1c HCC-1 HCC-4 HGF </strong></p><p>Hemofiltrate CC chemokine-1 Hemofiltrate CC chemokine-4 Hepatocyte growth factor Human pituitary growth hormone Human placental growth hormone Hepatocyte nuclear factor-4α Human placental lactogen </p><p><strong>hGH-N hGH-V HNF-4α hPL HTR1D </strong></p><p>Serotonin receptor 1d (5-hydroksytryptamine receptor 1d) </p><p><strong>HTR2B </strong></p><p>Serotonin receptor 2b (5-hydroksytryptamine receptor 2b) </p><p><strong>IGF-1 IHC </strong></p><p>Insulin-like growth factor 1 Immunohistochemistry </p><p>Interleukin 1β </p><p><strong>IL-1β INF-γ IPGTT IP3 </strong></p><p>Interferon γ </p><p>Intraperitoneal glucose tolerance test Inositol 1,4,5-trisphosphate Insulin receptor substrate </p><p><strong>IRS </strong></p><p>8</p><p><strong>Jak2 </strong></p><p>Janus kinase 2 </p><p><strong>LTB4 LTB4R1 MafA </strong></p><p>Leukotriene B4 Leukotriene B4 receptor 1 V-Maf masculoaponeurotic fibrosarcoma oncogene homologue A </p><p><strong>MAPK </strong></p><p>Mitogen activated protein kinase Macrophage-derived chemokine Major histocompatibility complex Macrophage inflammatory protein-1β Dual-specificity phosphoprotein phosphatase 1 Neurogenic differentiation 1 </p><p><strong>MDC MHC MIP-1β MKP-1 NeuroD1 NHERF2 NOD mice </strong></p><p>Na+/H+ exchanger regulatory factor 2 Non-obese diabetic mice (type 1 diabetes mellitus model) </p><p><strong>p18 </strong></p><p>Cyclin-dependend kinase 4 inhibitor C (CDKN2C) Cyclin-dependent kinase inhibitor 1 Cyclin-dependent kinase inhibitor 1B Cyclin-dependent kinase inhibitor 1C Pancreatic and duodenal homebox </p><p><strong>p21 p27 p57 Pdx-1 PGC-1α </strong></p><p>Peroxisome proliferator-activated receptor γ coactivator </p><p>1-α </p><p><strong>PA </strong></p><p>Phosphatidic acid </p><p><strong>PDZ </strong></p><p>Post-synaptic density of 95 kDa (PSD95)-disc large-zona occludens (PDZ) </p><p><strong>PI </strong></p><p>Phosphatidylinositol </p><p><strong>PIP</strong><sub style="top: 0.04em;"><strong>2 </strong></sub><strong>PI3K PIBF PKA PKC </strong></p><p>Phosphatidylinositol 4,5-bisphosphate Phosphatidylinozytol 3-kinase Progesterone induced blocking factor 1 Protein kinase A Protein kinase C </p><p>9</p><p><strong>PL </strong></p><p>Placental lactogen </p><p><strong>PLD </strong></p><p>Phospholipase D </p><p><strong>PPARα </strong></p><p><strong>PRL </strong></p><p>Peroxisome proliferator-activated receptor α Prolactin </p><p><strong>PRLR PTH1R PTH2R Rasd1 RSPO4 SAT </strong></p><p>Prolactin receptor Parathyroid hormone 1 receptor Parathyroid hormone 2 receptor Dexamethasone-induced ras-related protein 1 R-spondin 4 Subcutaneous adipose tissue Standard error of the means Sarcoendoplasmic reticulum Ca2+-ATPase 2 SH2-plekstrin homology domain Signal transducer and activator of transcription 3 Signal transducer and activator 5 Type 1 diabetes mellitus </p><p><strong>SEM SERCA2 SHC STAT3 STAT5 T1DM T2DM T3DM TGF-β1 TNF-α TPH1/2 TRB3 Tris </strong></p><p>Type 2 diabetes mellitus Type 3 diabetes mellitus </p><p>Transforming growth factor β Tumour necrosis factor α </p><p>Tryptophan hydroxylase 1 and 2 Tribble 3 Tris(hydroxymethyl)aminomethane Under-carboxylated osteocalcin Uncoupling protein 2 </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages211 Page
-
File Size-