Mollusk Shell Lab 1. Distinguish Between Gastropod Shells And

Total Page:16

File Type:pdf, Size:1020Kb

Mollusk Shell Lab 1. Distinguish Between Gastropod Shells And Mollusk Shell Lab 1. Distinguish between gastropod shells and pelecypod shells. Describe the differences. 2. Examine and then sketch a gastropod shell. Identify the aperture, spire, apex, whorl, body whorl, siphonal notch, anterior, posterior, suture, axial or longitudinal sculptures/ribs, spiral sculptures/ribs, sutures, outer lip. 3. Identify the gastropod as being sinistral (Relating to or being a gastropod shell that has its aperture to the left when facing the observer with the apex upward. having the whorls coiling counterclockwise down the spire when viewed with the apex toward the observer and having the aperture situated on the left of the axis when held with the spire uppermost and with the aperture opening toward the observer ) or Dexral (a gastropod shell that coils clockwise and has its aperture to the right when facing the observer with the apex upward.) Sketch an example of each situation and label them. 4. Measure the total length, lenth of spire, and length of body whorl of your assigned gastropod. 5. Be able to identify scallop, clam, conch, and whelk shells. (Conch: thick lip and Whelks: thin lip) 6. Sketch a pelecypod clam shell and identify the left and right valves, anterior, posterior, ventral, dorsal, umbo, hinge ligament, pallial line, pallial sinus, posterior adductor muscle scar, anterior adductor muscle scar, growth ring, anterior protractor scar, posterior retractor scar. 7. Using a peleocypod scallop shell sketch and label ears, beak, radiating ribs, concentric ribs (annuli). Beak 8. Using a peleocypod, sketch and identify the Ear Periostracum (outer layer of shell, thin, aka conchiolin layer), Prismatic Layer (aka ostracum layer, center layer, not iridescent or beautiful, provides stability) and the Nacreous Layer (aka hypostracum or mother-of-pearl layer; inside layer of peleocypods, iridescent). Radiating Ribs .
Recommended publications
  • Online Dictionary of Invertebrate Zoology Parasitology, Harold W
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Armand R. Maggenti Online Dictionary of Invertebrate Zoology Parasitology, Harold W. Manter Laboratory of September 2005 Online Dictionary of Invertebrate Zoology: S Mary Ann Basinger Maggenti University of California-Davis Armand R. Maggenti University of California, Davis Scott Gardner University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/onlinedictinvertzoology Part of the Zoology Commons Maggenti, Mary Ann Basinger; Maggenti, Armand R.; and Gardner, Scott, "Online Dictionary of Invertebrate Zoology: S" (2005). Armand R. Maggenti Online Dictionary of Invertebrate Zoology. 6. https://digitalcommons.unl.edu/onlinedictinvertzoology/6 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Armand R. Maggenti Online Dictionary of Invertebrate Zoology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Online Dictionary of Invertebrate Zoology 800 sagittal triact (PORIF) A three-rayed megasclere spicule hav- S ing one ray very unlike others, generally T-shaped. sagittal triradiates (PORIF) Tetraxon spicules with two equal angles and one dissimilar angle. see triradiate(s). sagittate a. [L. sagitta, arrow] Having the shape of an arrow- sabulous, sabulose a. [L. sabulum, sand] Sandy, gritty. head; sagittiform. sac n. [L. saccus, bag] A bladder, pouch or bag-like structure. sagittocysts n. [L. sagitta, arrow; Gr. kystis, bladder] (PLATY: saccate a. [L. saccus, bag] Sac-shaped; gibbous or inflated at Turbellaria) Pointed vesicles with a protrusible rod or nee- one end. dle. saccharobiose n.
    [Show full text]
  • Download Book (PDF)
    M o Manual on IDENTIFICATION OF SCHEDULE MOLLUSCS From India RAMAKRISHN~~ AND A. DEY Zoological Survey of India, M-Block, New Alipore, Kolkota 700 053 Edited by the Director, Zoological Survey of India, Kolkata ZOOLOGICAL SURVEY OF INDIA KOLKATA CITATION Ramakrishna and Dey, A. 2003. Manual on the Identification of Schedule Molluscs from India: 1-40. (Published : Director, Zool. Surv. India, Kolkata) Published: February, 2003 ISBN: 81-85874-97-2 © Government of India, 2003 ALL RIGHTS RESERVED • No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any from or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. • -This book is sold subject to the condition that it shall not, by way of trade, be lent, resold hired out or otherwise disposed of without the publisher's consent, in any form of binding or cover other than that in which it is published. • The correct price of this publication is the price printed on this page. Any revised price indicated by a rubber stamp or by a sticker or by any other means is incorrect and should be unacceptable. PRICE India : Rs. 250.00 Foreign : $ (U.S.) 15, £ 10 Published at the Publication Division by the Director, Zoological Survey of India, 234/4, AJ.C. Bose Road, 2nd MSO Building (13th Floor), Nizam Palace, Kolkata -700020 and printed at Shiva Offset, Dehra Dun. Manual on IDENTIFICATION OF SCHEDULE MOLLUSCS From India 2003 1-40 CONTENTS INTRODUcrION .............................................................................................................................. 1 DEFINITION ............................................................................................................................ 2 DIVERSITY ................................................................................................................................ 2 HA.B I,.-s .. .. .. 3 VAWE ............................................................................................................................................
    [Show full text]
  • The Marine and Brackish Water Mollusca of the State of Mississippi
    Gulf and Caribbean Research Volume 1 Issue 1 January 1961 The Marine and Brackish Water Mollusca of the State of Mississippi Donald R. Moore Gulf Coast Research Laboratory Follow this and additional works at: https://aquila.usm.edu/gcr Recommended Citation Moore, D. R. 1961. The Marine and Brackish Water Mollusca of the State of Mississippi. Gulf Research Reports 1 (1): 1-58. Retrieved from https://aquila.usm.edu/gcr/vol1/iss1/1 DOI: https://doi.org/10.18785/grr.0101.01 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf Research Reports Volume 1, Number 1 Ocean Springs, Mississippi April, 1961 A JOURNAL DEVOTED PRIMARILY TO PUBLICATION OF THE DATA OF THE MARINE SCIENCES, CHIEFLY OF THE GULF OF MEXICO AND ADJACENT WATERS. GORDON GUNTER, Editor Published by the GULF COAST RESEARCH LABORATORY Ocean Springs, Mississippi SHAUGHNESSY PRINTING CO.. EILOXI, MISS. 0 U c x 41 f 4 21 3 a THE MARINE AND BRACKISH WATER MOLLUSCA of the STATE OF MISSISSIPPI Donald R. Moore GULF COAST RESEARCH LABORATORY and DEPARTMENT OF BIOLOGY, MISSISSIPPI SOUTHERN COLLEGE I -1- TABLE OF CONTENTS Introduction ............................................... Page 3 Historical Account ........................................ Page 3 Procedure of Work ....................................... Page 4 Description of the Mississippi Coast ....................... Page 5 The Physical Environment ................................ Page '7 List of Mississippi Marine and Brackish Water Mollusca . Page 11 Discussion of Species ...................................... Page 17 Supplementary Note .....................................
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • SIX NEW SPECIES of INDO-PACIFIC TEREBRIDAE (GASTROPODA) Twila Bratcher and Walter 0
    Vol. 96(2) April 21, 1982 THE NAUTILUS 61 SIX NEW SPECIES OF INDO-PACIFIC TEREBRIDAE (GASTROPODA) Twila Bratcher and Walter 0. Cernohorsky 8121 Mulholland Terrace Auckland Institute and Museum Hollywood, CA 90046 New Zealand While doing research for a forthcoming book, terebrid species, some in museums, others from we have come across a number of undescribed private collectors. Some other species were 62 THE NAUTILUS April 21, 1982 Vol. 96(2) FIGS. 1-12. 1 & 10:Terebra mactanensis Bratcher & Cemohorsky, new species. Holotype, LACM no. 1968. 54-4 mm. 2 & 9: Terebra marrowae Bratcher & Cemohorsky, new species. Holotype, LACM no. 1969. 26.1 mm. 3 & 8: Duplicaria mozambiquen- sis Bratcher & Cemohorsky, new species. Holotype NM no. H7843. 22.3 mm. 4 & 12: Terebra caddeyi Bratcher & Cemohorsky, new species. Holotype LACM no. 1967. 52.7 mm. 5 & 11: Duplicaria baileyi Bratcher & Cemohorsky, new species. Holotype LACM no. 1970. 21^.9 mm. 6 & 7: Terebra burchi Bratcher & Cemohorsky, new species. Holotype MNHN. 17.9 mm. Vol. 96(2) April 21, 1982 THE NAUTILUS 63 represented only by a single specimen, and we Terebra caddeyi new species will wait for more material before describing (Figs. 4, 12) them. Six are being described here. Diagnosis: A long, slender, flat-sided terebrid shell, shiny tan, and with 3 or 4 spiral grooves Terebra burchi new species per whorl. (Figs. 6, 7) Description: Shell long, slender, with 25 whorls; color shiny tan; outline of whorls Diagnosis: A pure-white shell with small straight; protoconch missing; 3 spiral bands, brown dots scattered at random just below the each defined by a spiral groove, occur anterior suture and with a broadband of yellowish brown to suture; posterior band narrow, without on the base of the body whorl.
    [Show full text]
  • Page 362 the Veliger, Vol. 36, No. 4
    Page 362 The Veliger, Vol. 36, No. 4 Table 4 Measurements (mm) of Praesargana condoni (White, 1889). H D Hp Dp Ha Hs A Dp/Hp Hp/Hs UCLA 59443 19.0 15.0 2.0 7.6 3.0 ? 114° 3.8 p LACMIP 11546 27.3 21.2 4.8 8.9 6.5 1.0 88° 4.9 4.8 LACMIP 11585 17.6 16.9 1.8 6.8 3.4 t 110° 3.8 ? LACMIP 11586 23.7 21.6 3.0 10.5 5.0 1.7 115° 3.5 1.8 * Specimen incomplete; $ shoulder overlapped. Abbreviations decrypted in Introduction. very angulate on some specimens but rounded on others. Superfamily BUCCINACEA Rafinesque, 1815 The spire height varies from nearly flat (Figures 27-29, Family PERISSITYIDAE Popenoe & Saul, 1987 33) to conical (Figures 30-32). Additionally, on some spec- imens an abrupt enlargement of the whorl makes a bulge Genus Cydas Saul & Popenoe, gen. nov. near the aperture (Figures 34, 36, 37). Type species: Volutoderma crossi Anderson, 1958, from the ANDERSON (1958:168) claimed that the species occurs West Coast Turonian. in considerable numbers near the Yolo-Napa County line at Putah Creek, but a search of the University of Cali- Diagnosis: Medium-sized, fusiform perissityids with a fornia, Berkeley, Museum of Paleontology and the Cali- sloping shoulder, broadly rounded periphery, and short fornia Academy of Sciences collections for specimens from anterior siphonal neck that has near its anterior end a that vicinity turned up only two specimens of the species well-developed siphonal fasciole.
    [Show full text]
  • Rocky Shore Snails As Material for Projects (With a Key for Their Identification)
    Field Studies, 10, (2003) 601 - 634 ROCKY SHORE SNAILS AS MATERIAL FOR PROJECTS (WITH A KEY FOR THEIR IDENTIFICATION) J. H. CROTHERS Egypt Cottage, Fair Cross, Washford, Watchet, Somerset TA23 0LY ABSTRACT Rocky sea shores are amongst the best habitats in which to carry out biological field projects. In that habitat, marine snails (prosobranchs) offer the most opportunities for individual investigations, being easy to find, to identify, to count and to measure and beng sufficiently robust to survive the experience. A key is provided for the identification of the larger species and suggestions are made for investigations to exploit selected features of individual species. INTRODUCTION Rocky sea shores offer one of the best habitats for individual or group investigations. Not only is there de facto public access (once you have got there) but also the physical factors that dominate the environment - tides (inundation versus desiccation), waves, heat, cold, light, dark, salinity etc. - change significantly over a few metres in distance. As a bonus, most of the fauna and flora lives out on the open rock surface and patterns of distribution may be clearly visible to the naked eye. Finally, they are amongst the most ‘natural’ of habitats in the British Isles; unless there has been an oil spill, rocky sea shores are unlikely to have been greatly affected by covert human activity. Some 270 species of marine snail (Phylum Mollusca, Class Gastropoda; Sub-Class Prosobranchia) live in the seas around the British Isles (Graham, 1988) and their empty shells may be found on many beaches. Most of these species are small (less than 3 mm long) or live beneath the tidemarks.
    [Show full text]
  • Guide to the Systematic Distribution of Mollusca in the British Museum
    PRESENTED ^l)c trustee*. THE BRITISH MUSEUM. California Swcademu 01 \scienceb RECEIVED BY GIFT FROM -fitoZa£du^4S*&22& fo<?as7u> #yjy GUIDE TO THK SYSTEMATIC DISTRIBUTION OK MOLLUSCA IN III K BRITISH MUSEUM PART I HY JOHN EDWARD GRAY, PHD., F.R.S., P.L.S., P.Z.S. Ac. LONDON: PRINTED BY ORDER OF THE TRUSTEES 1857. PRINTED BY TAYLOR AND FRANCIS, RED LION COURT, FLEET STREET. PREFACE The object of the present Work is to explain the manner in which the Collection of Mollusca and their shells is arranged in the British Museum, and especially to give a short account of the chief characters, derived from the animals, by which they are dis- tributed, and which it is impossible to exhibit in the Collection. The figures referred to after the names of the species, under the genera, are those given in " The Figures of Molluscous Animals, for the Use of Students, by Maria Emma Gray, 3 vols. 8vo, 1850 to 1854 ;" or when the species has been figured since the appear- ance of that work, in the original authority quoted. The concluding Part is in hand, and it is hoped will shortly appear. JOHN EDWARD GRAY. Dec. 10, 1856. ERRATA AND CORRIGENDA. Page 43. Verenad.e.—This family is to be erased, as the animal is like Tricho- tropis. I was misled by the incorrectness of the description and figure. Page 63. Tylodinad^e.— This family is to be removed to PleurobrancMata at page 203 ; a specimen of the animal and shell having since come into my possession.
    [Show full text]
  • Eocene; California, Mexico): a Synonym of Lyrischapa Aldrich (Eocene; Gulf Coast)
    THE GASTROPOD GENUS VOLUTOCRISTATA GARDNER AND BOWLES (EOCENE; CALIFORNIA, MEXICO): A SYNONYM OF LYRISCHAPA ALDRICH (EOCENE; GULF COAST) CHARLES R. GIVENS EARTH SCIENCE DEPARTMENT NICHOLLS STATE UNIVERSITY THIBODAUX , LOUISIANA ABSTRACT Eocene of southern Mexico (Chiapas prov­ The volutid gastropod genus Volutocris­ mce). Examination of published ill ustra­ tata Gardner and Bowles, described from tions of Lyrischapa and Volutocristata re­ the Eocene of Mexico and California is veals tha t both taxa possess a distinctive shown to be a synonym of the monot;pic Conus-like shape, with prominent periph­ Gulf Coast Eocene genus Lyrischapa Al­ e ral spines. Their most apparent difference drich. As here expanded, the genus Lyri­ IS s1ze ; figured specimens of Volutocristata schapa includes at least three species, are more than twice as large as those of each of which characterizes middle Eo­ Lyrischapa. cene strata within a different region of Recent collecting in the Cook Mountain North America: L. harrisi Aldrich, the Formation of ea~tern Mississippi has re­ type species, in the Gulf Coast region of sulted in the discovery of several addition­ the southeastern United States; L. chiapa­ al specime ns of the monotype species Lyr­ sensis (Gardner and Bowles), in southern tschapa harrisi Aldrich, including speci­ Mexico on the Gulf of Mexico side of the mens much larger than the holotype and continental divide; and L. lajollaensis comparable in size to those of Volutocri­ (Hanna), on the Pacific Coast. stata. Comparison of these new specimens The ancestry and place of origin of Lyri­ of Lyrischapa with those of Volutocristata schapa are unknown. The geographic dis­ (including types) reveals that, in addition tribution of the genus suggests an immedi­ to similar shape, these taxa also share ate center of dispersal in the Caribbean other morphological attributes including: a region.
    [Show full text]
  • Caenogastropoda
    13 Caenogastropoda Winston F. Ponder, Donald J. Colgan, John M. Healy, Alexander Nützel, Luiz R. L. Simone, and Ellen E. Strong Caenogastropods comprise about 60% of living Many caenogastropods are well-known gastropod species and include a large number marine snails and include the Littorinidae (peri- of ecologically and commercially important winkles), Cypraeidae (cowries), Cerithiidae (creep- marine families. They have undergone an ers), Calyptraeidae (slipper limpets), Tonnidae extraordinary adaptive radiation, resulting in (tuns), Cassidae (helmet shells), Ranellidae (tri- considerable morphological, ecological, physi- tons), Strombidae (strombs), Naticidae (moon ological, and behavioral diversity. There is a snails), Muricidae (rock shells, oyster drills, etc.), wide array of often convergent shell morpholo- Volutidae (balers, etc.), Mitridae (miters), Buccin- gies (Figure 13.1), with the typically coiled shell idae (whelks), Terebridae (augers), and Conidae being tall-spired to globose or fl attened, with (cones). There are also well-known freshwater some uncoiled or limpet-like and others with families such as the Viviparidae, Thiaridae, and the shells reduced or, rarely, lost. There are Hydrobiidae and a few terrestrial groups, nota- also considerable modifi cations to the head- bly the Cyclophoroidea. foot and mantle through the group (Figure 13.2) Although there are no reliable estimates and major dietary specializations. It is our aim of named species, living caenogastropods are in this chapter to review the phylogeny of this one of the most diverse metazoan clades. Most group, with emphasis on the areas of expertise families are marine, and many (e.g., Strombidae, of the authors. Cypraeidae, Ovulidae, Cerithiopsidae, Triphori- The fi rst records of undisputed caenogastro- dae, Olividae, Mitridae, Costellariidae, Tereb- pods are from the middle and upper Paleozoic, ridae, Turridae, Conidae) have large numbers and there were signifi cant radiations during the of tropical taxa.
    [Show full text]
  • The Nautilus
    THE NAUTILUS Volume 120, Numberl May 30, 2006 ISSN 0028-1344 A quarterly devoted to malacology. EDITOR-IN-CHIEF Dr. Douglas S. Jones Dr. Angel Valdes Florida Museum of Natural History Department of Malacology Dr. Jose H. Leal University of Florida Natural Histoiy Museum The Bailey-Matthews Shell Museum Gainesville, FL 32611-2035 of Los Angeles County 3075 Sanibel-Captiva Road 900 Exposition Boulevard Sanibel, FL 33957 Dr. Harry G. Lee Los Angeles, CA 90007 MANAGING EDITOR 1801 Barrs Street, Suite 500 Dr. Geerat Vermeij Jacksonville, FL 32204 J. Linda Kramer Department of Geology Shell Museum The Bailey-Matthews Dr. Charles Lydeard University of California at Davis 3075 Sanibel-Captiva Road Biodiversity and Systematics Davis, CA 95616 Sanibel, FL 33957 Department of Biological Sciences Dr. G. Thomas Watters University of Alabama EDITOR EMERITUS Aquatic Ecology Laboratory Tuscaloosa, AL 35487 Dr. M. G. Harasewych 1314 Kinnear Road Department of Invertebrate Zoology Bruce A. Marshall Columbus, OH 43212-1194 National Museum of Museum of New Zealand Dr. John B. Wise Natural History Te Papa Tongarewa Department oi Biology Smithsonian Institution P.O. Box 467 College of Charleston Washington, DC 20560 Wellington, NEW ZEALAND Charleston, SC 29424 CONSULTING EDITORS Dr. James H. McLean SUBSCRIPTION INFORMATION Dr. Riidiger Bieler Department of Malacology Department of Invertebrates Natural History Museum The subscription rate per volume is Field Museum of of Los Angeles County US $43.00 for individuals, US $72.00 Natural History 900 Exposition Boulevard for institutions. Postage outside the Chicago, IL 60605 Los Angeles, CA 90007 United States is an additional US $5.00 for surface and US $15.00 for Dr.
    [Show full text]
  • New Buccinoid Gastropods from Uppermost Cretaceous and Paleocene Strata of California and Baja California, Mexico
    THE NAUTILUS 120(2):66–78, 2006 Page 66 New buccinoid gastropods from uppermost Cretaceous and Paleocene strata of California and Baja California, Mexico Richard L. Squires LouElla R. Saul Department of Geological Sciences Invertebrate Paleontology Section California State University, Natural History Museum of Los Angeles Northridge, CA 91330–8266 USA County [email protected] 900 Exposition Boulevard Los Angeles, CA 90007 USA [email protected] ABSTRACT better understanding of the relationship between Ornop- sis? n. sp. and “T.” titan. Saul’s Ornopsis? n. sp. is herein Two new genera and three new species of extinct buccinoid assigned to Ornopsis? dysis new species, and its genus gastropods are described and named from the Pacific slope of assignment cannot be made with certainty until more North America. The buccinid? Ornopsis? dysis new species is specimens are found. Ornopsis sensu stricto Wade, 1916, from uppermost Maastrichtian (uppermost Cretaceous) strata heretofore has been reported with certainty only from in the Dip Creek area, San Luis Obispo County, west-central Upper Cretaceous (upper Campanian to upper Maas- California. The fasciolarine fasciolarid? Saxituberosa new genus is comprised of the lineage Saxituberosa fons new species, from trichtian) strata of the southeastern United States (Sohl, lower Paleocene (Danian) strata in Los Angeles County, south- 1964). “Trachytriton” titan is herein found to occur in ern California, and Saxituberosa titan (Waring, 1917), from middle Paleocene strata in southern California. Its char- middle Paleocene (Selandian) strata in Ventura and Los Ange- acteristics separate it from the cymatiid Trachytriton les counties, southern California, and northern Baja California, Meek, 1864, and “T.” titan is assigned to Saxituberosa Mexico.
    [Show full text]